
RESEARCH ARTICLE

Modeling Dynamic Systems with Efficient
Ensembles of Process-Based Models
Nikola Simidjievski1,2*, Ljupčo Todorovski3, Sašo Džeroski1,2

1Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia, 2 Jožef Stefan
International Postgraduate School, Ljubljana, Slovenia, 3 Faculty of Administration, University of Ljubljana,
Ljubljana, Slovenia

* nikola.simidjievski@ijs.si

Abstract
Ensembles are a well established machine learning paradigm, leading to accurate and

robust models, predominantly applied to predictive modeling tasks. Ensemble models com-

prise a finite set of diverse predictive models whose combined output is expected to yield an

improved predictive performance as compared to an individual model. In this paper, we pro-

pose a new method for learning ensembles of process-based models of dynamic systems.

The process-based modeling paradigm employs domain-specific knowledge to automati-

cally learn models of dynamic systems from time-series observational data. Previous work

has shown that ensembles based on sampling observational data (i.e., bagging and boost-

ing), significantly improve predictive performance of process-based models. However, this

improvement comes at the cost of a substantial increase of the computational time needed

for learning. To address this problem, the paper proposes a method that aims at efficiently

learning ensembles of process-based models, while maintaining their accurate long-term

predictive performance. This is achieved by constructing ensembles with sampling domain-

specific knowledge instead of sampling data. We apply the proposed method to and evalu-

ate its performance on a set of problems of automated predictive modeling in three lake eco-

systems using a library of process-based knowledge for modeling population dynamics.

The experimental results identify the optimal design decisions regarding the learning algo-

rithm. The results also show that the proposed ensembles yield significantly more accurate

predictions of population dynamics as compared to individual process-based models.

Finally, while their predictive performance is comparable to the one of ensembles obtained

with the state-of-the-art methods of bagging and boosting, they are substantially more

efficient.

Introduction
Models are vital instruments for investigating how constitutive elements interact in the com-
plex dynamic systems observed in nature. Scientists incorporate expert knowledge and statisti-
cal methods to recreate the observed behavior and find patterns in the measured data, which in
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turn results in a model of a dynamic system. The model can be simulated- both to describe and
to predict its states under various conditions.

The process-based modeling paradigm, employed in this paper, follows the above principles
by automatically modeling the behavior of dynamic systems using time-series measurements
and domain-specific modeling knowledge. The resulting process-based models offer both an
understandable formalism of the system’s structure and a mathematical formulation allowing
for its simulation. The former provides a high-level representation of the modeled system in
terms of entities and processes, i.e., the elements in the system and their interactions, respec-
tively. The latter, transforms these entity/process components into a system of ordinary differ-
ential equations (ODEs). ODEs are a widely accepted modeling formalism. They allow for
long-term simulation of dynamic systems, which requires a minimal input consisting the initial
value of the system’s state and data corresponding to the system’s exogenous variables.

Often, establishing models that provide an accurate prediction of the behavior of a dynamic
system, require an expert intervention, which is time consuming and expansive. In contrast,
the process-based modeling paradigm allows for automated construction of such models [1–4].
While these automatically constructed models can be employed for long-term prediction, the
respective studies mostly focus on constructing models that provide a detailed and precise
description of the observed behavior. Unfortunately, the resulting models often fail to accu-
rately predict the subsequent states of the system. In this paper, we focus on the task of improv-
ing the predictive performance of process-based models by constructing ensembles.

An ensemble model is a combination of predictive models, which is expected to lead to
more accurate prediction than the one obtained with a individual model [5]. Ensembles are a
standard approach in machine learning for improving the predictive performance of models.
They are usually employed in the context of the learning tasks of classification and regression
[6, 7] to address the problems of over-fitting, high dimensionality, or missing features in the
training data. Recent studies by Simidjievski et al. [8, 9] have introduced ensembles in the con-
text of process-based models. This has allowed more accurate long-term prediction of the
behavior of dynamic systems. The ensembles yield a significant gain in predictive performance
over the individual process-based models. However, this performance gain comes at the cost of
increased computational complexity.

The main contribution of this paper is a novel efficient method for learning ensembles of
process-based models, that still accurately predict long-term behavior of dynamic systems. The
method learns ensembles by sampling the library of domain-knowledge in a manner similar to
the standard ensemble learning method of random subspaces [10]. We conjecture that such
ensembles will outperform individual process-based models in terms of their accuracy of long-
term predicting the system’s behavior, and will overcome the computational limitations of the
existing methods for learning ensembles of process-based models based on data sampling. To
test the validity of this conjecture, we perform an extensive empirical evaluation of the imple-
mented method on the task of modeling and predicting population dynamics in aquatic ecosys-
tems. This empirical evaluation will allow us to identify the most appropriate design decisions
within the algorithm for learning such ensembles of process-based models. It will also allow us
to compare the predictive performance of the new method to the performance of the existing
methods of bagging and boosting of process-based models.

The remainder of the paper is organized as follows. In the next section, we provide an over-
view of the related work from the areas of process-based modeling and ensemble learning. Sec-
tion Process-based models introduces the process-based modeling paradigm and its latest
implementation ProBMoT (Process-Based Modeling Tool), by illustrating its use on a simple
modeling task from the domain of population dynamics. Section Ensembles of process-based
models presents the extension of ProBMoT for learning ensembles of process-based models,
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focusing on learning ensembles by sampling the library of domain knowledge. Next, we present
the experimental setup for evaluating the developed methods on three tasks of predictive
modeling of population dynamics in aquatic ecosystems, i.e., the ecosystems of Lake Bled in
Slovenia, Lake Kasumigaura in Japan and Lake Zurich in Switzerland. Section Results presents
the findings of the empirical evaluation and gives a complexity analysis for learning ensembles
of PBMs. In the next section, we discusses the results in the context of related research. Finally,
the last section concludes the paper and suggests directions for further work.

Related research
The work presented in this paper builds upon our previous research on ensembles of pro-
cesses-based models [8, 9]. These studies tackle the challenge of learning ensembles by sam-
pling the training data. However, while the empirical evaluations in the respective studies have
shown that ensembles of process-based models lead to significant gains in predictive perfor-
mance, the process of learning such ensemble models is very computationally demanding.

In contrast, here we introduce a novel approach which will learn ensembles by sampling the
library of domain knowledge. The work presented in this study, is closely related to the work
performed by Bridewell et al. [11], where the authors report on generating an ensemble of
PBMs by fusing the structures of the individual constituents. The empirical evaluation of the
respective study shows that such ensembles have improved performance in a descriptive set-
ting, i.e., in explaining the observed behavior, whereas their ability for long-term prediction
(i.e., outside the scope of the training data time intervals) are not reported.

In a broader sense, this paper extends the scope of the state-of-the-art in equation discovery
[12, 13], related to automatically obtaining descriptive models from domain knowledge. Our
work comes closer to the inductive process modeling paradigm [14, 15] which mainly tackles
the problem of automatically obtaining explanatory models of a dynamic system in a process-
based representation. This paradigm has proven to be successful for a variety of modeling tasks
of population dynamics in a number of real-world domains for explaining the observed behav-
ior of the modeled system [1–4]. However, focusing on the provision of detailed and accurate
descriptions of the observed systems, the models in the respective studies, have limited predic-
tive abilities when applied to tasks of predicting subsequent system behavior.

Finally, this work is related to the long tradition of learning ensembles for tackling various
predictive modeling tasks in different ecological domains. Kocev and Džeroski et al. [16] pres-
ent an ensemble method for learning habitat models of communities of organisms under dif-
ferent environmental conditions, using predictive clustering trees [17]. However, the ensemble
methods presented in this paper are most closely related to those that tackle the problem of
time-series forecasting. Knudby et al. [18] present novel approaches for modeling fish-habitat
relationships using support-vector machines and tree ensembles for regression, where they aim
at predicting fish species richness, biomass, and diversity from a range of habitat variables.
Their main contribution is the extensive empirical study which identifies the most suitable
machine learning method for short-term prediction since it aims at forecasting the next-time-
point of fish-community concentrations. In contrast, our process-based ensembles aim at
long-term (typically one year) prediction of systems behavior that concern periods with poten-
tially indefinite ranges of time points.

Materials and Methods

Process-based models
The models of dynamic systems aim to describe the activities of the system components and
the change of the system states over time. Mathematical equations serve as a powerful tool for
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achieving this aim, where the variables in the equations represent the state of the system com-
ponents and the operators the interactions among components. Although this framework
allows for adequate representation of dynamic systems, it forfeits the high-level information
about the whys and hows of the modeled system’s behavior.

In essence, process-based models provide a conceptualization of the structure of the
observed system, accompanied by modeling details that allow for their transformation to equa-
tions and therefore simulation. They tackle the task of describing dynamic systems from two
aspects: qualitative and quantitative. From a qualitative aspect, a process-based model is a set
of entities and processes. The entities represent the components of the observed system, which
are involved in activities represented by the processes. From a quantitative aspect, a process-
based model is interpreted as a set of differential and/or algebraic equations which can be used
to simulate the behavior of the observed dynamic system. Process-based models encode both
this low-level quantitative mathematical formalism, and a high-level qualitative description of
the system.

Fig 1 gives both a graphical representation (Fig 1A) and a qualitative process-based repre-
sentation (Fig 1B) of an example Lotka—Volterra Predator–Prey model. Notice how the PBM
formalism represents the different processes/relations and entities/components involved in the
model. For example, the PREDATOR_PREY interaction is modeled as UNSATURATEDPP and involves
two entities predator and prey which are both part of the Population involved in the
modeled system. Moreover, the growth and the decay of the predator and prey are mod-
eled as EXPONENTIALGROWTH and DECAY, respectively.

Fig 1. A simple Predator-Prey model and its process-basedmodeling representation. (A) A graphical
representation of the entities (white boxes) and processes (black arrows) in a simple Predator-Prey model
and (B) its process-based modeling representation.

doi:10.1371/journal.pone.0153507.g001
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The entities and processes in Fig 1B represent the specific structure and dynamics of the
particular system at hand. To elucidate such specific entities and processes, the process-based
modeling approach uses entity and process templates, which serve as general placeholders for
properties and definitions. The templates provide general modeling specifications for any
instantiation to specific components or interactions, which in turn allows for a high-level quali-
tative conceptualization of a model to be translated into a low-level quantitative mathematical
formalization which can be simulated.

Table 1, depicts the library of domain knowledge used to instantiate the Predator-Prey
model from Fig 1B. The library organizes the templates in hierarchies. The predator and
prey entities from the example are instances of the general template entity of Population.
The entity templates incorporate group properties of the components of the modeled system.
These properties include the variables (which change over time) and the constants related to
the components of the modeled system, and their respective value constraints. For the vari-
ables, an aggregation function specifies how different process influences are combined for a
particular entity. Take for example the Population template entity: it has one variable d
which denotes density, and an aggregation function defined as summation, which means that,
for the case of prey, the influences of both processes GROWTH and PREDATOR_PREY on the variable
d will be summed.

The processes templates include specifications of the entity templates that interact, in terms
of constants, algebraic and ordinary differential equations. The process templates are organized
also into a hierarchy that defines the space of modeling alternatives. The particular process
GROWTH, used in Fig 1B, is an instance of a more general process template GROWTH (Table 1),
which is further instantiated to the process alternative— EXPONENTIALGROWTH (out of the two
possible, i.e. EXPONENTIALGROWTH and LOGISTICGROWTH).

Given such a library of domain knowledge, the task of learning process-based models takes
two additional inputs, i.e., an incomplete model and measured data. Learning PBMs then

Table 1. Library of domain knowledge for modeling Predator-Prey dynamics.

template entity Population{
vars: d {aggregation:sum, unit:“kg/m3”; range:<0,500>};\\density

template process GROWTH(pop: Population) {
consts: gR {range:<0,5>}};

template process EXPONENTIALGROWTH:GROWTH {
equations: td(pop.d) = gR � pop.d;}

template process LOGISTICGROWTH:GROWTH {
equations: td(pop.d) = gR � pop.d/(1 − pop.d/gR);}

template process DECAY(pop: Population) {
consts: dR{range:<0,2>};
equations: td(pop.d) = −dR � pop.d; }

template process INTERACTION(pop1:Population, pop2:Population){
consts: iR {range: <0,2>}, eF {range: <0,1>};}

template process UNSATURATEDPP:INTERACTION{
equations: td(pop.d) = iR � eF � pop1.d � pop2.d,

td(pop.d) = −iR � pop1.d � pop2.d; }

template process SATURATEDPP:INTERACTION{
consts: sR{range: <0,10>};
equations: td(pop.d) = iR � eF � pop1.d � pop2.d/(pop2.d+sR),

td(pop.d) = −iR � pop1.d � pop2.d/(pop2.d+sR); }

doi:10.1371/journal.pone.0153507.t001
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proceeds in two phases: (1) instantiating the library of entity and process templates by using
the incomplete model and (2) estimating the parameters in the resulting model structures to fit
the measured data. Given the library of model fragments the former phase is formulated as a
combinatorial search problem. Taking the incomplete model into account, one can instantiate
the template entities and processes from the library into a set of specific components (entities
and processes) to be included in the process-based model. The incomplete model represents
modeling assumptions in terms of expected logical structure of the model, which limit the
search space of the possible model structures, i.e., the combinations of model structures. Some
of the combinations can be rejected as implausible, due to their inconsistency with the incom-
plete model in terms of presence or absence of certain processes. For example, an incomplete
model of Predator-Prey dynamics can be obtained by removing the specific EXPONENTIALGROWTH

and UNSATURATEDPP processes and keeping their respective general templates. Together with the
library presented in Table 1, this incomplete model results in 4 candidate model structures.

The latter task, i.e., estimating the model’s parameters is formulated as an optimization task.
Each of the candidate model structures considered during the search task is compiled into a
system of equations, for which a parameter estimation task is solved to obtain values of the
model parameters that best fit the observed data. The objective function usually considered for
such problems is minimizing the discrepancy between the model simulation and the observed
system behavior.

The basic inductive process-based modeling algorithm, performs exhaustive search through
a constrained space of candidate process-based models, limiting the number of processes in the
model [14]. More advanced approaches, such as Lagramge2.0 [15] and HIPM [19], allow for
more sophisticated hierarchical constraints on the allowed process combinations. The most
recent PBM tool, the ProBMoT [2], allows for complete modeling, parameter estimation, and
simulation of process-based models.

The first input to ProBMoT is a library of domain knowledge. The next input consists of the
modeling assumptions formalized as an incomplete model of the observed system. The third
and final input is a set of measured data. Based on the incomplete model and the library of
domain knowledge, ProBMoT generates a set of model structures. For each of these structures,
parameter estimation is performed so that they best fit the measurements. The parameter esti-
mation process is based on the meta-heuristic optimization framework jMetal 4.5 [20] that
implements a number of global optimization algorithms. For this purpose, ProBMoT imple-
ments a variety of error functions such as root mean squared error (RMSE), root relative
squared error (RRSE) and weighted root mean squared error (WRMSE). Parameter estimation
relies on model simulation, for which ProBMoT employs the CVODE ODE solver from the
SUNDIALS suite [21].

Finally, the output of ProBMoT is a set of complete models sorted according to their perfor-
mance, i.e., the difference error between the simulation and the measured data. In this study,
we use ProBMoT as the learning algorithm for inducing process-based models, i.e., learning
the constituents of the process-based ensemble models, which will be introduced in the next
section.

Ensembles of process-based models
Ensembles are an established method for improving the predictive performance of models in
machine learning [5, 22]. An ensemble is a set of models (referred to as base models or ensem-
ble constituents), that is expected to lead to a predictive performance gain over an individual
model. In principle, any set of predictive models can be considered as an ensemble.
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Once we have a set of predictive models, the question then arises as to how the individual
predictions are to be combined into a single prediction. In traditional machine learning, this
problem is tackled by using different combining schemes depending on the type of the base-
models being aggregated. In the case of classification models that predict qualitative values,
most often the predictions are combined by using different voting schemes.

The output of regression models that predict a single numeric value for a given input, can
be combined by using the aggregation functions of average, weighted average and weighted
median [23]. In this context, the output of an ensemble of process-based models resembles the
one of time-series regression ensembles. However, in contrast to classical regression ensembles,
the result of simulating an ensemble of process-based models is a whole trajectory instead of a
single numeric value. Obtaining such a trajectory implies simulating each of the base models.
This requires an initial value of the exogenous (state) variables and the trajectory of the exoge-
nous (forcing) variables, which are then combined into an ensemble prediction. The different
model simulations are combined time-point-wise: The combination is performed by well
known methods usually applied in the case of numeric values, such as averaging, median,
weighted average and weighted median [9].

When learning ensembles, the other important question is how to learn the constituent
models of the ensemble. Methods for learning ensembles implicitly aim for diversity when
learning the set of constituent models before aggregating their predictions. Based on how this
diversity is achieved, we can distinguish two types of ensembles: heterogeneous and homoge-
neous. For learning heterogeneous ensembles, each of the base models is learned using a differ-
ent learning algorithm (stacking [24]). On the other hand, in homogeneous ensembles, the
individual base models are learned with the same learning algorithm, but from different sam-
ples of the training data, where the sampling variants include: sampling of the data instances
(bagging [25], boosting [26]), sampling of the data features/attributes (random subspaces [10])
or both (bagging random subspaces [27], random forests [28]).

It has been theoretically and empirically shown that homogeneous ensembles, such as bag-
ging and boosting, perform well for classification and regression problems [5, 28–30]. How-
ever, these methods, that sample data instances, can often be ineffective when the training data
is relatively homogeneous. Additionally, when the dimensionality of the data (the feature
space) is very high, learning such ensembles can be very ineffective and computationally
complex.

The base level learning algorithm in this study is ProBMoT, and here we aim at learning
homogeneous ensembles of process-based models. In the realm of process-based models,
ensembles learned by sampling data instance, i.e., bagging and boosting, have demonstrated
improved performance over individual models [8, 9], at the cost of increased computational
complexity. In the continuation of this section, we outline the methods for sampling data
instances in the context of process-based modeling. We then shift our focus to a method for
learning ensembles of process-based models via sampling data features, i.e., sampling domain
knowledge.

Sampling data instances for learning ensembles of process-based models. Bagging
(bootstrap aggregation) refers to an approach, developed by Breiman [25], for constructing
ensembles via bootstrap sampling with aggregation. This is one of the first and simplest ensem-
ble learning methods, where data instances are uniformly sampled with-replacements to gener-
ate random samples (bootstrap replicates) of the training data, consequently used to learn a set
of ensemble constituents. The learned base models are then combined by averaging their out-
put (in the case of regression) or by voting (in the case of classification). Bagging ensembles
successfully overcome the over-fitting problem most often when constitute instable models, i.e.
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models that can change dramatically even for small changes in the training data. However,
they are not that accurate when are constructed with stable models.

More sophisticated ensemble methods, such as boosting, obtain ensemble predictions by
combing “imperfect” predictions made by base models learned on different distributions of the
training data. The most notable implementation of boosting is the AdaBoost algorithm, proposed
by Freund and Schapire [31], originally developed for tackling classification tasks, and later
adapted by Drucker [23] for combining regressors. Like bagging, AdaBoost also re-samples the
training data: However, instead of treating all instances equally (as in bagging), it prioritizes the
more informative ones (i.e., those where large errors are currently made) for each subsequent
iteration. Even though AdaBoost is very successful in tackling the over-fitting problem on a vari-
ety of tasks, its performance is prone to noise in the training data which can lead to lower perfor-
mance as compared to single models and to other ensemble methods such as bagging [5].

For the task of bagging and boosting ensembles of process-based models, the candidate base
models are learned from different samples of the measured data. The notable difference from
bagging and boosting in the context of regression is that, in our case, the data instances have a
temporal ordering, that has to be retained in each sample of the data. A detailed specification
of how bagging and boosting are implemented in the context of process-based modeling can be
found in the study by Simidjievski et al. [9].

Sampling domain knowledge for learning ensembles of process-based models. The ran-
dom subspace method (RSM) is a homogeneous ensemble method developed by Ho [10],
which constructs different variants of the training data by sampling the feature space. Each
ensemble constituent is learned on all data instances and a subspace of the original feature
space. The predictions of the learned base models are then combined via standard combining
schemes for classification and regression, i.e., voting schemes and averaging techniques, respec-
tively. The RSM has been reported to perform well for problems where the data dimensionality
is very high or when there is a certain redundancy in the feature space [32].

In the context of learning ensembles of process based models, we can think of the feature
space as being defined by the model components instantiated from the process templates. This
space of components is determined by the number of process alternatives defined in the library
of domain knowledge. Therefore, generating random samples of the feature space used in the
traditional RSM, is analogous to generating random samples of the library of domain knowl-
edge. The approach presented in this paper learns ensemble constituents from the whole data
set using samples of the knowledge library. This is in contrast with bagging and boosting,
where ensemble constituents are being learned on data samples using the same knowledge
library or feature space.

The procedure for learning ensembles of process-based models via library sampling is pre-
sented in Algorithm 1. The procedure LS() takes five inputs: a library of domain knowledge (lib),
a dataset consisting of training data (DT) and validation data (DV), an incomplete model (incom-
pleteModel), a boolean variable (allowDuplicates), and an integer k denoting how many base
models are to be generated. The output is a set of process-based models denoted with Ensemble.

Algorithm 1 Learn ensembles of process-based models via library sampling

1: procedure LS(lib, {DT, DV}, incompleteModel, allowDuplicates, k)
2: returns Ensemble
3: Ensemble Ø . set of base models
4: do
5: libS SAMPLE(lib) . randomly sample the library lib
6: modelListi PROBMOT(libS, DT, incompleteModel)
7: bestModeli RANK(modelListi, DV)
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8: βi CONFIDENCE(bestModeli, DV) . presented in Algorithm 2
9: if allowDuplicates then
10: Ensemble Ensemble

S
(bestModeli, βi)

11: else if bestModeli =2 Ensemble then
12: Ensemble Ensemble

S
(bestModeli, βi)

13: end if
14: While SIZE(Ensemble) 6¼k
15: end procedure

Algorithm 2 Calculating confidence

1: function confidence(model, D) returns β

2: let ŷ . simulated system variable y
3: let y . measured system variable y
4: ŷ  SIMULATE(model, D)

5: maxDisc supðjyt � ŷ tjÞ2 . calculate max discrepancy between mea-
surements y and simulation ŷ, where t = 0..N and N is number of time-points in
D

6: �L  
XN
t¼0

jyt � ŷ t j2
maxDisc

. calculate average loss

7: b 
�L

1� �L
. calculate confidence

8: end function

For the task of sampling the library (SAMPLE(lib), line 5 in Algorithm 1) the process alter-
natives are randomly sampled (included or excluded) from the original library. The sampling
algorithm takes as input the complete library and considers all the process templates defining
more than one modeling choice. In turn, for each process template considered, it takes a ran-
dom sample of the available modeling choices to be included in the sampled library. Note that
the library sampling does not assume a uniform distribution of samples: the probability of a
library sample is proportional to the size of the induced space of candidate models. In particu-
lar, the probability of a library sample libS of the whole library lib equals

PðlibSÞ ¼
jLSjX

Li2PðLÞ
jLij ;

where L and LS� L correspond to the sets of candidate models induced by lib and libS (for a
given incomplete model specification), respectively. Moreover, |�| denotes set cardinality and
PðLÞ denotes the powerset of L, i.e., the set of all the possible subsets of L. For example, there
are nine samples of the library from Table 1: one that generates four candidate models, four
that induce two candidate models each, and four resulting in one candidate model each. The
last four library samples are less likely selected (the probability of selecting each is 1/16) than
the other five samples (1/4 for the first one, and 1/8 for each of the remaining four).

The process-based modeling algorithm PROBMOT(), (line 6 in Algorithm 1), takes as input
the sample of the library of domain knowledge libS, time-series measurements of the observed
dynamic system DT, and an incompleteModel representing the modeling assumptions made by
the modeler. The output of PROBMOT() is a list of process-based models, which is afterwards
sorted according to their performance (line 7 in Algorithm 1). The output of the function
RANK() (line 7 in Algorithm 1), i.e., the highest ranked model from each modeling task i (out
of k) denoted as bestModeli, becomes an ensemble constituent in the output Ensemble. The
ranking can be based on the performance on a separate validation data set DV or on the train-
ing sample (if DV = = DT).
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Each ensemble constituent is paired with its own confidence β. The calculation of the CON-
FIDENCE() (Algorithm 2) function takes 2 inputs: the highest ranked model returned by
ProBMoT and a data set D. First, themodel is simulated on the data set D resulting in a trajec-
tory ŷ . Based on the error at each time point in the trajectory, an average loss �L is calculated for
themodel (line 6 in Algorithm 2). From this loss, a confidence measure β is calculated, where
low values of β denote high confidence. The β coefficient is an indicator of the performance of
the base model and is used in the process of simulating the ensemble, i.e., combining the simu-
lations of the constituent models into an overall ensemble prediction when weighted combin-
ing schemes are considered (i.e., Weighted Average and Weighted Median).

Given the fact that the method always takes as input the same original library, there is a
high probability of learning and choosing identical models from different library samples, thus
filling the ensemble constituent set with multiple copies of the same model. To account for
this, the method incorporates two different alternatives for generating the ensemble constituent
set, i.e., with and without duplicates. For the former, referred to as Library Sampling with
Duplicates, duplicates are allowed in the constituent set (line 9 in Algorithm 1). k library sam-
ples are generated (with k denoting number of ensemble iterations), and the best model out of
each modeling task is chosen to be an ensemble constituent, regardless of whether that particu-
lar model was already in the constituent set or not. For the latter, referred to as Library Sam-
pling without Duplicates, to incorporate more diversity in the ensemble, the method generates
library samples (and performs modeling tasks) until the resulting ensemble contains k distinct
constituents (line 11 in Algorithm 1).

Experimental Setup
In this section, we present the setup of the experiments used to evaluate the predictive perfor-
mance of the ensembles of process-based models. We first introduce the data sets to be used in
the experiments, then we briefly describe the two other ProBMoT inputs, the library of domain
knowledge and the modeling assumptions. Next, we give an overview of the parameters of the
algorithm for learning ensembles with bagging and boosting, used in the last set of experi-
ments. Finally, we finish the section with the metrics used to measure the performance of pro-
cess-based models and ensembles thereof.

The data. The performance of the proposed method for learning ensemble is evaluated on
several tasks of modeling population dynamics in three aquatic ecosystems: Lake Bled in Slove-
nia, Lake Zurich in Switzerland and Lake Kasumigaura in Japan.

Lake Bled is located in the Julian Alps in north-western Slovenia and occupies an area of 1.4
km2, with a volume of 0.0257 km3, a maximum depth of 30.1m and an average depth of 17.9
m. The measurements, performed by the Slovenian Environment Agency, consist of physical,
chemical and biological data for the period from 1996 to 2002. All the measurements were per-
formed once a month and depth-averaged for the upper 10m of the lake.

Lake Zurich is located in the south-western part of the canton of Zurich in Switzerland. It
has an average depth of 49 m, a volume of 3.9 km3 and a surface area of 88.66 km2. The data
comprise measurements, performed by the Water Supply Authority of Zurich in the period
from 1996 to 2002. They include profiles of physical, chemical and biological variables from 19
different sites, weight averaged to the respective epilimnion (top 10m) and hypilimnion (bot-
tom 10m) depths. To obtain daily approximations, the data for both lakes were interpolated
with a cubic spline algorithm and daily samples were taken from the interpolation [4, 33].

Lake Kasumigaura, located 60 km to the north-east of Tokyo, Japan, has an average depth of
4m, a volume of 0.848km3, and a surface area of 220km2. The dataset comprises monthly mea-
surements, taken in the period from 1986 to 1992. Similarly, to obtain daily approximations,
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the measurements were interpolated using linear interpolation and daily samples were taken
from the interpolation [34].

In this paper, the same structure of a population dynamics model is used in all three aquatic
ecosystems. It includes a single equation (ODE) for a system variable representing the phyto-
plankton biomass (measured as chlorophyll-a in Kasumigaura). The exogenous variables
include the concentration of the zooplankton Daphnia hyalina (where available, i.e., for Bled
and Zurich only), dissolved inorganic nutrients of nitrogen, phosphorus, and silica (measured
as ammonia in Kasumigaura), as well as two input variables representing the environmental
influence of water temperature and global solar radiation (light).

In the experiments, we use fifteen data sets, which are subsets of the above-mentioned mea-
sured data from the aquatic ecosystems in the three lakes. For each aquatic ecosystem, the orig-
inal data set is split into seven single-year data sets. Five of these are used (one at a time) for
training the ensemble constituents. From the remaining two, one is used for validating the
models in the process of selecting the ensemble constituents, and one to measure the predictive
performance of the learned process-based models and ensembles thereof. Therefore, fifteen
learning experiments are performed; in each, we take a single-year training data set, learn a
model using the train and the validation data sets, and test the predictive performance of the
learned model on the test data set. In Table 2, which reports the experimental results, the
experiments are labeled with the labels B1–B5, K1–K5 and Z1–Z5 corresponding to the train-
ing data set using in the experiment, where, e.g., K3 denotes the Lake Kasumigaura data set for
the third year (i.e., 1988).

Note that, we follow the traditional experimental setup used in ecological modeling, where
predictive models for a particular aquatic ecosystem are learned and tested on data from that
same ecosystem. This is due to the fact that many environmental variables, corresponding to
overall properties of the observed system (such as depth, volume and terrain configuration),
are assumed to be constant in the modeling process. Additionally, some of the entities (vari-
ables) and ecological processes typically differ between ecosystems. Thus, models learned
under this assumption can not be directly used in the context of other ecosystems.

Table 2. Comparison of the predictive performance of a single model with that of ensembles of PBMs
learned with library sampling, bagging and boosting.

Case SingleModel Library Sampling Bagging Boosting

B1 5.184 (4) 1.103 (3) 1.073 (2) 1.065 (1)

B2 0.938 (1) 1.143 (4) 1.085 (3) 0.947 (2)

B3 1.042 (4) 0.794 (1) 0.968 (3) 0.941 (2)

B4 2.840 (4) 0.750 (1) 0.760 (3) 0.791 (2)

B5 0.842 (2) 0.858 (3) 0.859 (4) 0.698 (1)

K1 7.730 (4) 0.756 (2) 0.736 (1) 0.925 (3)

K2 328.138 (4) 0.878 (1) 1.429 (2) 1.642 (3)

K3 0.932 (4) 0.827 (1) 0.867 (2) 0.923 (3)

K4 0.777 (3) 0.800 (4) 0.772 (2) 0.705 (1)

K5 0.792 (4) 0.732 (1) 0.734 (2) 0.781 (3)

Z1 0.744 (1) 0.797 (3) 0.777 (2) 0.890 (4)

Z2 1.323 (4) 0.948 (3) 0.883 (1) 0.893 (2)

Z3 29.463 (4) 0.881 (1) 0.934 (2) 1.001 (3)

Z4 27.593 (4) 1.011 (3) 0.964 (1) 0.982 (2)

Z5 1.489 (4) 1.130 (2) 1.113 (1) 1.403 (3)

doi:10.1371/journal.pone.0153507.t002
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The library of domain knowledge. In the performed experiments, we use the library of
domain knowledge for modeling population dynamics in aquatic ecosystems, presented in čer-
epnalkoski et al. [2]. This library is based on the previous work of Atanasova et al. [35]. The
library of domain knowledge, combined with the modeling assumptions, results in 18144 can-
didate models for Lake Kasumigaura and 27216 candidates for the other two lakes.

ProBMoT parameter settings. ProBMoT implements the Differential Evolution (DE)
[36] method for parameter estimation. For the experiments performed in this paper, the DE
parameters were set as follows: a population size of 50, strategy rand/1/bin, differential weight
(F) and the crossover probability (Cr) of 0.6. The limit on the number of evaluations of the
objective function is one thousand per parameter. For simulating the ODEs, the CVODE simu-
lator is used with absolute and relative tolerances set to 10−3.

Learning ensembles of process-based models with bagging and boosting. To properly
assess the predictive performance of the proposed method for learning ensembles of process-
based models, in our last set of experiments we compare it to the state-of-the-art methods for
learning ensembles, i.e., bagging and boosting. Following the finding of Simidjievski et al. [9]
the ensembles are learned with both bagging and boosting include 25 constituents, which are
chosen based on their performance on a separate validation set and combined by averaging
their predictions. These settings were chosen by following the same experimental setup that we
use in this paper to select the appropriate design choices for learning ensembles with library
sampling.

Note, however, an important difference between the setup of the bagging and boosting
experiments and the experiments with library sampling. In the latter, we use the whole library
of domain knowledge as described previously in subsection The library of domain knowledge.
The use of this library is prohibitive for bagging and boosting, due to the high computational
complexity considering the large space of candidate models in each learning iteration. To
address this issue, we use a simplified version of the original library that results in 320 candi-
date model structures for Lake Kasumigaura and 128 candidates for the other two lakes. We
have prepared the simplified library carefully, omitting only modeling alternatives (process
templates) that are rarely observed to be among the top-ranked models in the single-model
experiments with ProBMoT. The issue of computational complexity of learning ensembles of
PBMs is further discussed in the subsection The computational complexity of learning ensem-
bles of PBMs of the section Results.

Performance evaluation metrics. To evaluate the predictive performance of a given
modelm, we use the measure of relative root mean squared error (ReRMSE) [28], defined as:

ReRMSEðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼0 ðyt � ŷt Þ2Pn
t¼0 ð�y � ŷt Þ2

s
; ð1Þ

where n denotes the number of measurements in the test data set, yt and ŷt correspond to the
measured and predicted (predictions are obtained by simulating the modelm on the test set)
value of the system variable y at time point t, and �y denotes the mean value of y in the test data
set. Note that the usual root mean squared error observed here, is relative to the standard devi-
ation of the system variable in the test data, thus allowing us to compare the errors of models
for different system variables with measured values on different scales (e.g., phytoplankton in
different lakes).

Statistical comparison of performance. We observe and compare the predictive perfor-
mance (in terms of ReRMSE) of the models learned using different algorithms on the 15 data
sets. To properly assess the significance of the differences between the performances of models
obtained with different algorithms, we follow the standard statistical procedure recommended
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by Demšar [37]. We use the corrected [38] Friedman test [39], followed by two post-hoc tests:
the Nemenyi test [40] and the Bonferroni-Dunn test [41]. A positive outcome of the Friedman
test indicates difference between the performances of the different algorithms considered. After
the completion of the Fridman test, we proceed with performing post-hoc tests to identify
which differences are statistically significant.

The first post-hoc test, i.e, the Nemenyi post-hoc test, computes the critical distance
between the algorithm ranks at a given level of statistical significance (in this paper, the signifi-
cance level threshold is set at 95%, p = 0.05). Only differences of the average ranks larger than
the critical distance are considered significant; for those, we can claim that one algorithm out-
performs (i.e., performs significantly better than) the other. This test is performed to obtain an
assessment of the relative performance of the methods considered. In this paper, the Nemenyi
post-hoc test is employed for comparison of different design decisions for the newly proposed
method. The results of the Friedman-Nemenyi tests are depicted by average rank diagrams (as
in Figs 2–6), where the critical distance is shown as a solid red line.

The second post-hoc test, i.e., the Bonferroni-Dunn post-hoc test, is performed to test how
a proposed method performs in a comparison to other methods. This test is similar to the
Nemenyi test, where a critical distance between the algorithm ranks is computed at a given
level of significance (in this paper the significance level threshold is at 95%, p = 0.05), denotes
how one method (i.e, an ensemble learned using the library sampling method) compares to the
other existing methods for constructing ensembles of process-based models (i.e., bagging,
boosting) and a single model, in terms of predictive performance. The results of the Friedman-
Bonferroni-Dunn test is depicted by the average rank diagram (as in Fig 7), where the critical
distance is shown as a dashed blue line.

Results
In this section, we present and discuss the results of the empirical evaluation. Given the fact
that the method for learning ensembles with library sampling is novel, we first identify the
most suitable design choices within the algorithm. We investigate what are the optimal choices
of method for selecting the ensemble constituents, number of ensemble constituents, and com-
bining method. The optimal choices are identified for both library sampling alternatives (with
and without duplicates).

After making the design choices, we compare the predictive performance of the library-sam-
pling ensembles with the performance of baseline ensembles, state-of-the-art bagging and
boosting ensembles, and single models. The two baseline ensembles consist of the top-ten and
ten randomly selected process-based models. Finally, we perform a comparative analysis of the
computational complexities of different methods for learning ensembles of process-based
models.

Design choices for the algorithm for learning library-sampling ensembles
The first design choice in an algorithm for learning ensembles of PBMs is related to the way of
choosing the ensemble constituents. As previously outlined, the highest ranked model of each
ensemble iteration is selected to be an ensemble constituent. The standard approach of ProB-
MoT to ranking candidate models is with respect to their performance on the training set.
However, to avoid overfitting, these models can be re-ranked according to their performance
on a separate validation data set. These experiments are performed using ensembles with 10,
25 and 50 constituents whose predictions are combined by averaging.

Fig 2 summarizes the performance comparison of the methods for choosing the base models
to be included in the ensembles. The upper diagram (Fig 2A) depicts the results of the
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Friedman-Nemenyi test for library sampling with duplicates, and the lower diagram (Fig 2B)
for library sampling without duplicates. In both cases, choosing the base models based on their
ranking on a separate validation set leads to better ensemble performance. However, in both
cases, this improvement is not significant.

Earlier we conjectured that choosing ensemble constituents based on their performance on
the training data might lead to overfitting. Fig 3 confirms this conjecture: In both cases (Fig 3A
and 3B), ensembles comprising base models selected based on the performance on the training
data exhibit significantly better descriptive/training performance than the ones selected based
on their performance on a separate validation dataset. This is in-line with our previous findings

Fig 2. Comparison of the predictive performance in terms of average ranks of the two library
samplingmethods with different methods for choosing ensemble constituents. Average ranks of
ensembles with 10, 25 and 50 constituents combined by averaging and selected differently (based on their
train (subscript T) or validation (subscript V) performance). The average ranks refer to the predictive (testing)
model performance averaged over the 15 experimental data sets, separately for the case of Library sampling
(A) with and (B) without duplicates.

doi:10.1371/journal.pone.0153507.g002
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for bagging and boosting [9], where the ensembles with constituents chosen on the bases of
their training performance demonstrate a clear case of overfitting—while having significantly
better performance on the training data these ensembles have worse predictive performance on
unseen data.

Next, we focus on choosing the optimal number of base models in the ensembles of process-
based models. To this end, we compare the predictive performance of ensembles consisting of
10, 25 and 50 base models, whose predictions are combined by averaging. The Friedman-
Nemenyi diagram, presented in Fig 4, shows that the ensembles containing 10 ensemble con-
stituents, for both types of ensembles (Fig 4A and 4B), lead to the best performance. Note how-
ever, that the observed difference in performance is not statistically significant.

Fig 3. Comparison of the average ranks for descriptive performance (on training data) of the two
library samplingmethods with different methods for choosing ensemble constituents. Average ranks
of ensembles with 10, 25 and 50 constituents combined by averaging and selected differently (based on their
train (subscript T) or validation (subscript V) performance). The average ranks refer to the descriptive model
(training) performance averaged over the 15 experimental data sets, separately for the case of Library
sampling (A) with and (B) without duplicates.

doi:10.1371/journal.pone.0153507.g003
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Finally, we focus on choosing the most appropriate method for combining the simulations
of the base models in the ensemble. We compare the performance aggregations of four meth-
ods that are often used in ensembles of regression models: the average, weighted average,
median and weighted median methods. Fig 5 depicts the comparison of the average ranks for
these methods both for library sampling with and without duplicates (Fig 5A and 5B, respec-
tively), containing 10 constituents. It can be observed that in both cases the simple average
method for aggregation performs (not significantly) best.

In summary, based on the performed experiments we make the following design decisions
related to learning ensembles of process-based models with library sampling. First, the ensem-
ble constituents are chosen based on their performance on a separate validation set, as they
exhibit better performance than the ones chosen based on their performance on the original
training data set. Second, the ensembles should consist of relatively small number(10) of base

Fig 4. Comparison of the average ranks for predictive performance of the two library sampling
methods with different ensemble sizes. Average ranks of ensembles that include 10, 25, and 50 base
models in terms of predictive performance averaged over the 15 experimental data sets for Library sampling
(A) with and (B) without duplicates.

doi:10.1371/journal.pone.0153507.g004
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models whose predictions should be combined by using the simple average method. Although
the latter conclusion is based on results which are not statistically significant, it can be justified
by following the parsimony principle. In all further experiments, we used these algorithm set-
tings for learning ensembles for library sampling with and without duplicates.

Predictive performance of the library-sampling ensembles
Here we focus on testing our central hypothesis that the ensembles learned with library sam-
pling improve the predictive performance of process-based models. However, to properly
assess the performance of such ensembles, and whether/how it is related to the sampling of the
library, we first compare the performance of both alternatives of library sampling to two

Fig 5. Comparison of the average ranks for predictive performance of the two library sampling
methods with four combining methods. Average ranks of the four methods for combining the simulations
of base models (average, weighted average, median and weighted median) in terms of predictive
performance averaged over the 15 experimental data sets for Library sampling (A) with and (B) without
duplicates.

doi:10.1371/journal.pone.0153507.g005
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baseline types of ensembles. The first baseline ensemble is comprised of the 10 best performing
models learned using the complete library, combined by averaging. We refer to this ensemble
as Best10. The second baseline ensemble is comprised of 10 randomly chosen models, also
learned on the complete library and combined by averaging. We refer to this ensemble as
Random10.

Fig 6 depicts the Friedman-Nemenyi comparison of the average ranks of the two library-
sampling ensembles and the two baseline ensembles. It can be seen that the ensemble with
library sampling with duplicates performs best, followed by the one which uses library

Fig 6. Comparison of the average ranks for predictive performance of the two library sampling
methods to two alternative ensemble approaches. Average ranks of four different types of ensembles
with 10 constituents combined by averaging. The constituents are: constructed via library sampling with and
without duplicates, the 10 best models learned from the complete library, and 10 randommodels learned
from the complete library. The average ranks of predictive performance are computed over the 15 data sets.

doi:10.1371/journal.pone.0153507.g006

Fig 7. Comparison of the average ranks for predictive performance of the library samplingmethod to
learning single models, bagging and boosting. Average ranks of the ensembles constructed by library
sampling with 10 constituents combined by averaging to the performance of: a single model and two types of
ensembles combined by averaging constructed by bagging and boosting (with 25 constituents). The ranks of
the models in terms of their predictive performance and the average CPU times for learning them are
averaged over the 15 data sets.

doi:10.1371/journal.pone.0153507.g007
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sampling without duplicates. Note, however, that the test shows no significant difference in
performance among the four approaches.

Given that the experiments performed so far did not show any substantial difference in the
performance between the two alternatives for library sampling, we further investigated their
structure. We found that the constituent set with 10 elements of the ensemble learned by
library sampling with duplicates has on average 85% unique base models. Moreover, the
method which samples the library without duplicates required on average 4 more iterations
(per dataset) for learning an ensemble with 10 constituents. Given the results in Fig 6, and this
insight into the structure of the ensembles, we follow the parsimony principle once again, and
consider the method of library sampling with duplicates to be the more efficient and effective
alternative when learning such ensembles.

In our last set of experiments, we assess the predictive performance of the method for learn-
ing ensembles via library sampling with the optimal design choices determined above. We
compare its performance to the performance of a single model learned on the complete library,
and ensembles learned using a reduced version of the library by the two state-of-the-art meth-
ods in process-based modeling, i.e., bagging and boosting with 25 constituents each and com-
bined by averaging.

Fig 7 depicts the Friedman-Bonferroni-Dunn comparisons of the average ranks across the
fifteen data sets. The results of the test show that the proposed ensembles with library sampling
significantly outperform single process-based models. This result supports the central hypothe-
sis of our paper that such ensembles improve the predictive performance over single process-
based models. Note, however, that their predictive performance is slightly (not significantly)
worse than bagging ensembles, and slightly (not significantly) better than boosting ensembles.

Fig 7 also presents the CPU time needed for learning all the ensembles and the single model.
On average, learning ensembles with the library sampling method takes as much time as learn-
ing a single process-based model (�400 h). Note, however, that even though the remaining
two methods of bagging and boosting take far less time than the previous methods, (�115 h
and�125 h, respectively), they are learned from a reduced library. After a further investigation,
which involved learning a single model on the smaller library (that took 4.5 to 5h), we estimate
that it would take�9200 h and�10000 h, for bagging and boosting of process-based models
using the original libraries, respectively. This would result in substantially (by a factor of�25)
worse computational efficiency as compared to learning library-sampling ensembles.

So far, our comparison of the methods focused on their average ranks, which do not reveal
the actual performance of the models obtained with the different methods. Table 2 reports
these performances of the single process-based models and the three ensembles of PBMs
learned with library sampling, bagging and boosting. Note that the results reported in the table
confirm the superiority of ensembles to a single model. The ensemble methods are far more
robust than single models, which severely under-perform in 6 out of the 15 cases: in these 6
cases, the single models have a ReRMSE of over 2. In the two cases where the single models
outperforms the ensembles (B2 and Z1), the difference in performance when compared with
the top-ranked ensemble method for the particular case is minor. On the other hand, ensemble
methods can not be differentiated in terms of robustness: all three methods for learning ensem-
bles of PBMs are equally robust. The differences in performances among the models obtained
with the different ensemble methods are minor and often negligible. The relative winner is the
proposed algorithm for library sampling, that outperforms the other two methods in 6 out of
15 cases. In terms of predictive performance, the method of library sampling is competitive
and even slightly better than the state-of-the-art ensemble methods of bagging and boosting
PBMs, leading to more accurate predictive models.
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Computational complexity of learning ensembles of PBMs
Since the main focus of this study is the efficient learning of ensembles of process-based mod-
els, we first need to establish the complexity of learning a single model. Recall from Section Pro-
cess-based models, that the algorithm for learning process-based models consists of two main
sub-tasks: enumerating all possible model structures, and estimating the parameters of each of
them. Fig 8A presents a diagram of relative execution times for each of the tasks through the
prism of learning an example Predator-Prey model as described in Section Process-based mod-
els. The first task, structure enumeration (red box), uses a traversal algorithm through the

Fig 8. Comparison of the computational complexity of learning a single model and three methods for learning ensembles. A graphical
representation of the time complexity of learning a (A) single process-based model and ensembles of process-based models with five constituents with (B)
bagging, (C) boosting and (D) library sampling, using the library presented in Table 1.

doi:10.1371/journal.pone.0153507.g008
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space of model components, which is linear in the resulting number candidate models N [42].
In this example, it results in 4 candidate models. Second, for each of these candidates, a param-
eter estimation task is performed (blue box), the efficiency of which is related to the number of
parameters each candidate model has and the number of observed time points. Note that, even
though the overall complexity of the parameter estimation task isOðNÞ, in most cases more
than 99% of the computational time is spent in this phase. At the end of each modeling task,
the learned models are ranked (yellow box) based on their performance on the training/valida-
tion dataset. The ranking task is performed by an insertion sort algorithm, based on the mod-
els’ performances and has a complexity ofOðNlogNÞ (given that a sorted list of models is
maintained after every model construction), where N is the number of candidate models. For
this paper we define the complexity of one iteration of ProBMoT, i.e. obtaining one process-
based model as the benchmark unit for assessing the complexity of learning different ensem-
bles of process-based models.

For analyzing the computational complexity of the different methods for learning
ensembles of process-based models, we demonstrate learning Predator-Prey ensemble
models with five constituents. Fig 8B presents the time needed for learning an ensemble
using the bagging method. It is essentially a repetition of the tasks needed for learning a
single model for every ensemble constituent (dashed line), with the exception of two addi-
tional tasks: one for sampling the training data (gray box) at the beginning of each ensem-
ble iteration, and one for simulating the ensemble at the end (green box). Even though Fig
8B depicts the serial implementation of bagging, this algorithm handles the processes of
learning different base models completely independently. Thus, it can be parallelized to
handle different tasks with different bootstrap replicates on different CPUs, which perfor-
mance-wise is very useful for computationally intensive learning tasks such as process-
based modeling. The complexity of learning an ensemble with boosting (Fig 8C) resembles
the one of bagging. However, the boosting algorithm cannot be parallelized, as each new
boosting iteration depends on the outcome of the previous one. This makes such ensembles
the most inefficient to learn, which is most strongly felt when large libraries and many con-
stituents are considered.

The last method that we investigate is learning ensembles by sampling the library of
domain knowledge (Fig 8D). While the algorithm (as presented in Algorithm 1) is iterative,
it can be implemented much more efficiently. Instead of sampling the space of components
(i.e., sampling the domain knowledge) and running ProBMoT with each sample of the
library, we can sample the generated search space and choose from the candidate models.
First, all the models from the original library are generated, and their parameters are esti-
mated accordingly. Next, we generate all the necessary library samples (orange box), and per-
form the task of searching and sorting models which are determined by the particular
subsample of the library. By transforming the sampling problem from sampling domain
knowledge to sampling the model structures from the complete search space, the number of
ProBMoT runs is minimized (to 1), consequently substantially gaining computational effi-
ciency, as compared to the other ensemble methods using ProBMoT, i.e., bagging and boost-
ing. Earlier it was stated that selecting the constituent set for such ensembles can be
performed in two ways: with and without duplicates. For the former, the execution time is
correlated to the number of iterations needed (which for this example is 5). For the latter, the
execution time depends on the random generator, and for this example it can take from a
minimum 5 (yellow boxes) to a maximum 9 iterations (additional 4 opaque-yellow boxes).
Finally, at the end, similarly to the previous approaches, an ensemble simulation task is
performed.
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Summary
The results of the experiments show the following.

• The optimal design choices for the algorithm for learning library-sampling ensembles of pro-
cess-based models are as follows. First, it is better to select the ensemble constituents using a
separate validation dataset that has not been used to learn them (Figs 2 and 3). Second, the
optimal number of constituent models is small (Fig 4). Finally, the simple average is the opti-
mal method for combining the simulations/predictions of the ensemble constituents (Fig 5).
Note that these design choices are virtually identical to the ones made for the bagging and
boosting ensembles of process-based models [9].

• Library-sampling ensembles outperform the two baseline ensembles consisting of top-ten
and ten randomly selected models (Fig 6). Moreover, despite the additional computational
effort, removing duplicates in the set of ensemble constituents does not improve their predic-
tive performance. Most notably, library-sampling ensembles significantly outperform single
models and have comparable predictive performance to bagging (insignificantly worse aver-
age rank and slightly higher number of wins), the best performing state-of-the-art ensemble
method for process-based modeling (Fig 7 and Table 2).

• The comparative analysis of the computational performances reveals that library-sampling
ensembles are learned in a time comparable to the time needed to learn a single model (Figs
7 and 8). This is orders of magnitude faster when compared to its bagging and boosting
counterparts, where the time needed equals the number of ensemble constituents multiplied
by the time needed to learn a single model. In particular, the speed-up factor equals the num-
ber of bagged/boosted process-based models.

In sum, the library-sampling ensembles represent an important advance over the state-of-
the-art methods (bagging and boosting) for learning ensembles of process-based models: They
provide orders-of-magnitude improvement in computational efficiency of ensembles without
impairing their predictive performance.

Discussion
The machine learning literature provides various frameworks for explaining the performance
improvement gained by using ensemble methods. While the results on the positive influence of
ensemble constituents’ diversity on the performance are inconsistent [43], there is a general
consensus that the bias-variance decomposition of the predictive error allows for a plausible
explanation. Ensembles tend to reduce the variance component of the predictive error, while
not increasing the bias component at the same time [44]. This is what happens in the case of
learning ensembles of process-based models: by averaging the predictions of several models
learned on the same dataset, we reduce the variance component of the predictive error. More-
over, we conjecture that ensembles of process-based models also reduce their bias. This is due
to the fact that averaged process-model simulations can lead to predictions that are out of the
scope of a single process-based model. Therefore, ensembles of process-based models (and
models of dynamic systems in general) have the potential to extend the original space of indi-
vidual models leading to a reduction of the bias component of the predictive error. Validating
this hypothesis is beyond the scope of this paper, but will be considered in further work.

This paper builds upon previous work on learning ensembles for modeling dynamic sys-
tems. More specifically, it extends the scope of learning ensembles of process-based models for
long-term predictive tasks, i.e., bagging and boosting [9], by introducing a novel approach for
constructing efficient ensembles with satisfactory predictive performance. Second, the methods
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presented in this paper provide accurate predictions of the unobserved future system behavior,
in contrast to Bridewell et al. [11], who build ensembles that provide accurate description of
the observed system behavior.

In a broader sense, the work on library-sampling ensembles extends the state-of-the art
methods for process-based modeling of population dynamics in ecology [2, 3, 14]. However,
while these studies successfully for modeled the observed behavior of real-world aquatic eco-
systems, the prediction of future system behavior is out of their scope. In similar context, the
studies of Whigham and Recknagel [45] and Cao et al. [46] discuss the predictive performance
of process-based models in a lake ecosystem. However, they assume a given model structure
and by employing genetic algorithms mainly focus on the task of parameter identification of
different model structures.

The novel ensemble method proposed in this paper aims at improving the generalization
power of the process-based modeling approach while having reasonable computational com-
plexity for modeling tasks with relatively large candidate model space. However, when learning
such ensembles, there is a trade-off between the predictive performance of the ensemble and its
understandability. Here, the gain in predictive accuracy comes at the cost of losing the under-
standability of the learned ensembles. Nonetheless, methods for improving the comprehensi-
bility of ensembles can be developed, similar to the methods for integrating ensemble
constituents in a single model proposed by Bridewell et al [11].

Conclusion
In this paper, we address the task of learning ensembles of process-based models. We design,
implement and evaluate a novel methodology for learning ensembles by sampling the library
of domain knowledge. This methodology for learning ensembles of process-based models is
the major contribution of our paper, since it improves the state-of-the-art of learning process-
based models in two directions: efficiency and performance.

First, it improves the state-of-the art of learning ensembles of process-based models with a
new, computationally efficient ensemble method based on library sampling. The computa-
tional efficiency of the method allows for applications to domains where a rich library of
domain knowledge is available leading to a large space of candidate models. In such cases, the
standard, iterative methods of bagging and boosting are not applicable due to the prohibitively
high computational costs. To apply them, we need to handcraft the library of domain knowl-
edge, omit modeling alternatives, and thus simplify the space of candidate model structures. In
addition to being more efficient, the proposed method most often leads to models with better
predictive performance as compared to the models obtained with the state-of-the-art ensemble
methods of bagging and boosting.

Second, it improves the predictive performance of the constructed ensembles, which mainly
contributes to the realm of ecological modeling. The results of the performed experimental evalu-
ation confirm our central hypothesis that ensembles constructed via sampling the library of
domain knowledge provide more accurate predictions of concentrations of species in an aquatic
ecosystems than a single process-based model. This is a significant improvement of predictive
performance over the state-of-the-art models of population dynamics, which, while focusing on
providing an accurate explanation of the behavior of the observed system, struggle to achieve a
satisfactory performance at predicting population dynamics over a long periods [4, 34]. Note that
these results are consistent over experiments with data from three real-world aquatic ecosystems:
Lake Bled in Slovenia, Lake Kasumigaura in Japan, and Lake Zurich in Switzerland.

While our comparative empirical study is limited to the domain of modeling population
dynamics, the proposed approach to learning ensembles of process-based models is general
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enough to be applied to any other domain and to any other type of models of dynamic systems.
To proceed with process-based modeling in other domains, one has to encode a library of
domain-specific modeling knowledge. Such knowledge is available for various domains includ-
ing epidemiology and modeling gene regulatory networks [47], net carbon production [48]
and protein interactions [49, 50]. Some of these applications of process-based modeling show
the applicability of the proposed approach to the very active fields of systems biology and bio-
informatics that deal with numerous system identification problems. The efficiency and predic-
tive performance of the library-sampling ensembles bears a promise for further applications,
since combining predictive models into ensembles has been proved to work well for various
computational biology problems [51–53].

We have identified several limitations of our approach that can be addressed in further
work. First, note that the experiments performed in this paper are limited to modeling popula-
tion dynamics in three lake ecosystems. We intend to investigate the generality of our approach
and extend the scope of learning ensembles of process-based models of population dynamics
to other aquatic environments, such as marine ecosystems [14] and river ecosystems [54].
Next, considering the understandability of these ensembles, we plan to follow ideas from [11]
and improve our methodology by incorporating understandable structure into the resulting
ensemble. Also, investigating the hypotheses about the source of the predictive performance
improvement in terms of bias-variance decomposition of the predictive error, requires careful
and extensive empirical analysis using the setup of Brown et al [44]. Finally, given the nature of
the ensembles of process-based models learned with library sampling and bagging (i.e., sam-
pling the feature space and sampling the data instances), and their superior performance over
the individual process-based model in a predictive setting, we intend to combine these two
methods. A study performed by Panov and Džeroski [27] indicates that combining two types
of homogeneous ensembles, i.e. bagging and RSM, can lead to ensembles with even better pre-
dictive performance compared to each of the methods separately, while still being very efficient
to construct.
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