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Hebb proposed that synapses between neurons that fire synchronously are strengthened,
forming cell assemblies and phase sequences. The former, on a shorter scale, are
ensembles of synchronized cells that function transiently as a closed processing system;
the latter, on a larger scale, correspond to the sequential activation of cell assemblies
able to represent percepts and behaviors. Nowadays, the recording of large neuronal
populations allows for the detection of multiple cell assemblies. Within Hebb’s theory,
the next logical step is the analysis of phase sequences. Here we detected phase
sequences as consecutive assembly activation patterns, and then analyzed their graph
attributes in relation to behavior. We investigated action potentials recorded from the
adult rat hippocampus and neocortex before, during and after novel object exploration
(experimental periods). Within assembly graphs, each assembly corresponded to a
node, and each edge corresponded to the temporal sequence of consecutive node
activations. The sum of all assembly activations was proportional to firing rates, but
the activity of individual assemblies was not. Assembly repertoire was stable across
experimental periods, suggesting that novel experience does not create new assemblies
in the adult rat. Assembly graph attributes, on the other hand, varied significantly across
behavioral states and experimental periods, and were separable enough to correctly
classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from
0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement
sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb’s
view that assemblies correspond to primitive building blocks of representation, nearly
unchanged in the adult, while phase sequences are labile across behavioral states and
change after novel experience. The results are compatible with a role for phase sequences
in behavior and cognition.
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INTRODUCTION
The firing synchronization of groups of neurons is a well-known
phenomenon in the brain (Harris et al., 2003; Buzsáki, 2004;
Harris, 2005; Canolty et al., 2010; Lopes-dos-Santos et al., 2011).
According to the cell assembly hypothesis (Hebb, 1949), neu-
rons transiently synchronize in order to form elementary units of
information processing. Some reports have provided experimen-
tal evidence that assembly activity, i.e., the co-firing of assembly
members, can be related to formation of memories and behav-
ior (Wilson and McNaughton, 1994; Stopfer et al., 1997; Robbe
et al., 2006; Peyrache et al., 2009; Liu et al., 2012; Ramirez
et al., 2013). Furthermore, sensory or electrical stimulation able
to synchronize neuronal firing in the millisecond scale has been
shown to generate sequentially, in the minute to hour scale,
synaptic potentiation, immediate-early gene expression, synap-
tic remodeling and dendritic sprouting (Chang et al., 1991; Bliss
and Collingridge, 1993; Deisseroth et al., 1995; Klintsova and

Greenough, 1999). In principle, this sequence of events satisfac-
torily explains why neurons that fire together wire together, and
vice-versa. However, to date there is still a mechanistic hiatus
between neuronal synchronization and the perception of complex
stimuli, or the planning and execution of complex motor tasks.

The gap between cell assemblies and behavior was anticipated
by Hebb (1949), who proposed that synchronized cell assem-
blies would evolve over time as phase sequences: “Any frequently
repeated, particular stimulation will lead to the slow develop-
ment of a ‘cell-assembly,’ a diffuse structure comprising cells in
the cortex and diencephalon (and also, perhaps, in the basal gan-
glia of the cerebrum), capable of acting briefly as a closed system,
delivering facilitation to other such systems and usually having
a specific motor facilitation. A series of such events constitutes
a ‘phase sequence’—the thought process. Each assembly action
may be aroused by a preceding assembly, by a sensory event,
or—normally—by both.”
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For many years these ideas remained untestable, but in the
past two decades, the detection and tracking of assemblies became
feasible due to major improvements in multi-electrode record-
ing techniques (Nicolelis et al., 2003; Buzsáki, 2004; Schrader
et al., 2008), as well as the development of adequate mathematical
frameworks for the identification of non-random synchroniza-
tion (Berger et al., 2010; Denker et al., 2010; Peyrache et al., 2010;
Lopes-dos-Santos et al., 2011, 2013). As a consequence, studies on
assembly activity and learning were recently published (Peyrache
et al., 2009; Benchenane et al., 2010); there were also demonstra-
tions of information coding by the temporal sequence of neurons
(Ikegaya et al., 2004; Ji and Wilson, 2006; Pastalkova et al., 2008;
Peyrache et al., 2009; Dragoi and Tonegawa, 2010). The hip-
pocampus, in particular, harbors assemblies activated by specific
places or time intervals, forming representational sequences (Lee
and Wilson, 2002; Macdonald et al., 2011; Kraus et al., 2013;
Pfeiffer and Foster, 2013).

In the present work we aimed to advance the investigation
of the next logical step in Hebbian theory, namely the detec-
tion of phase sequences as consecutive multi-assembly activation
patterns. We also set out to investigate the relationship between
phase sequences and cognitive behavior. The developed method
was based on graph theory and it was applied to datasets com-
prising chronic extracellular spike recordings from the primary
visual (V1) and somatosensory (S1) cortices, as well as the CA1
region of the hippocampus (HP), of rats subjected to a novel
object exploration paradigm (Ribeiro et al., 2007).

MATERIALS AND METHODS
EXPERIMENTAL PERIODS OF THE BEHAVIORAL PARADIGM
We used data from five Long-Evans adult male rats (300–350
g) recorded before, during and after a novel object exploration
paradigm (Ribeiro et al., 2007). The behavioral paradigm began
with 1–2 h of recordings as a freely-behaving rat went through
the wake-sleep cycle (PRE period). Next, the animal was allowed
to explore 4 novel objects placed in the corners of the recording
box for 20 min (EXP period). Finally, the objects were removed
and the animal was recorded for an additional 1–4 h, freely
traversing the wake-sleep cycle (POST period). Video recordings
with infrared illumination were used to document behavior. The
present study focused on the 1 h PRE and POST periods flanking
EXP (Figure 1A).

MULTIELECTRODE ARRAY IMPLANTATION
Briefly, the rats were anesthetized and surgically implanted with
multielectrode arrays of tungsten microwires (35 µm, 1.0–1.2
MOhm at 1 kHz). A screw implanted on the frontal portion of
the skull served as recording ground. The arrays targeted HP,
S1, and V1 in the left hemisphere stereotaxic coordinates in mm
from Bregma with respect to the antero-posterior (AP), medio-
lateral (ML), and dorso-ventral (DV) axes (Paxinos and Watson,
1997): HP (AP: −2.80; ML: +1.5; DV: −3.30); S1 (AP: −3.00; ML:
+5.5; DV: −1.40); V1 (AP: −7.30; ML: +4.00; DV: −1.30). DV
measurements were taken with respect to the pial surface. Arrays
comprised 16–32 microwires spaced at 250 mm intervals (4 × 4
arrays for S1 and V1, 2 × 16 array for HP). In S1 and V1, arrays
were aimed at pyramidal layer V.

ELECTROPHYSIOLOGICAL RECORDINGS AND UNIT SORTING
As described in detail in Ribeiro et al. (2007), action potentials
(spikes) and local field potentials (LFP) were recorded with multi-
electrode arrays placed in the dorsal CA1 region and dentate gyrus
of HP, in the barrel field of S1, and in V1. Animals were recorded
after a 1-week recovery period following surgery. A 96-channel
multineuron acquisition processor (MAP, Plexon Inc, Dallas, TX)
was used for digital spike waveform discrimination and storage.
Action potentials (spikes) were extracted from the high frequency
band data and sorted into units using supervised online spike
sorting (SortClient 2002, Plexon Inc.) associated with posterior
offline validation (Offline Sorter 2.3, Plexon Inc). LFPs recorded
from the same wires were pre-amplified, filtered, and digitized
using a Digital Acquisition card (National Instruments, Austin,
TX) and a MAP (Plexon Inc). Behaviors were recorded through-
out the entire experiment under infrared illumination, by way of
two CCD video cameras and a videocassette recorder. Video and
neural recordings were synchronized with a millisecond-precision
timer (model VTG-55; For-A, Tokyo, Japan). Within each region,
the amount of units consisted of 42 HP, 33 S1 and 20 V1 for rat #
1, 59 HP, 23 S1 and 28 V1 for rat # 2, 34 HP, 25 S1 and 23 V1 for
rat # 3, 39 HP, 27 S1 and 37 V1 for rat # 4 and 45 HP, 39 S1 and
42 V1 for rat # 5.

SORTING OF BEHAVIORAL STATES
We used LFP data associated with a behavioral state sorting
algorithm (Gervasoni et al., 2004) to classify the states with 1 s res-
olution. The algorithm is based on a two-dimensional state space
defined by two spectral amplitude ratios calculated by divid-
ing integrated spectral amplitudes at selected frequency bands.
A scatter plot of the two chosen LFP spectral amplitude ratios
(state-space) reveals distinct clusters that correspond to the three
major wake-sleep states studied here: waking (WK), slow wave
sleep (SWS), and rapid eye movement sleep (REM).

ASSEMBLY DETECTION
A cell assembly is a subset of cells that somehow behave as a sin-
gle entity. Here we assumed a linear model. More specifically, we
defined the activity of a cell assembly as a weighted sum of the
activity of individual units. In order to determine the weights of
each neuron to each cell assembly we used a recently developed
framework (Lopes-dos-Santos et al., 2013), which can be briefly
described in four main steps:

(1) The spike train of each neuron was binned into 5 ms windows
and z-scored (i.e., variance and mean were set to 1 and 0,
respectively). Thus, the population activity was transformed
in a matrix in which each element represented the normalized
number of spikes of a given neuron in a given time bin. We
referred to this matrix as activity matrix.

(2) Then, the number of statistically significant cell assemblies
was estimated by counting how many principal components
of the activity matrix had associated variances above the
upper bound of the Marčenko-Pastur analytical distribution
of eigenvalues (Marčenko and Pastur, 1967; Peyrache et al.,
2010; Lopes-dos-Santos et al., 2011).
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FIGURE 1 | Behavioral paradigm and cell assembly detection. (A) Rats
were submitted to three periods of experimentation. During PRE and POST
periods, animals were kept in a rectangular box freely behaving for 1 h,
including complete wake-sleep cycle, sorted here as WK, SWS, and REM.
Within EXP period, 4 novel objects were placed in the corners of the box and
the animals were free to explore them for 20 min. Figure adapted from
Ribeiro et al. (2007). (B) Toy example of assembly detection and projection of
assembly activity time-series. We simulated 30 independent neurons as
Poisson processes with mean 1 spike/bin and created three assemblies (A–C)

by setting 3% of the data (1% for each assembly) as bins with
synchronization between the cells of a specific assembly. In this dataset,
assembly A comprises neurons # 1, # 2, and # 3; assembly B is formed by
neurons # 7, # 8, # 9, and # 10 and neurons # 4, # 5, and # 6 make assembly
C. Top panel shows the spike matrix (white circles mark co-activations of
assembly neurons). Bottom panel shows the assembly activity time-series,
calculated using the ICA-based method described in Lopes-dos-Santos et al.
(2013). Note that the assembly activities peak only when their corresponding
neurons co-fire.

(3) The activity matrix was projected into the subspace spanned
by the principal components with eigenvalues crossing the
statistical threshold and then submitted to Independent
Component Analysis (ICA) (Laubach et al., 1999; Hyvärinen
and Oja, 2000). Independent components can be understood
as assembly patterns that represent assemblies when the lin-
ear model is assumed (Lopes-dos-Santos et al., 2013), i.e.,
the values attributed to each neuron in a pattern define the
weights of the cells in the corresponding assembly.

(4) Individual cell assembly activity was computed by projecting
the activity matrix onto its assembly pattern (Lopes-dos-
Santos et al., 2013), which can be mathematically defined as:

AAb =
Nneurons∑

i = 1

wizib = WTZb,

where AAb is the assembly activity at time bin b, Nneurons is
the total number of neurons, wi is the weight of neuron i in
a specific assembly and zib is the z-scored activity of neuron
i within bin b. We removed the contribution of single units

firing alone (for instance, if a heavily-weighted neuron acti-
vated but others were silent, the assembly activity remained
low).

Figure 1B shows an illustrative example of an activity matrix
(top panel) along with the assembly activities estimated by the
method. For more details, see (Lopes-dos-Santos et al., 2013).

RESULTS
TIME BIN DETERMINATION
We used an empirical approach to adequately choose the size of
the time bins. First, we tested a wide range of bin sizes (2–256 ms)
to investigate the relationship between bin size and number of
detected assemblies. As shown in Figure 2A, we found an inverse
relation between bin size and number of assemblies. We analyzed
this closely and found that single assemblies detected with larger
bin sizes could be split in two other assemblies when smaller bin
sizes were used. The raster plot in Figure 2B shows the 20 most
weighted units, sorted from heavier (top) to lighter (bottom),
which comprise the patterns of assembly A (80% of the total
weight). This assembly is one of the assemblies detected using
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FIGURE 2 | Time bin size influences the detection of cell assemblies.

(A) Plot between log2 of bin size in milliseconds and the number of detected
assemblies. We assessed bins in a binary scale from 2 to 256 ms. Notice an
inverse correlation between log2 of bin size and the number of assemblies;
inset shows the distribution of slopes of the linear fits in the main panel. Gray
dashed line depicts the 5 ms bin size chosen in our study. (B) (Bottom)
120 ms of assembly activity from animal # 1, showing activity of assembly A
(black line), detected in EXP WK with 16 ms bin size, and of assemblies A′
(blue line) and A′′ (green line), detected with a bin size of 4 ms. (Top)
Rasterplot of the 20 most relevant neurons that constitute assembly A (80%
of the weight), ranked from highest weight to the twentieth highest. Light
gray shadow represents 16 ms intervals, dark gray ones represent 4 ms. Blue
dots exhibit the spike times of neurons contributing to assembly A′ activity
peak (black and red arrows, bottom panel). Green dots mark spikes
contributing to assembly A′′ activity peak (black arrow head, bottom panel).
Colored dots (spike times) are graded from darker to lighter respective to the

weight of the correspondent neuron in the assembly pattern. Note that
neurons participating in assembly A (bin 16 ms) were sorted into assemblies
A′ and A′′ (bin 4 ms), which can be active in sequence (black arrow and arrow
head) or independently (red arrow). (C) Exploring similarities between
assemblies. Panels show the histogram of SI values from 10,000
comparisons made by shuffling the neurons weights within assemblies to
build a null hypothesis (bootstrap procedure). Red dashed line shows the
threshold for significance at p = 0.01. Red circles depict the SI between A
and A′ (0.82, top), A and A′′ (0.51, middle), and A′ and A′′ (0.016, bottom).
Note that assembly A is significantly similar to A′ and A′′ (SI = 0.82 and 0.51,
respectively). The SI between A′ and A′′ was small (SI = 0.016), indicating
that, in addition to the fact that these assemblies have independent activity,
they also have orthogonal membership. A′ and A′′ exhibit strong assembly
activations at different time bins (panel B–arrows vs. arrow head). However,
when 16 ms time bins were used, the activities of these assemblies were
packed in the same time window, causing the merge of A′ and A′′ into A.

a 16 ms time bin in rat # 1 dataset, and its activity is shown in
black (Figure 2B, bottom); while the activities of two assemblies
detected using a 4 ms bin size (A′ and A′′) are depicted in blue and
green, respectively (Figure 2B, bottom).

To use a quantitative criterion to compare assembly compo-
sition, a Similarity Index (SI) was defined as the absolute value
of the inner product between the assembly patterns (unitary vec-
tors) of two given assemblies, varying from 0 to 1. Thus, if two
assemblies attribute large weights to the same neurons, SI will be
large; if assemblies are orthogonal, SI will be zero. We applied a
permutation test in order to determine whether SIs were signif-
icantly above chance. This test consisted in shuffling the weights

of each pattern across neurons, and then recalculating the SI. We
ran 10,000 permutations in order to construct a null hypoth-
esis distribution. Two patterns were regarded as representations
of the same assembly if their original SI was larger than the
99th percentile of the null hypothesis distribution (i.e., p = 0.01).
Using this process, we found that both A′ and A′′ were signifi-
cantly similar to assembly A (Figure 2C). This indicates that units
with larger weights in assembly A were split in two independent
(SI = 0.016) assemblies A′ and A′′ comprising partially non-
overlapping sets of units (respective action potentials indicated
by blue and green dots in the raster plot of Figure 2B, respec-
tively). Considering that large bin sizes may conceal fast assembly
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sequences (Figure 2B), we chose the 5 ms bin as a compromise
between a high temporal resolution and the need to avoid small
bin sizes close to the neuronal refractory period.

SEARCHING FOR ASSEMBLIES IN DIFFERENT EXPERIMENTAL PERIODS
After defining bin size, we focused on the assessment of the dif-
ferences among assemblies detected using spike matrices from
different experimental periods (PRE, EXP and POST). Our goal
was to investigate whether the exposure to novel objects changes
the assembly repertoire. At first we ignored sleep states and
extracted assembly patterns from entire PRE, EXP and POST-
WK periods (each one independently). Next, we used the SI to
compare all assemblies between experimental periods.

We found little variation in the numbers of assemblies across
different experimental periods (Figure 3A). Most animals showed
a maintenance or minor decrease in the number of assemblies
from PRE to EXP, except for rat # 2, which showed an increase
of one assembly. From EXP to POST, the number of assemblies
detected also dropped slightly, except for rat # 3, which showed
a stable number of 10 assemblies per period. Rat # 1 showed the
highest variance in the number of assemblies detected across peri-
ods, ranging from 13 in PRE to 10 in POST. Figure 3B illustrates
the substantial similarity between assemblies detected in differ-
ent experimental periods for rat # 2, which overall showed the
largest number of assemblies. To assess assembly conservation
across experimental periods, we then categorized the assemblies
within each experimental period as showing unitary correspon-
dence, non-unitary correspondence, or no correspondence. An
assembly was considered to show unitary correspondence when
it was significantly similar to only one assembly in each of its
flanking experimental period(s) with p < 0.0001; non-unitary
correspondence defined assemblies which showed more than one
correspondence or, in the case of EXP, those with correspon-
dence to one assembly from a flanking period but not with the
other (e.g., correspondence with PRE but not with POST); the
no-correspondence category comprised assemblies showing no
significant correspondences. Group results across different exper-
imental periods (Figure 3C) show that the number of assemblies
exhibiting unitary correspondence was significantly higher than
those showing non-unitary correspondence or no correspon-
dence, including EXP which is flanked by two neighbor periods
(Wilcoxon ranksum test, p < 0.05, Bonferroni corrected).

A comparison across experimental periods reveals that the
percentage in PRE of assemblies with no correspondence was
slightly elevated, while non-unitary correspondence was very
minor. During EXP the percentage of non-unitary correspon-
dences increased, while the percentage of unitary correspon-
dences and no-correspondences decreased. This could represent
the fact that EXP is flanked by two neighbor periods, while PRE
and POST are flanked by only one. Another possible explanation
is that the exposure to novel objects could have changed some
assembly activation patterns, increasing their co-activations (see
Figure 6B), and causing separate assemblies to be detected as one.
This may decrease the SI, leading to non-significance between
similar assemblies, and/or to significant similarity of one assem-
bly with two or more assemblies from flanking periods, compris-
ing significant but lower SIs. The POST period showed the highest

FIGURE 3 | Cell assemblies are highly conserved across experimental

periods. (A) Number of assemblies detected using spike matrices from the
different experimental periods. (B) SI values among assembly patterns of
rat #2 across experimental periods. Assembly patterns were detected
using a 5 ms bin size. Assembly labels were sorted to let highest values in
the main diagonal. (C) For each experimental period, the panels show the
percentages of assemblies within each of the categories defined by the
number of significant correspondences between the assemblies of a given
experimental period and the assemblies from flanking periods (from top to
bottom, PRE, EXP and POST). Two assembly patterns were deemed
correspondent if their SI was above a threshold set by a bootstrap
procedure (p = 0.0001). The categories were defined as unitary
correspondence, non-unitary correspondence and no correspondence,
representing the percentage of assemblies within rats that showed,
respectively, a single correspondence between flanking periods, two or
more flanking correspondences, or no correspondence whatsoever. Note
that the percentage of assemblies within the unitary correspondence
category was considered significantly higher than the other categories for
all experimental periods (Wilcoxon ranksum test, ∗p < 0.05, Bonferroni
corrected).

percentages of assemblies in the unitary correspondence category,
with a very small percentage of assemblies in the non-unitary and
no-correspondence categories. This indicates that the typically
smaller number of assemblies in POST (Figure 3A) comprises a
subset of assemblies that is essentially the same as in EXP. Across
all animals, we found an average of only one EXP assembly per
rat that showed no correspondence to any PRE assembly, and yet
had correspondence with a POST assembly. This points to a very
high conservation of assemblies across experimental periods, and
rules out the possibility that new assemblies are formed within
EXP and reverberate during POST. For this reason, we continued
our investigation of assembly sequences by extracting the assem-
bly patterns from a concatenated spike matrix of all WK intervals
(PRE+EXP+POST), and then projecting the assembly activity
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over the entire recording, throughout the wake-sleep cycle. Using
this approach, we detected 11, 18, 10, 13 and 13 assemblies for
rats # 1 to # 5, respectively.

DETECTING ASSEMBLY ACTIVATIONS
In order to improve the time resolution for the analysis of assem-
bly activation sequences, we first re-binned the spike trains from
each unit using 1 ms bins, and convolved the data with a Gaussian
kernel (maximum = 1, 80% of the AUC within 5 ms windows).
Then we projected the activity of all assemblies, and defined a
threshold (for each assembly) as the 99th percentile of the distri-
bution of activity values across time bins (Figure 4A, red lines).
Figure 4A shows the activity of three exemplary assemblies (A, B,
and C) from rat # 1, which above-threshold peaks are depicted
by red, blue and green letters (assembly activations), respec-
tively. Subsequent assembly activation was only considered after
a “refractory” period of 3 ms elapsed.

CALCULATION OF ASSEMBLY GRAPH ATTRIBUTES
We constructed the assembly activation sequence by labeling
and concatenating assembly activations from different assemblies
(Figure 4A, bottom). Graphs were built from this sequence, so
that each assembly corresponded to a node, each edge corre-
sponded to the temporal sequence of consecutive node activa-
tions, and the time intervals between two assembly activations
were considered inter-activation intervals (IAI) (Figure 4A, bot-
tom). The coactivation of two or more assemblies within the same
time bin was represented as an additional node in the graph,
whose label comprised the labels of the assemblies activated at
the same time. For instance, if assemblies F and J displayed

synchronous activation, a fourth node FJ was added to the graph,
always in the alphabetical order (Figure 4B).

Two parameters shaped the graphs: maximum IAI and num-
ber of activations per graph (activation count). The maximum
IAI parameter defined the threshold IAI within each graph, i.e.,
every time interval between assembly activations within a graph
should be less than or equal to this maximum IAI. Seven different
maximum IAI values ranging from 10 to 1000 ms were explored.

An initial assessment of the data varying only the maxi-
mum IAI criterion showed that, in general, the assembly graph
attributes were proportional to the activation count in a graph
(Figure 4C, median of absolute Pearson correlation indexes dis-
tribution = 0.74), while the duration (the interval between the
first and last assembly activation within a graph) was not corre-
lated to assembly graph attributes (Figure 4C, median of absolute
Pearson correlation indexes distribution = 0.18).

A fixed number of assembly activations per graph was used
to control for this variability in the graph attributes. Since the
minimum activation count necessary to maximize the density
of a graph (Table 1) is the square of the number of nodes
–Number of Assemblies2, we evaluated seven values of activa-
tion count as percentages of Number of Assemblies2 (10, 20,
50, 100, 120, 150 and 200%). The custom-made java software
Speechgraphs (Mota et al., 2012; http://neuro.ufrn.br/softwares/
speechgraphs) was used to calculate 13 assembly graph attributes
(Table 1).

CHANGES IN POPULATION RATE DO NOT EXPLAIN THE ACTIVITY OF
INDIVIDUAL ASSEMBLIES
The algorithm to algebraically define assembly activity was the
squared linear combination of the firing rate of the units in a

FIGURE 4 | Determination of sequences of cell assembly activations.

(A) 1.5 s interval showing activity of 3 assemblies (A–C) of rat # 1 (3 top
panels). Thresholds are the 99th percentiles of the activity values for each
assembly. Threshold-crossing peaks are considered assembly activations.
Assembly activation sequence is defined as the series of activation across
different assemblies within subjects; and the time interval between two
subsequent activations is called inter-activation interval (IAI) (bottom panel).
(B) Exemplary graph generated with assembly activations from the first WK

episode of rat # 1 during PRE. (C) Distribution of absolute Pearson correlation
values between graph attributes and two other variables: activation count and
graph duration. Graphs were generated using assembly activation sequences
from behavioral states’ episodes. Panel shows distribution of data from all
episodes. Note that activation count was generally correlated with graph
attribute values in our dataset (median = 0.74, 74% of correlations were
significant with p < 0.05), while the graphs duration were not (median =
0.18, 8% of correlations were significant with p < 0.05).
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Table 1 | Graph attributes.

Abbreviation Name Definition

Nodes Number of Nodes Number of assemblies activated
and single sets of co-activations
in the graph

RE Repeated Edges Number of edges linking the
same pair of nodes more than
once in one specific direction

PE Parallel Edges Number of edges linking the
same pair of nodes more than
once irrespective of the
direction

L1 Loops with one
node/Self-Loops

Number of edges between one
node and itself

L2 Loops with two
nodes

Number of pairs of edges
between two nodes one in each
direction

L3 Loops with three
nodes

Number of sets of three edges
in one specific direction leaving
one source node, passing
through two other nodes and
coming back to the source node

LCC Largest Connected
Component

Number of nodes comprising
the largest sub-graph in which
each node is connected to each
other through a path in the
sub-graph (applied to the
undirected version of the graph)

LSC Largest Strongly
Connected
Component

Number of nodes comprising
the largest sub-graph in which
all nodes are mutually reachable,
i.e., there is a path from node A
to node B, and one from node B
to node A (applied to the
directed version of the graph)

ATD Average Total
Degree

Mean of the number of edges
pointing to or departing from a
node, across nodes

Density Density of the graph Density number that goes from
0 to 1 representing the
percentage of possible edges
that really exist in the graph

Diameter Diameter of the
Graph

Length of the longest shortest
path between the node pairs of
a network

ASP Average Shortest
Path

Average length of the shortest
path between pairs of nodes of
a network

CC Clustering
Coefficient

Average across nodes, of the
percentage of real edges
between the neighbor nodes of
a node over the total possible
edges between these neighbors

given time bin (Lopes-dos-Santos et al., 2011, 2013). Hence, while
assembly activity is dependent on population firing rate, it is not
fully determined by it, because its projection also depends on the
weight of each unit on that specific assembly.

A plethora of studies have shown that firing rate changes con-
vey behavioral information (Adrian and Zotterman, 1926; Hubel
and Wiesel, 1959; O’Keefe and Dostrovsky, 1971; Moritz et al.,
2008); thus, it was first important to show that assembly activ-
ity is not just an epiphenomenon of population rate. To address
this issue, we plotted the squared mean population rate against
the mean of all assemblies’ activity within each bin along the
whole experiment for each rat (Figure 5A for rat # 1, dark red
dots). The R2 of the linear fit between these two variables was
low for all animals (Figure 5B), indicating that they display a
weak correlation. We then plotted the same squared mean of
the population rate against the mean assembly activity projected
using spike matrices with surrogated rates within each single bin
(Figure 5A, dark green dots). This allowed us to vary one of the
variables that define assembly activity (weights of each unit within
each assembly), while keeping the other unchanged (population
rate). This approach showed linear fits with even lower R2 val-
ues (Figure 5A, light green line for rat # 1 and Figure 5B for
all rats).

Next we investigated activity time-series of individual assem-
blies (Figure 5C, exemplary assembly from rat # 1). Figure 5D
shows R2 values for the linear fits from all individual assem-
blies as in Figure 5C, for all animals (real data—left; surro-
gated data—right). All values are very low, and become even
lower when we use the surrogated dataset, including a sta-
tistically significant difference in R2 values between real and
surrogated datasets, for rats # 1 and # 5. (Figure 5D, aster-
isk, Wilcoxon signed-rank paired test, p < 0.05). Altogether,
these results indicate that the activity of individual assem-
blies is not reducible to fluctuations of the population firing
rate.

ASSEMBLY ACTIVATION RATE AND COACTIVATIONS
We analyzed assembly activation time-series (Figure 6A, exem-
plary plot from rat # 5) from all behavioral states (WK, SWS
and REM) and experimental periods (PRE, EXP and POST).
Considering all rats, we found that the assembly activation rate
during WK was significantly higher in almost all the paired com-
parisons (18 out of 21) of experimental periods between behav-
ioral states (gray lines with asterisk, p < 0.05, Wilcoxon ranksum
test, bootstrap corrected). Moreover, in all rats the assembly
activation rate during POST SWS was significantly higher than
during PRE SWS (Figure 6A, exemplary plot from rat # 5, black
line with asterisk), which suggests that the increase in firing rates
after novel object exploration (Ribeiro et al., 2007) may under-
lie the elevated co-firing of assembly neurons. Interestingly, two
out of the three rats that displayed REM during PRE and POST,
showed elevated activation rate after the experience. Previous
work with larger groups including the present dataset showed
no significant firing rate change between PRE REM and POST
REM (Ribeiro et al., 2007). The distribution of assembly coac-
tivations followed the same pattern of the assembly activation
rate, in which POST SWS displayed higher values than PRE
SWS for all rats. The number of coactivations was also higher
during WK than during sleep (Figure 6B, exemplary plot from
rat # 5); with significant differences in 18 out of 21 possible
comparisons.
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FIGURE 5 | The activity of individual assemblies is not reducible to rate

fluctuations. (A,C) show exemplary panels from rat # 1 and (B,D) show
group data. (A) Squared mean of the population rate and the mean of all
assemblies’ activity within each 1 ms bin (dark red dots). In order to scramble
associative behavior and keep the firing rate fixed, we also plotted the mean
population rate against the mean assemblies’ activity projected using the
spike matrix with neurons’ labels surrogated within each time bin (dark green
dots). Light red and green lines depict the least square linear fit for each color
coded subset of points along with the correspondent coefficients of
determination (R2). (B) Coefficient of determination distribution for all rats.

For all animals, data surrogation impaired the correlation between firing rate
and assembly activity. (C) The same color code as in (A), but plotting the
mean population rate against the activity of a single exemplary assembly
from rat # 1. (D) Shown are distributions of all rats R2 values for the linear fits
from the correlation between mean population rate and individual
assemblies’ activity (left) and mean population rate and individual assemblies’
activity estimated from surrogated spike matrices (right). Note that both
distributions exhibit very low R2 values and that there is a decreasing trend
from real to surrogated data, with significant difference for rats # 1 and # 5
(∗p < 0.05, Wilcoxon signed-rank paired test).

GRAPH ANALYSIS
We found that graph attributes varied significantly across
behavioral states and experimental periods (Figure 7). We tested
therefore whether a Naïve Bayes classifier could extract, from the
assembly graph attributes, information enough to sort behav-
ioral states and experimental periods (John and Langley, 1995).
We used the java software Weka (http://www.cs.waikato.ac.nz/
ml/weka/) to perform the classifications and estimated their qual-
ity by the area under the receiver operating characteristic curve
(AUROC). Figures 8A,B show that it was possible to sort behav-
ioral states with very high quality of classification, particularly
when WK and REM were compared (maximum AUROCs ranging
from 0.78 to 0.98). WK and SWS could also be distinguished, at a
somewhat lower level (maximum AUROCs ranging from 0.69 to
0.96). The poorest quality of classification was obtained by sort-
ing SWS from REM (maximum AUROCs ranging from 0.64 to
0.78).

The classification quality across experimental periods was not
as good as across behavioral states (median across rats 0.57

vs. 0.69, Wilcoxon ranksum test, p < 0.01), except for rat # 1.
Figures 8C,D show that the maximum AUROC values for the
comparisons between experimental periods ranged from 0.55 to
0.99, with distribution of all values yielding 0.52 and 0.67 as the
first and third quartiles, compared to 0.58 and 0.84, as quartiles
for the comparisons between behavioral states. We found a strong
positive correlation between the AUROC of graph attributes and
activation count for all the comparisons made (e.g., rats # 4 and
# 1 in Figures 8A,C). One example of this correlation is shown
on a plot of the AUROC values from the classification between
PRE WK and PRE SWS vs. the activation count of the graphs
of rat # 1, considering only values obtained using the 1000 ms
maximum IAI (Figure 8E). The figure shows a positive correla-
tion associated with an extremely strong linear fit (R2 = 0.95)
and a 1.2 × 10−3 slope, in association with major variation in
AUROC values (full range: 0.54–0.80). To test if this was a general
effect of assembly count on AUROCs and to analyze the general
effect of maximum IAI on AUROCs, we plotted the AUROCs
vs. the activation counts along a constant maximum IAI; and
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FIGURE 6 | Descriptive statistics. Panels show the distribution of
assembly activation rate (A) and co-activation rate (B) (events per second)
during different behavioral states and experimental periods for rat # 5.
Behavioral states boxplots are color coded as red, blue, and green for WK,
SWS and REM, respectively. Experimental periods (PRE, EXP and POST)
are placed together and in chronological sequence within each behavioral
state. Black lines with asterisks reflect significance between two different
experimental periods within a given behavioral state. Gray lines with
asterisks reflect significance between two different behavioral states within
a given experimental period (p < 0.05, bootstrap corrected for multiple
comparisons).

the AUROCs vs. the maximum IAIs considering a constant acti-
vation count for the panels from all rats. Note that activation
count accounts for AUROC variability significantly more than the
maximum IAI, except for rat # 1 (Figure 8F), according to a pos-
itive correlation (Figure 8G). It is important to note that there
was no AUROC above 0.68 when we used maximum IAIs below
20 ms. Maximum AUROCs were obtained using each of the seven
different activation counts explored.

DISCUSSION
Our results show that assembly graphs comprising synchronized
neuronal units recorded from the hippocampus and primary sen-
sory cortices can be used to sort behavioral states (maximum
AUROC values ranging from 0.64 to 0.98) and experimental peri-
ods (maximum AUROC values ranging from 0.55 to 0.99) before,
during and after novel object exploration. This sorting is based on
several attributes that reflect the structural properties of assembly
graphs. At this point we do not know whether these attributes
are informative due to a causal relationship with behavior, or

as an epiphenomenon of some other underlying cause. In all,
our investigation corroborates the notion that phase sequences,
understood as specific patterns of assembly activations, reflect
the different regimes of neural processing as animals traverse
the wake-sleep cycle and acquire novel information about the
environment.

Such interpretation of the results cannot be furthered with-
out addressing the problem of the arbitrary definition of time
scale for synchronous firing. As shown in Figure 2A, the number
of assemblies detected decreases with bin size. We showed evi-
dence that this may be due to the tight temporal association of
assemblies detected using smaller bin sizes, which are detected as
a single assembly when larger bin sizes are used. Our choice of bin
size = 5 ms for the generation of assembly graphs, well within the
potentiation window of spike time dependent plasticity (STDP)
(Bi and Poo, 1998), represents a compromise between the num-
ber of assemblies detected and the need to avoid extremely low
bin sizes near the neuronal refractory period.

Our results show that the repertoire of assemblies is almost
unchanged across experimental periods, which suggests that
novel experience does not create new assemblies in the hippocam-
pus and primary sensory neocortex of the normal adult rat.
Our finding is compatible with Hebb’s hypothesis that assemblies
correspond to the primitive building blocks of representations,
being slowly formed across development but nearly unchanged
in adulthood. The experience-dependent changes in the structure
of assembly graphs, revealed by the use of a classifier, also cor-
roborates the complementary Hebbian hypothesis that relevant
information about concepts, percepts and behavior in general is
coded at the level of multiple assembly activations, the so called
phase sequences (Hebb, 1949).

We also showed that the activity of single assemblies cannot
be reduced to the changes in firing rate. Changes in neuronal
firing rates constitute well-known indexes of behavior (Adrian
and Zotterman, 1926; Hubel and Wiesel, 1959; O’Keefe and
Dostrovsky, 1971; Moritz et al., 2008). If phase sequences are
indeed important to generate new neural representations, they
should carry more specific information than firing rates. Since
assemblies are subsets of neurons that function transiently as
closed systems, the neurons related to a given perception or
behavior should have their rates affected synchronously, so as to
be detected as assemblies. The calculation of assemblies and the
projection of their activity is a way to reduce the dimension-
ality of a population of neuronal units onto neuronal subsets
which are likely related to behavior. Investigation of whether
phase sequences carry more information than firing rates is
ongoing.

The automatic sorting of behavioral states using the attributes
of assembly graphs reached a very high level, but the sorting of
experimental periods was substantially less accurate. The major
behavioral states comprise markedly different physiological pat-
terns in the brain (Noda et al., 1969; Vanderwolf, 1969; Hobson
and McCarley, 1971; Gervasoni et al., 2004), likely not the case for
the experimental periods investigated here. One possible cause for
this difference may be the small amount of assemblies detected,
due to the under-sampling of the neuronal units actually involved
in novel object exploration.
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FIGURE 7 | Assembly graph attributes vary significantly across

behavioral states and experimental periods. Panels show the
distribution of graph attributes’ values from rat # 5, using 1 s maximum IAI
and 169 activations/graph, for different behavioral states and experimental
periods. As in Figure 6, behavioral states boxplots are color coded as red,
blue, and green for WK, SWS and REM, respectively. Experimental periods
(PRE, EXP and POST) are placed together and in chronological sequence
within each behavioral state. Black lines with asterisks reflect significance
between two different experimental periods within episodes of a given
behavioral state (p < 0.05, Wilcoxon ranksum test, Bonferroni corrected).
Gray lines with asterisks reflect significance between two different

behavioral states within a given experimental period. Note that nearly all
the attributes sorted WK from SWS, during PRE or POST (except for L1
during PRE and L3 during POST). WK was significantly different from REM
during PRE (12 attributes) and POST (11 attributes), SWS was significantly
different from REM during POST (10 attributes), but no attribute could sort
SWS and REM during PRE. Only one attribute was capable of sorting PRE
from EXP within WK. When comparing PRE × POST within WK, 12
attributes could separate them. EXP WK graphs were detected as different
from POST WK graphs by 3 attributes. PRE SWS could be sorted from
POST SWS, and PRE REM could be sorted from POST REM, using any of
the graph attributes studied.
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FIGURE 8 | Assembly graph attributes allow for the automatic

classification of experimental periods and behavioral states. (A,C) The
rows of each panel represent the graphs maximum IAI (within the graph,
every IAI is less than or equal to the maximum IAI value), while the columns

correspond to the number of activations within the graphs defined as
percentages of the squared number of assemblies. Color codes vary from 0
to 1 and represent the median AUROC of 50 classifications made for 20

(Continued)

Frontiers in Neural Circuits www.frontiersin.org April 2014 | Volume 8 | Article 34 | 11

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Almeida-Filho et al. Phase sequences as assembly graphs

FIGURE 8 | Continued

random graphs from each of the experimental periods compared using a Naïve
Bayes classifier; e.g., 20 graphs from PRE WK compared with 20 graphs from
EXP WK. In some cases of the parameter screening, we could not obtain the
minimum 20 graphs necessary for the classification. For instance, it was
impossible to generate one single graph comprising 200 activations (200% of
Number of Assemblies2 for rat # 3) within the 10 ms maximum IAI. These
conditions were coded blue to indicate no classification. The maximum AUROC
value of each panel is indicated. (A,B) Sorting of behavioral states. (A) Panels
show the classification quality across different maximum IAI and activation
count values for rat # 4. (B) Histograms of AUROC values as in panel (A) for all
rats. Red line depicts the 0.6 AUROC value, which sets the lower bound for a
good classification quality. WK and REM were well sorted by graph attributes,
with maximum AUROC values ranging from 0.68 to 0.98 for all rats within both
PRE and POST periods. The sorting of SWS and REM was substantially less
accurate, with maximum AUROC = 0.78 during POST in rat # 5. The sorting
between WK and REM was very good for all rats during PRE, (maximum
AUROCs from 0.78 to 0.98). (C,D) Sorting of experimental periods. (C) Panels
show the classification quality for rat # 1 across different maximum IAI and
activation count values. (D) Histograms of AUROC values from the panels as in
panel (C) for all rats. All the comparisons yielded maximum AUROCs ranging
from 0.55 to 0.99. (E) Correlation between AUROC and activation count using a

1000 ms maximum IAI from rat # 1 graphs comparing PRE WK and PRE SWS.
The slope of the linear fit indicates that each single activation added to a graph,
adds 0.0012 to the AUROC, with activation counts varying from 12 to 242
(AUROCs vary from 0.54 to 0.80). (F) Distribution of slopes of the linear fits
between activation count and AUROC with fixed maximum IAI value (e.g., panel
E); and between maximum IAIs and AUROC with fixed activation count. We
used the AUROCs from all the comparisons and conditions (maximum IAI and
activation counts) for all animals and considered only fits with three or more
data points. The analysis shows that the maximum IAI contribution to the
AUROC is around zero (mean across rats = 0.0024) and even negative, while
the contribution of the activation count is divergent, with a clear majority of
positive contributions (mean across rats = 0.097), yielding a significant
difference between these two variables, except for rat # 1 (G) Distribution of
Pearson correlations indexes for the comparisons in panel (F). Note that
activation count shows strong positive correlation with AUROCs (medians =
0.92, 0.93, 0.78, 0.80, and 0.91 for rats # 1 to # 5, respectively; 53% of the
values with p < 0.05), while maximum IAIs are scattered, with values spanning
the entire scale, and medians closer to zero or even negative for all rats (0.59,
−0.33, −0.56, −0.39, and 0.12 for rats # 1 to # 5, respectively; 8% of the values
with p < 0.05). Asterisks indicate significant differences between activation
count and maximum IAI distributions of correlation values within the same
animal.

It is important to point out that in the present study we
assumed that the activity of a cell assembly could be described as
a linear combination of the activity of individual neurons. While
this simplification of the assembly model allows for the analy-
sis of large neuronal populations, it also presents some potential
caveats (Lopes-dos-Santos et al., 2013). In particular, strong non-
linear correlations between neurons may lead to spurious results,
since both the determination of the number of assemblies and
the extraction of assembly patterns are based on the linear model.
Nevertheless, because this representation of assemblies is intuitive
and straightforward, it is possible to verify the outcomes of the
analysis; for instance, visual inspection of the raw data confirms
that co-activations of assembly members correspond to peaks
in assembly activity (see Figure 2B, also see examples employ-
ing similar linear methods in (Nicolelis et al., 1995; Peyrache
et al., 2009, 2010; Benchenane et al., 2010; Lopes-dos-Santos
et al., 2011, 2013). In principle, a non-linear method should be
more robust and realistic, but we are not aware of any non-
linear method capable of extracting assembly composition from
the ongoing activity of neuronal populations with dozens of neu-
rons. An ideal method should also incorporate information on
the physiology of specific cell types and neural circuits. Taken
together, our results show that, despite any possible non-linear
correlations that may exist among neurons, the linear ones carry
relevant information that support a role for phase sequences in
behavior and cognition. Future research shall include non-linear
modeling and also consider a neural coding approach, in order
to fully characterize the repertoires of phase sequences, and elu-
cidate the role of specific graph attributes in the representation of
contextual cues, sensory stimuli and motor behavior.
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