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Abstract: There has been a lot of interest in the manufacture of stable, high-efficiency photocatalysts.
In this study, initially Cr doped ZnFe2O4 nanoparticles (NPs) were made via surfactant-assisted
hydrothermal technique. Then Cr-ZnFe2O4 NPs were modified by incorporating S-g-C3N4 to enhance
their photocatalytic efficiency. The morphological, structural, and bonding aspects were analyzed by
XRD, FTIR, and SEM techniques. The photocatalytic efficiency of the functional Cr-ZnFe2O4/S-g-
C3N4 (ZFG) heterostructure photocatalysts was examined against MB under sunlight. The produced
ZFG-50 composite has the best photocatalytic performance, which is 2.4 and 3.5 times better than
that of ZnFe2O4 and S-g-C3N4, respectively. Experiments revealed that the enhanced photocatalytic
activity of the ZFG nanocomposite was caused by a more effective transfer and separation of photo-
induced charges. The ZFG photocatalyst can use sunlight for treating polluted water, and the
proposed modification of ZnFe2O4 using Cr and S-g-C3N4 is efficient, affordable, and environmentally
benign. Under visible light, Gram-positive and Gram-negative bacteria were employed to ZFG-50
NCs’ antimicrobial activity. These ZFG-50 NCs also exhibit excellent antibacterial potential.

Keywords: photocatalyst; hydrothermal method; S-g-C3N4; nanocomposite; polluted water

1. Introduction

Pollution is one of the most serious dangers that humans face. Pollution of various
aquatic ecosystems is the most widespread type that has a significant impact on living
things. Industrial dyes are known to be dangerous to people, especially when soluble in
water [1]. Methylene blue (MB) dye is one of the most popular dyes that pollute aquatic
habitats. Therefore, developing a good method for the cleanup of wastewater is critical.
To remove organic dyes from wastewater, many methods have been used, including
biodegradation, adsorption, filtering, sedimentation, and coagulation [2,3]. However, these
procedures did not produce good results in terms of dye degradation. Scientists have
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demonstrated that photocatalytic decomposition is an appropriate alternative technique
for the enhanced decomposition of numerous contaminants due to its high efficiency and
low cost. Moreover, endorsing photocatalysis does not necessitate the use of other methods
to remove the byproducts [1,4–6].

The g-C3N4 semiconductor has shown significant photocatalytic proficiency under
visible light, as a result of its favorable characteristics such as high stability and a reduced
band gap energy, which improves its capacity to absorb visible radiations [7–10]. However,
the quick recombination of photoinduced e−/h+ pairs in the g-C3N4 makes it unsuitable
for use as a photocatalyst [11–13]. As a result, numerous attempts to remove this limitation
have been made, including vacancy, heterojunction formation, and mixing the g-C3N4 with
some other metal oxide and nonmetals such as S [14,15]. By stacking its 2p orbitals on the
VB of bulk g-C3N4, S-doping alters the bandgap of g-C3N4 and enhances the mobility and
separation of the e-h pairs. Hong et al. reported that the photocatalytic H2 production
efficiency of mesoporous S-g-C3N4 is 30 times more than pure g-C3N4 [16]. Similarly, S-g-
C3N4 had an approximately 1.38 times greater photocatalytic CO2 reduction rate than pure
g-C3N4 [14]. Under visible light, porous S-g-C3N4 had better adsorption and photocatalytic
degradation of Rhodamine B dye than pure g-C3N4 [17].

S-doping has been shown to change the structural properties of g-C3N4, reduce its
Eg value, and enhance the e−/h+ pair separation efficiency both theoretically and em-
pirically [18]. The heterogeneous photocatalyst’s nanosheet structure, on the other hand,
provides a large number of active sites for the reaction, along with increased surface area
and reduced recombination between photoinduced charges. The separation efficiency
of photo-produced charges on the g-C3N4 can be expanded by combining it with an-
other good semiconductor like ZnFe2O4, and the resulting heterojunction can be used for
wastewater treatment [19–22].

Zinc ferrite is a spinel ferrite with all Fe3+ ions in the octahedral sites and Zn2+ ions
in the tetrahedral sites. Because of its unusual catalytic and magnetic capabilities, it is a
promising material. Many studies have shown that doping ZnFe2O4 with appropriate
metal ions improves optical and photocatalytic characteristics [23,24]. Patil et al. used
the co-precipitation approach to manufacture Gd3+ doped ZnFe2O4 nanoparticles, which
demonstrated improved MB degradation of roughly 99% as compared to pure ZnFe2O4
(95% degradation in 240 min) [25]. According to Ajithkumar et al., yttrium-doped zinc
ferrite made by solution combustion technique showed 95% MB degradation in 180 min-
utes [26]. Y-ZnFe2O4 has higher photocatalytic effectiveness than pure zinc ferrite. Under
visible light, cobalt-doped zinc ferrite decomposed methylene blue more efficiently than
ZnFe2O4. Many researchers have concluded that ZnFe2O4 has finite band gap energy and
hence might form an effective heterojunction when combined with g-C3N4 [27].

Moreover, the advanced ZnFe2O4/g-C3N4 nanocomposite, which plays a role in
increasing photocatalytic efficiency, may achieve longer separation between photoexcited
charges [28]. Owing to the improved charge separation abilities, it is suggested to produce
M-ZnFe2O4/S-g-C3N4 heterojunction to realize significant photocatalytic performance [29].
In this probe, hybrid ZFG-50 nanocomposites have been synthesized successfully via
a surfactant (PEG) assisted hydrothermal process. The photocatalytic characteristics of
synthesized materials were investigated using MB, an organic pollutant. In step one, the
series of chromium-doped zinc ferrite (Cr-ZnFe2O4) nanoparticles were synthesized with
varying chromium percentages (0.5, 1, 3, 5, 7, and 9 wt. %). The effect of Cr3+ substitution
on photocatalytic properties of zinc ferrite was observed. The 7% Cr-ZnFe2O4 sample
manifested the best absorption of solar light and degradation efficiency. In step two, the
7% Cr-ZnFe2O4 nanoparticles were homogenized with diverse concentrations of S-g-C3N4
(10, 30, 50, and 70 wt. %) to produce ZFG-50 with enhanced photocatalytic activity. The
7% Cr-ZnFe2O4/50% S-g-C3N4 nanocomposite executed the best photocatalytic activity
as compared to pure ZnFe2O4, 7% Cr-ZnFe2O4, and S-g-C3N4. Results depicted that
the enhanced photocatalytic activity of 7% Cr-ZnFe2O4/50% S-g-C3N4 nanocomposite
was because of the enhanced absorption of sunlight and better separation of e−/h+ pairs
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between Cr-ZnFe2O4 and S-g-C3N4. To the best of our knowledge, the synthesis of ZFG-50
heterojunctions via the hydrothermal approach has never been used. The precursors used
for the synthesis are low-cost, and the synthesized ZnFe2O4/S-g-C3N4 heterojunctions are
not reported to be used as photocatalysts. The synthesized material may have potential
applications in the field of water purification.

2. Experimental
2.1. Chemicals

Zinc Sulphate Heptahydrate (ZnSO4·7H2O), Iron (III) Chloride Anhydrous (FeCl3),
Chromium (III) Chloride Hexahydrate (CrCl3·6H2O), Sodium Hydroxide (NaOH), Thiourea
(CH4N2S), Polyethylene Glycol, and Methylene Blue (C16H18ClN3S) were purchased from
Merck (Darmstadt, Germany) and used.

2.2. Synthesis of Chromium Doped Zinc Ferrites

A surfactant-assisted hydrothermal technique was employed to fabricate, a set of
chromium doped zinc ferrites (Cr-ZnFe2O4) with different chromium percentages (0.5, 1, 3,
5, 7, and 9 wt. %) [12]. For the preparation of 0.5% Cr-ZnFe2O4 three solutions A, B and C
were made before synthesis. Solution A: 40 mL of deionized water were mixed with 0.0169 g
of CrCl3·6H2O. Solution B: 40 mL of deionized water were used to emulsify 2.8624 g of
ZnSO4.7H2O. Solution C: In 40 mL of deionized water, 3.244 g of FeCl3 was dissolved.
Then, 10 mL of PEG-400 was added as a surfactant to the mixture of solutions A, B, and C
in order to prevent the agglomeration of nanoparticles. The suspensions were then moved
to a Teflon-lined autoclave after the pH of the resulting solution was adjusted to 11 by
adding a 6 M NaOH solution. The autoclave was placed in a 175 ◦C oven for ten hours
before being removed to cool to room temperature. The resulting precipitates were then
filtered off and washed with deionized H2O and absolute ethanol and then, finally dried at
85 ◦C in an oven. The same process was applied to synthesize other percentages (0, 1, 3, 5,
7, and 9 wt. %) of Cr-ZnFe2O4.

2.3. Synthesis of S-g-C3N4

S-g-C3N4 was produced via thermal polycondensation of thiourea to 570 ◦C for 5 h at
5 ◦C min−1 in a muffle furnace. It was then allowed to cool to ambient temperature and
stored the resulting yellowish S-g-C3N4 [14].

2.4. Synthesis of Cr-ZnFe2O4/S-g-C3N4

A range of ZFG-50 nanocomposites was made by incorporating 7% Cr-ZnFe2O4
with different concentrations of S-g-C3N4 (10, 30, 50, 60, and 70 wt. %) via surfactant-
assisted hydrothermal process [30,31]. For the preparation of 7%Cr-ZnFe2O4/10%S-g-
C3N4, four solutions A, B, C, and D were made before synthesis. Mixtures of 0.2346 g of
CrCl3.6H2O in 30mL of water (Solution A), 2.6742 g of ZnSO4·7H2O in 30mL of water
(Solution B), 3.244 g of FeCl3 in 30mL of water (Solution C), and 0.18 g of S-g-C3N4 in
30mL of water (Solution D) were dissolved in separate beakers and stirred. The solutions
A, B, and C were added to solution D and homogenized for 45 minutes along with the
addition of 10 mL of polyethylene glycol (PEG-400) as a surfactant. The next steps were the
same as for the synthesis of Cr-ZnFe2O4 NPs. Moreover, the same process was repeated
to synthesize the 7% ZFG-50 containing the (30, 50, 60, and 70 wt. %) of S-g-C3N4. The
schematic diagram (Figure 1) depicts the synthesis procedure for ZFG-50 NCs, and Table 1
lists the precise composition.
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Figure 1. Schematic representation for the synthesis of Cr-ZnFe2O4/S-g-C3N4.

Table 1. Composition of the synthesized Cr-ZnFe2O4/S-g-C3N4composites.

Sr. No. Cr-ZnFe2O4 (wt. %) S-g-C3N4 (wt. %) 7% Cr-ZnFe2O4/S-g-C3N4 Nanocomposites Code

1 - 100 S-g-C3N4 SG

2 100 - ZnFe2O4 ZF

3 50 10 7% Cr-ZnFe2O4/10S-g-C3N4 ZFG10

4 50 30 7% Cr-ZnFe2O4/30S-g-C3N4 ZFG30

5 50 50 7% Cr-ZnFe2O4/50S-g-C3N4 ZFG50

6 50 60 7% Cr-ZnFe2O4/60S-g-C3N4 ZFG60

7 50 70 7% Cr-ZnFe2O4/70S-g-C3N4 ZFG70

2.5. Photocatalytic Activity

The photocatalyzed dye degradation activity of all synthesized photocatalysts was
evaluated under the irradiation of solar light. The reference contaminant was an aqueous
solution of the organic dye methylene blue (MB). A 100 mL solution of MB was diffused
with 0.2 g of each photocatalyst (10 mg L−1). To achieve the adsorption-desorption equi-
librium, the suspension was sonicated for 15 min, followed by 30 min of darkness. After
that, the suspension was placed in an open space with sun light, and aliquots of 5 mL were
taken every 30 min. After centrifugation, the sample’s photocatalytic activity was assessed
using a UV-vis spectrophotometer.

3. Results and Discussion
3.1. XRD Analysis

Figure 2 shows the X-rays diffractogram of ZF, 7% Cr-ZnFe2O4, SG, and ZFG50 sam-
ples. Seven peaks were observed in the case of pure ZnFe2O4 with crystal facets (220),
(311), (400), (422), (333), (440), and (533) at 2θ = 29.8◦, 35.1◦, 42.7◦, 53◦, 56.7◦, 62.2◦, and
73.8◦ that fitted well with the pattern of standard ZnFe2O4 with JCPDS file 01-077-0011 [32].
Two characteristic peaks were observed in the XRD pattern of SG, the crystal plane (002)
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was attributed to the interlayer assembling of aromatic systems and the plane (100) was
ascribed to the inter-planar arrangement of aromatic systems [33,34]. After coupling
with SG, the crystal phase of Cr-ZnFe2O4 stays unchanged, and the (002) crystal plane
of the SG (weak) was indicated in the composite systems. Moreover, the XRD pattern
shows no other impurity phase, indicating that ZFG50 is a two-phase nanocomposite.
In 7%Cr-ZnFe2O4/50%S-g-C3N4 composites, owing to high crystallinity of Cr-ZnFe2O4
and low concentration of SG the characteristic peaks of Cr-ZnFe2O4 are prominent. Fur-
ther, the crystal structure of Cr-ZnFe2O4 in the ZFG50 composite is unaffected by the
addition of SG [35–37].
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Figure 2. XRD spectrum of composites of ZnFe2O4, S-g-C3N4, 7% Cr-ZnFe2O4, 7% Cr-ZnFe2O4/S-g-C3N4.

3.2. TEM, EDX, and XPS Analyses

To evaluate the morphology of the synthesized photocatalysts, SEM and TEM mi-
crographs were taken. The lamellar sheet-like structure is seen in the SEM and TEM
pictures of pure S-g-C3N4 (Figure 3a,b). On the other hand, pure ZnFe2O4 and Cr-ZnFe2O4
that have been doped with Cr reveal very non-uniform spherical-like particles, as illus-
trated in Figure 3c,d, respectively. TEM was used to verify further how S-g-C3N4 and
Cr-ZnFe2O4 nanoparticles interacted. The carbon nitride sheets were seen to be coated by
the Cr-ZnFe2O4 nanoparticles in the TEM picture of the ZFG-50 NCs.

Figure 3e shows the TEM picture of the ZFG-50 NCs with a 7% metal oxide content.
The S-g-C3N4 nanosheets’ surface has Cr-ZnFe2O4 nanoparticles deposited on it, as seen by
the TEM pictures. The surface of the S-g-C3N4 nanosheets had evenly dispersed particles
with an average size of 19 nm, according to the TEM pictures. By subjecting the composite
to an ultrasonic treatment to prepare TEM samples, it was shown that the contact between
the S-g-C3N4 sheet and nanoparticles is quite strong. When exposed to light, the S-g-C3N4
sheets and Cr-ZnFe2O4 particles seem to form a heterojunction, making it easier to boost
the nanocomposite’s photocatalytic activity and separate the electron-hole in the opposite
direction to produce the reactive species needed for dye mineralization. The EDX elemental
mapping of the ZFG-50 NCs is also shown in Figure 3f, demonstrating that the principal
elements of the ZFG-50 were Cr, Fe, Zn, O, C, and N. As shown in Figure S1, ZFG-50
was examined using XPS to ascertain its chemical composition and the electronic states of
each of its constituent parts. Additionally, the XPS analysis supported the TEM and EDX
findings that the Cr-ZnFe2O4/ S-g-C3N4 included ZnFe2O4, S-g-C3N4 and Cr.
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3.3. FTIR Analysis

The FTIR spectrum of ZF, 7% Cr-ZnFe2O4, SG and ZFG-50 samples is shown in
Figure 4. The two active bands 3355 cm−1 and 834 cm−1 are observed in the FTIR spectra
of zinc ferrite and 7% Cr-ZnFe2O4 [38]. These active bands are characteristic of the spinel
structure of zinc ferrite nanoparticles. The band at 3355 cm−1 is attributed due to the
stretching vibrations of the O-H bond of the free or absorbed water, whereas the band
at 834 cm−1 is ascribed due to the stretching vibration of the Zn-O bond [39,40]. The
band observed in composites at wavelength range 2800 cm−1 to 3400 cm−1 is attributed to
N-H stretching, whereas a sharp peak observed at 870 cm−1 in all samples is due to the
out-of-plane bending vibration of the tri-s-triazine ring of SG. The bands at 1600–1200 cm−1

were allocated to CN heterocycles (C=N and C-N) stretching vibrations, confirming the
presence of S-g-C3N4 in composite samples [8,15]. Then, using the UV-vis spectra, the
light-absorption of the designed photocatalysts ZnFe2O4, S-g-C3N4, and ZFG-50NCs was
measured (Figure S2). The BET surface area was determined to be 9.23, 14.31, 27.11, and
63.78 m2/g for all formulations: ZnFe2O4, S-g-C3N4, and ZFG-50NCs (Figure S3).
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3.4. Photocatalytic Degradation Study

Under two phases, the photocatalytic activity of synthesized samples was investigated
in the sunshine. The photocatalytic activities of ZnFe2O4 and Cr-ZnFe2O4 NPs (Figure 5a)
were first investigated using an aqueous methylene blue solution in the presence of sunlight.
A UV-vis spectrophotometer with a wavelength of 200–800 nm was used to track the dye
degradation rate (Figure 5b). From the degradation contours (Figure S4) and % degradation
plots (Figure 5b), the photocatalytic activity of chromium-doped zinc ferrite nanoparticles
increased by increasing the Cr+3 doping up to 7 wt. %. Because the Cr+3 doping decreases
the bandgap of ZnFe2O4, which facilitates the e−/h+ pair generation. 7% Cr+3 doping was
the optimal concentration of Cr+3 ions. Increasing Cr+3 ions concentration beyond this
(<7 wt. %.) leads to a decrease in photocatalytic activity of Cr-ZnFe2O4 NPs (Figure 6a,b).
The observed degradation efficiencies of Cr-ZnFe2O4 catalysts with different chromium
percentages (0, 0.5, 1, 3, 5, 7, and 9 wt. %) were 78%, 81%, 83%, 87%, 92%, 95%, and 89%,
respectively, after 150 min of sunlight irradiation. Thus, the 7% Cr-ZnFe2O4 NPs exhibited
the maximum photocatalytic efficiency as compared to other nanoparticles.

In the next step, the 7% Cr-ZnFe2O4 NPs were homogenized with diverse amounts
of S-g-C3N4 (as given in Table 1) to develop ZFG-50(ZFG) NCs and their photocatalytic
activity was checked after every 15 min interval. Before sunlight exposure, the fabricated
NCs were placed in the dark to establish adsorption-desorption equilibrium between
dye and the S-g-C3N4, ZF, ZFG10, ZFG30, ZFG50, ZFG60, and ZFG70 catalysts and the
corresponding adsorbed amounts of MB are displayed in Figure 6c. The graph (Figure 6a)
clearly shows that the samples absorbed relatively little amounts of dye. Then samples were
exposed to sunlight and the ZFG-50 NCs exhibits maximum dye degradation as compared
to other samples (Figure 6a). From the degradation contours (Figure S5) and % degradation
plots (Figure 6b), it could be observed that on enhancing SG contents in the ZFG NCs, the
dye degradation was increased up to ZFG50 NCs (containing 50% S-g-C3N4) and then
decreased for ZFG60 and ZFG70 (<50% S-g-C3N4). The observed degradation efficiencies
of SG, ZF, ZFG10, ZFG30, ZFG50, ZFG60, and ZFG70 catalysts were 23.47%, 26%, 31%, 51%,
100%, 70%, and 63.28%, respectively, after 90 min of sunlight irradiation. Improved charge
separation and transfer via Cr-ZnFe2O4 and S-g-C3N4 coupling, as well as higher visible
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light absorption due to Cr doping in ZnFe2O4, may account for the improved degradation
by ZFG [7,38,41]. Figure 6b depicts the % photocatalytic degradation of MB by NCs. The
Langmuir–Hinshelwood model was applied to explain the kinetics [42]. It is evident
that the dye degradation by the NCs under sunlight is fit to pseudo-first-order kinetics
(Figure 6c). The rate constant (k) values are summarized in Table 2 and given in Figure 6d.
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Table 2. The rate constant (k) values of the ZFG nanocomposites.

Sr. No. Nanocomposites S-g-C3N4 (wt. %) k (min−1) Nanocomposites Code

1 S-g-C3N4 100 0.0021 SG

2 ZnFe2O4 - 0.0024 ZF

3 7% Cr-ZnFe2O4/10S-g-C3N4 10 0.0028 ZFG10

4 7% Cr-ZnFe2O4/30S-g-C3N4 30 0.0034 ZFG30

5 7% Cr-ZnFe2O4/50S-g-C3N4 50 0.0058 ZFG50

6 7% Cr-ZnFe2O4/60S-g-C3N4 60 0.0051 ZFG60

7 7% Cr-ZnFe2O4/70S-g-C3N4 70 0.0047 ZFG70

ZFG50 (0.0058 min−1) and SG (0.0021 min−1) had the greatest and lowest “k” val-
ues, respectively. The ZFG50 NCs completely mineralized the MB in 90 min and its “k”
value was 2.4 and 3.5 times more than that of SG and ZF respectively. As the S-g-C3N4
concentration increase from 10% to 50% in the ZFG NC, the dye degradation also enhances
and then drops yonder this concentration (<50%). Thus, inherently, 50% S-g-C3N4 is the
ideal concentration for the ZFG NC. Further increase in S-g-C3N4 concentration might
produce e–h pair combination centers, which successively decrease the photocatalytic
efficiency [43,44]. To further analyse this rationalization, a preliminary investigation is
required. As shown in Table 3, the photocatalytic efficiency of ZFG50 NC is significantly
higher than various prior reported research. Since the ZFG50 NC was found to be the most
efficient photocatalyst and so it was further used in the recycling study.
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Table 3. Comparison of the ZFG-50 NCs’ photocatalytic effectiveness with some earlier research.

Scheme Photocatalyst Contaminant Light Source Radiation
Time (min.) Degradation % Ref

1 ZnNdxFe2−xO4 Rhodamine B Xe lamp 180 98 [45]
2 N-ZnO/g-C3N4 MB Xe lamp 90 100 [46]
3 Mn-ZnO/CSAC BG Solar 120 97.47 [47]
4 ZnFe2O4 Toluene Xe lamp 300 57.2 [48]
5 ZnO/ZnFe2O4 100 98 [49]
5 Pt-BiFeO3 MG Solar 240 96 [50]
7 g-C3N4/BiOI RhB Visible 120 99 [51]
8 ZnFe2O4@ZnO MO Visible 240 99 [52]
9 ZFG-50 MB Solar 90 100 Present Work

The photocatalyst’s durability during repeated photocatalytic activity is crucial for its
practical uses. The ZFG-50 catalysts were recycled in five tests, and the material’s catalytic
activity was tracked. In the recycling research, the ZFG-50 kept up its dye degradation
rate. The composite’s dye degradation efficiency did not significantly decrease. Accord-
ing to the findings, even after the fourth cycle, effective dye degradation remained at
over 95% (Figure 7a). The ZFG-50 catalysts might thus function as trustworthy, effective,
and reusable photocatalytic materials. The ZFG-50 NCs’ crystal phase structure did not
change significantly before or after the organic pollutants recycling experiments, accord-
ing to the results of the XRD stability study, demonstrating chemical structural resilience
(Figure S6). EIS in the dark was used to calculate the heterointerface charge transfer rate at
the electrode–electrolyte junction. With a smaller arc radius and lower electron transport
barrier, interfacial photoinduced charge transfer and departure efficiency is often faster.
The heterointerface contact of the ZFG-50 may considerably help electron transmission,
boosting electron consumption and enhancing photocatalytic performance, as shown by
Figure 7b, which demonstrates that the ZFG-50 sample had the lowest charge-transmission
resistance of all the produced samples. According to the experimental results, a ZFG-50
heterojunction may significantly improve light-collecting efficiency, effective separation of
photogenerated e− and h+ couples, and heterointerface electron transmission.
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3.5. Photocatalytic Degradation Mechanism

In the photocatalytic degradation mechanism as purposed in the schematic sketch
(Figure 8), the enhanced degradation of methylene blue by photocatalysts may be ascribed
due to the generation of e−/h+ pairs. EPR spectra of ZFG-50 NCs were explored to further
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corroborate the validation of functional species ·O2
− and ·OH in the photodegradation

mechanism (Figure S7a,b). When solar light is irradiated on ZFG, both Cr-ZnFe2O4 and
S-g-C3N4 are energized and e−/h+ pairs are generated on their conduction band (CB)
and valence band (VB), respectively [53]. Based on the CB/VB edge potentials, the photo-
induced electrons can be easily migrated from the conduction band (CB) of Cr-ZnFe2O4
to the CB of S-g-C3N4 since the CB of Cr-ZnFe2O4 is lower than that of S-g-C3N4. At the
same time, the holes generated in the VB of S-g-C3N4 could migrate to Cr-ZnFe2O4 [23].
The Cr atoms not only decrease the Eg value but also act as facilitators to transport e− from
S-g-C3N4 to ZnFe2O4 in the hybrid composite. Thus, doping could considerably reduce
the possibility of photogenerated charge recombination by improving the separation of
photogenerated e−/h+ pairs. The generated e− & h+ reacts with the water and oxygen
molecules absorbed on the surface of the photocatalyst and produce radicals (·OH and
·O−2) [8]. These radicals are utilized to break down MB by transforming it into low
molecular weight intermediates, which are then changed into H2O, CO2, and inorganic
ions via an oxidative mechanism. Equations (1)–(7) show the reductive and oxidative
reactions involved in the photo-degradation of MB by ZFG NC.

Cr− ZnFe2
O4

Sg− C3N4
+ hυ→ Cr− ZnFe2

O4

Sg− C3N4
(e−/h+) (1)

h+ + H2O→ H+ + ·OH (2)

2h+ + 2H2O→ 2H+ + H2O2 (3)

H2O2 → 2·OH (4)

2e− + O2 → ·O−2 (5)

·OH/·O2 + MB→ Degraded Products (6)

h+ + MB→ Degraded Products (7)
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3.6. Antibacterial Study

Both Gram-positive and Gram-negative bacteria were used to examine the antibacterial
properties of ZnFe2O4, Cr-ZnFe2O4, and ZFG-50 NCs. Using the standard agar diffusion
techniques, the antibacterial activity was carried out. Staphylococcus aureus, Bacillus subtilis,
Escherichia coli, and Streptococcus salivarius were the four different bacterial strains used
in the antibacterial tests. The Petri plates were taken out after the incubation period and
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placed under a laminar flow hood. Measurements and records of the zones of inhibition are
provided in Table 4 for each sample, including the positive and negative controls. The zones
of inhibition for each of the four bacterial strains against each of the four nanomaterials
were measured and reported using the same method.

Table 4. Bactericidal proficiency of ZnFe2O4, Cr-ZnFe2O4, and ZFG-50 NCs.

Antimicrobial
Agent

Escherichia Coli
(mm)

Bacillus Subtilis
(mm)

Streptococcus
Salivarius (mm)

Staphylococcus
Aureus (mm)

Negative control 0 0 0 0
Positive control 18.2 20.2 23.1 19.2

ZnFe2O4 7.7 6 8.5 8.1
Cr-ZnFe2O4 12.8 11 13.8 11.7

ZFG-50 21.6 16.9 22.8 21.6

When exposed to the nanomaterials ZnFe2O4, Cr-ZnFe2O4, and ZFG-50 NCs, it was
found that all four bacterial strains exhibited a zone of inhibition. While ZnO had the
lowest bacterial inhibition zones, ZFG-50 NCs had the greatest. The increased surface
area that the 7 percent Cr- ZnFe2O4 NPs allowed for surface contact NCs with bacterial
membranes and the increased ROS generation brought on by the narrowing of the ZnFe2O4
bandgap may have contributed to the maximum antibacterial activity of the ZFG-50 NCs.
All generated samples were examined for zones of inhibition against the four bacterial
strains shown in Figure 9 and Table 4 below. The ternary composite has more antibacterial
activity than the other synthetic nanomaterials, as seen in the bar graph below.
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4. Conclusions

In conclusion, we have developed ZnFe2O4, Cr-ZnFe2O4 nanoparticles and a series of
ZFG-50nanocomposites using a straightforward hydrothermal technique. The assembly
and purity of samples were examined using XRD, EDX, and FTIR methods. ZnFe2O4,
Cr-ZnFe2O4, and ZFG were used to degrade MB at ambient temperature. In a comparison
photocatalytic investigation of the synthesized samples against MB, the ZFG-50 was found
to have very high catalytic efficiency. A rate constant for the dye reduction reaction was
discovered to be pseudo-first order both for NPs and NCs. Moreover, ternary composite
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ZFG-50 possesses significantly higher antibacterial activity compared to the other synthetic
nanomaterials. Thus, ZFG-50 heterojunction is a promising candidate and has potential
applications in the purification and disinfection of water by photocatalytic degradation of
organic contaminants.
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