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Abstract

Motivation: A widely applicable strategy to create cell factories is to knockout (KO) genes or reactions to redirect cell
metabolism so that chemical synthesis is made obligatory when the cell grows at its maximum rate. Synthesis is
thus growth-coupled, and the stronger the coupling the more deleterious any impediments in synthesis are to cell
growth, making high producer phenotypes evolutionarily robust. Additionally, we desire that these strains grow and
synthesize at high rates. Genome-scale metabolic models can be used to explore and identify KOs that growth-
couple synthesis, but these are rare in an immense design space, making the search difficult and slow.

Results: To address this multi-objective optimization problem, we developed a software tool named gcFront—using
a genetic algorithm it explores KOs that maximize cell growth, product synthesis and coupling strength. Moreover,
our measure of coupling strength facilitates the search so that gcFront not only finds a growth-coupled design in
minutes but also outputs many alternative Pareto optimal designs from a single run—granting users flexibility in
selecting designs to take to the lab.

Availability and implementation: gcFront, with documentation and a workable tutorial, is freely available at GitHub:
https://github.com/lLegon/gcFront and archived at Zenodo, DOI: 10.5281/zenodo.5557755.

Contact: ahmad.abdullah.mannan@gmail.com or d.bates@warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-scale constraint-based models (GSMs) are used to explore
gene or reaction knockouts (KOs) that redirect cell metabolism to
chemical overproduction (Maia et al., 2016). A promising strategy
for enabling robust production seeks KO combinations that couple
chemical synthesis with cell growth so that it is made obligatory at
maximum growth rate (Feist et al., 2010). KOs can disrupt metabol-
ism to result in poorer performance than predicted, but growth cou-
pling enables the selection of higher producing phenotypes by
selecting faster growing cells through adaptive laboratory evolution
(ALE). KOs by gene deletion are easily implemented in the lab, and
since they remain fixed in the face of evolution, as opposed to engin-
eering changes in gene expression, ALE has been shown to find
strains with synthesis and growth rates near the optimal values pre-
dicted from GSMs (Tokuyama et al., 2018). However, if the cou-
pling is weak, cells will not synthesize the product unless they grow
close to their theoretical maximum. Instead, KOs that create a
strong coupling result in evolutionarily robust phenotypes with ro-
bust synthesis, and so are particularly appealing. Specifically,

stronger coupling will strongly impair growth for small impediments
in product synthesis, so higher producers will be reselected over evo-
lutionary time, and it also helps conserve synthesis rates even if cells
grow at suboptimal rates, for instance in large fermenters
(Supplementary Fig. S1). In addition to strong coupling, we also de-
sire that these strains grow fast but also synthesize rapidly.
Identifying the KO sets, i.e., designs, that maximize these criteria is
a multi-objective optimization problem. However, there are inherent
trade-offs between some of these objectives, so solving this problem
will give a set of alternative optimal designs where for each design
each objective cannot be improved without sacrificing some of the
others. This is known as a Pareto front of optimal designs. Multi-
objective optimization has been applied in metabolic engineering,
for instance to kinetic models to find Pareto optimal reaction kinet-
ics that maximize synthesis (Send�ın et al., 2006; Vera et al., 2003),
and tools have been developed for use on GSMs to determine genetic
manipulations to maximize growth and synthesis (Andrade et al.,
2020; Patan�e et al., 2019). Other tools have been developed to find
growth-coupled designs (Alter and Ebert, 2019; Feist et al., 2010;
Ohno et al., 2014), yet there is no tool to determine optimal designs
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that maximize coupling strength, growth and synthesis, in order to
create evolutionarily robust strains with high productivity and ro-
bust synthesis—critical for industrial application. Moreover, though
growth coupling is a widely applicable strategy (von Kamp and
Klamt, 2017) KOs enabling this are rare, making the search for
them difficult and slow (Ohno et al., 2014). To address this key gap
and problem, we developed a user-friendly software tool named
gcFront that uses a genetic algorithm to search for KOs that maxi-
mize these three objectives, for any chemical and host of interest.
Moreover, our proposed measure of coupling strength facilitates the
search through the design space, so a run of gcFront outputs many
Pareto optimal designs in reasonable timeframes.

2 The gcFront workflow

gcFront works in MATLAB, with dependencies on the COBRA tool-
box (Heirendt et al., 2019) for analysis of a compatible GSM; and
the MATLAB Global Optimization toolbox for solving the multi-
objective optimization problem (Supplementary Note S1A). The
workflow, detailed in Supplementary Note S1B and Figure S2,
entails four key steps.

Inputs: Two interactive windows allow the user to define the
GSM, target metabolite product or its exchange reaction and op-
tional inputs (Supplementary Table S1), such as maximum number
of KOs and search time.

Pre-processing: To reduce the search space of reactions, gcFront
automatically identifies and removes dead reactions, lumps un-
branched pathways into composite reactions and excludes in silico
essential single KOs for growth or synthesis.

Solving the optimization problem: To determine growth-
coupled designs, gcFront solves the multi-objective optimization
problem defined in Supplementary Note S2A. Our measure of cou-
pling strength shapes the search landscape; it defines weak and
strong coupling but also distinguishes between uncoupled designs
(Supplementary Note S2B and Fig. S3a). It assigns higher values to
KOs that reduce the cost to growth for increases in the maximum al-
lowable synthesis, thus driving a bias to gc-designs (Supplementary
Fig. S3b and c) to ease the search.

Post-processing and output: On termination (conditions in
Supplementary Table S1), many Pareto optimal KO sets are found
from a single run. Some proposed designs may contain redundant
KOs, so to minimize the number of KOs of each design any KO that
can be removed from those designs without any loss in performance is
removed. The Pareto front of all designs (KOs) and their performance
is then output to an interactive plot, a table in the command window
and a .csv file. Users can select designs they deem suitable for their
chemical and host of interest, based on bespoke combinations of the
performance metrics. A tutorial is given in Supplementary Note S3.

3 Comparative performance assessment

To test gcFront’s performance, we compared it to other MATLAB-
based procedures that identify growth-coupled (gc-)designs, includ-
ing RobustKnock (Tepper and Shlomi, 2010) as implemented in
OptPipe (Hartmann et al., 2017); gcOpt (Alter and Ebert, 2019);
FastPros (Ohno et al., 2014) and OptGene (Patil et al., 2005) as
implemented in COBRA (Heirendt et al., 2019). We ran each for 6 h
and saved the gc-designs found and the time they needed to find
their first gc-design, while repeating this three times for gcFront and
OptGene because of the stochastic nature of searching with a genetic
algorithm. For a fair comparison, we ran each algorithm using
the Escherichia coli GSM model iML1515 (Monk et al., 2017), for
non-essential reaction KOs [in silico and based on Goodall et al.
(2018)], for synthesis of succinate, tyrosine and pyruvate, as ex-
ample products (detailed in Supplementary Notes S4 and Fig. S1).
gcFront found the first gc-design in 38% less time than gcOpt for
succinate synthesis, 98% less time than RobustKnock for tyrosine
synthesis, and orders of magnitude less time than the other methods
and products (Fig. 1a, Supplementary Data). Its power was especial-
ly apparent when searching for designs of tyrosine and pyruvate

synthesis—still finding designs in minutes despite these designs, of at
least six KOs, being rarer versus three KOs found for succinate
(Supplementary Fig. S4). Furthermore, though the single gc-design
found with other methods lay near the Pareto front of gc-designs
from gcFront, gcFront offered many designs that achieved at least
higher coupling strength (Fig. 1b, Supplementary Data).

4 Discussion

gcFront can find a multitude of Pareto optimal growth-coupled
designs for evolutionarily robust cell factories, from a single run, in
a computationally efficient manner. With the key input being the
genome-scale metabolic network model of the cell host with the bio-
chemistry of the engineered product synthesis pathway, gcFront
should be widely applicable for designing growth-coupled synthesis
of any compound, from any host, and so drive the design step in the
design-build-test-learn cycle (Carbonell et al., 2018). Since each de-
sign provides a different balance between the maximized objectives,
the user has the flexibility to select designs with the balance they
deem most suitable to the cell host and chemical product of interest,
e.g. sacrifice growth for stronger coupling and synthesis, for instance
for more robust pyruvate synthesis (Fig. 1b); or sacrifice synthesis
for higher growth and stronger coupling, for instance for higher
volumetric productivity with robust synthesis of succinate
(Fig. 1b)—making it widely applicable to different contexts. gcFront
is also user friendly, but versatile—the interactive user interface
means no coding is required, making gcFront easy to use out-of-the-
box, yet because it is a function in the MATLAB environment it can
be easily integrated downstream of pathway designing tools, such

Fig. 1. gcFront finds many Pareto optimal growth-coupled designs, faster and with su-

perior performance versus other algorithms. The speed and designs found from 6-h

runs of gcFront were compared to those of RobustKnock, gcOpt, FastPros and

OptGene (see Supplementary Note S4) on a MacBook Pro (2.3 GHz Quad-Core

Intel core i5 processor, 8 GB 2133 MHz LPDDR3 RAM). Designs were based on

KOs of only non-essential, gene-associated reactions, for the synthesis of three ex-

ample products: succinate, tyrosine and pyruvate from the E.coli iML1515 GSM

model, in aerobic, minimal media with glucose. (a) Time to identify the first gc-de-

sign from each procedure. Due to the stochastic nature of searching using the genetic

algorithm in OptGene and gcFront, the average (bars) and standard deviation (error

bars) of times are reported from three runs (N¼3, 6SD). (b) Pareto fronts of all gc-

designs found from three 6-h runs
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as COBRA toolbox (Heirendt et al., 2019) and RetroPath2.0
(Del�epine et al., 2018). Importantly, since gcFront proposes KOs for
growth coupling and not changes in gene expression, strain con-

struction and evolution is more easily automated. With recent tech-
nical advances in Synthetic Biology and lab robotics, subsequent to

user-led design selection, we envision that gcFront can be integrated
in pipelines upstream of robotics platforms for automated plasmid
construction and transformation with a robot performing CRISPR-

Cas9-based KOs (Suckling et al., 2018), and automated ALE with li-
quid handling robotics, e.g. RoboLector (Radek et al., 2017)—mak-

ing gcFront a tool for the future of creating microbial cell factories.
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