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Abstract: Heterozygous mutations of the transcription factor PHOX2B are responsible for Congenital
Central Hypoventilation Syndrome, a neurological disorder characterized by inadequate respiratory
response to hypercapnia and life-threatening hypoventilation during sleep. Although no cure is
currently available, it was suggested that a potent progestin drug provides partial recovery of
chemoreflex response. Previous in vitro data show a direct molecular link between progestins and
PHOX2B expression. However, the mechanism through which these drugs ameliorate breathing
in vivo remains unknown. Here, we investigated the effects of chronic administration of the potent
progestin drug Etonogestrel (ETO) on respiratory function and transcriptional activity in adult female
rats. We assessed respiratory function with whole-body plethysmography and measured genomic
changes in brain regions important for respiratory control. Our results show that ETO reduced
metabolic activity, leading to an enhanced chemoreflex response and concurrent increased breathing
cycle variability at rest. Furthermore, ETO-treated brains showed reduced mRNA and protein
expression of PHOX2B and its target genes selectively in the dorsal vagal complex, while other areas
were unaffected. Histological analysis suggests that changes occurred in the solitary tract nucleus
(NTS). Thus, we propose that the NTS, rich in both progesterone receptors and PHOX2B, is a good
candidate for ETO-induced respiratory modulation.

Keywords: congenital central hypoventilation syndrome; chemoreflex response; breathing;
transcription; autonomic nervous system; progesterone

1. Introduction

Congenital central hypoventilation syndrome (CCHS) is a rare complex condition,
characterized by impaired chemosensitivity and autonomic disfunction, which is caused
by the genetic mutation of the transcription factor paired-like homeobox 2b
(PHOX2B) [1–4]. PHOX2B is essential for the development of several classes of autonomic
central and peripheral neurons [5–8]. While in many neurons its expression is reduced
or silenced during postnatal development, several brainstem neurons maintain PHOX2B
expression throughout life [9]. Among those are the neurons of the retrotrapezoid nucleus
(RTN), a key hub for central chemoreflex response [10], and the dorsal vagal complex
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(DVC), a relay structure for multiple visceral, respiratory, and metabolic functions [11,12],
including the nucleus of the solitary tract (NTS), the area postrema (AP) and the dorsal
nucleus of the vagus (X) [9].

A clinical feature of CCHS is sleep-related hypoventilation, with severe cases also
displaying hypoventilation during wakefulness [1,3,4], which has been suggested to be
the consequence of improper development or function of PHOX2B-expressing neurons in
the RTN [13,14], although other brain structures have been implicated from structural and
functional magnetic resonance imaging studies in CCHS patients [15,16].

Respiratory stimulants commonly used in other respiratory disorders have proven
ineffective in CCHS patients, and the only current options for maintaining ventilation (and
survival) during sleep are mechanical ventilation or diaphragm pacing [4,17,18]. Inter-
estingly, a serendipitous finding in two CCHS patients indicates potentiation of baseline
respiratory frequency, reduced end-tidal CO2 [19] and partial recovery of CO2 chemosensi-
tivity with the use of a potent progestin contraceptive, desogestrel [20].

Progesterone (PG) has been proposed to act as a respiratory stimulant [21,22], although
studies investigating PG and hormone replacement therapy to counteract breathing disor-
ders in menopausal women have produced mixed results [23–30]. Studies in experimental
models have identified multiple sites and mechanisms of action of progesterone, its metabo-
lites, and synthetic progestins due to the widespread expression of its receptors in the
brain [31–34]. Central and peripheral areas potentially involved in respiratory potentiation
by progestins are peripheral chemoreceptors in the carotid bodies, serotonergic neurons in
the raphe nuclei, the solitary tract nucleus, the ventral tegmental area, the hypoglossal nu-
cleus, the locus coeruleus, the parabrachial nucleus, and the hypothalamus [21,22,31,35–37].
Progestins may act through activation of both nuclear and membrane receptors to induce
changes in gene expression, or via modulation of GABAergic, glutamatergic, nicotinic,
serotonergic, and oxytocinergic receptors, in addition to modulation of various ion channels
(reviewed in [21,31]).

Prior in vivo and in vitro studies in perinatal rodents suggest that desogestrel and its
active metabolite, etonogestrel (3-ketodesogestrel; ETO) may have acute stimulatory effects
on respiratory frequency in vivo and on the response to metabolic acidosis in vitro [19],
possibly due to ETO stimulation of pontine and midbrain areas that are rich in PG receptors
(PGR), such as locus coeruleus, hypothalamus or periaqueductal gray [38], in addition to
the raphe nuclei [19].

Interestingly, both ETO and PG administration in neuroblastoma cell lines, expressing
both PHOX2B and nuclear PGR, induced a direct reduction in PHOX2B expression, as well
as reduced promoter activity of PHOX2B target genes [39]. In vitro and in vivo results, thus,
suggest a potential functional interaction between ETO-induced PGR activation, PHOX2B
expression and its transcriptional activity, and respiration.

The partial recovery of CO2 chemosensitivity with desogestrel in CCHS patients
and the in vitro stimulatory ETO effect in perinatal rodents prompted us to investigate
the effects of long-term systemic ETO administration in healthy adult female rats. We
hypothesized that ETO would stimulate breathing during ventilatory challenges and based
on cell culture studies, would induce changes in gene and protein targets expression that
are dependent on PGR activation in the brain.

In this study, we tested baseline breathing and the chemoreflex response, following
instrumentation of female rats with slices of Nexplanon® rods (Merck, MSD Corp, Kenil-
worth, NJ, USA) to continuously deliver ETO over a four-week period. At the end of the
treatment period, brain regions of interest were isolated, and protein and gene expression
was evaluated. Our results indicate that while long-term ETO administration does not
alter the absolute magnitude of chemoreflex responses, it results in a mismatch between
ventilation and metabolism, such that CO2-responsiveness is enhanced. We also noted
increased variability in the breath cycle period of ETO-treated rats, pointing to additional
changes to respiratory control. Furthermore, while expression of genes and proteins of
interest was not affected by ETO treatment in the hypothalamus, locus coeruleus and
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the parafacial region (including the RTN), we observed a reduction in gene and protein
expression of PHOX2B, PHOX2A and known PHOX2B target genes in the dorsal vagal
complex (DVC). Histological analysis verified that changes in PHOX2B expression occurred
specifically in the nucleus of the solitary tract.

2. Results

2.1. Etonogestrel Serum Levels in Nexplanon®-Instrumented Rats

In women, Nexplanon® treatment results in ~200–250 pg/mL ETO in the serum for a
3-year period [40,41]. In order to achieve comparable serum concentrations in our adult
female rats, we tested variable lengths of Nexplanon® rods in pilot studies and determined
ETO serum levels 4 weeks after instrumentation. We found that 1000 µm-thick Nexplanon®

rods resulted in 236.8 ± 50.0 pg/mL ETO (n = 5), while thinner rods produced serum levels
below our target (250 µm = 176.0 ± 39.2 pg/mL, n = 5; 500 µm = 175.3 ± 7.5 pg/mL, n = 4).
Thus, 1000 µm Nexplanon® rod lengths were used for the remainder of the study.

2.2. Etonogestrel Treatment Down-Regulates Phox2b Gene and Protein Expression in the Dorsal
Vagal Complex

Since ETO administration in neuroblastoma cell lines affects the PHOX2B pathway
through PGR activation [39], we investigated the cellular and molecular effects of ETO
treatment within selected regions of the brain: the dorsomedial hypothalamus (DMH),
locus coeruleus (LC), parafacial area (pF, including RTN and the facial nucleus, FN) and
the DVC (including the nucleus of the solitary tract, NTS, area postrema, AP, and dorsal
motor nucleus of the vagus, X). These regions were selected based on their central role in
respiratory chemoreception and, with the exception of DMH, on the expression of both
PHOX2B and PGR [37,42,43].

To evaluate changes in gene expression, qPCR analysis was performed on mRNA
isolated from these brain areas. No changes in Pgr mRNA expression between the control
and ETO-treated groups were observed in any of the areas investigated (Figure 1A). Quan-
tification of Phox2b mRNA showed that ETO treatment reduced Phox2b expression by 16.81
± 0.14% selectively in the DVC (t(15) = 2.923, p = 0.01, n = 9; Figure 1B). In contrast, the LC
and the pF were not affected, whereas DMH did not express Phox2b in either group, as
reported previously [9].

Western blot and densitometry analysis were also performed on the same tissue sam-
ples and confirmed significantly reduced PHOX2B protein levels in the DVC (39.01 ± 0.13%
decrease, t(6) = 3.464, p = 0.013, n = 3; Figure 1C). These results align with our previous find-
ings in neuroblastoma cell lines, in which ETO treatment dramatically reduced PHOX2B
protein levels, while PHOX2B mRNA levels were still reduced, but less affected [39].

To further verify this reduction, at both mRNA and protein levels, and to investigate
spatial localization within the DVC, we performed a semi-quantitative analysis of Phox2b
mRNA expression with in situ hybridization (RNAScope) and PHOX2B protein expression
with immunofluorescence staining (n = 5 rats per group). Representative images of the
staining in the three areas of the DVC are shown in Figure 2. No significant differences
were observed in the PHOX2B expression between SHAM and ETO-treated groups in the
neurons in the AP (F(1,10) = 0.939, p = 0.4; Figure 2D) and in ChAT−positive X motoneurons
(F(1,10) = 0.994, p = 0.46; Figure 2D), at different rostro-caudal levels of the medulla. Although
the semi-quantitative analysis of Phox2b mRNA did not show significant reduction in the
NTS neurons (−17.19 ± 0.32%, F(1,10) = 1.851 p = 0.09; Figure 2D, top), a reduction in
PHOX2B protein was observed (−52.81 ± 0.31%, F(1,10) = 4.842, p= 0.0003, Figure 2D,
bottom) across the rostro-caudal extension of the medulla.
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Figure 1. ETO reduces Phox2b mRNA and PHOX2B protein expression within DVC. (A,B) qPCR 
analysis of Pgr and Phox2b mRNA expression normalised to the endogenous standard Actb in naïve 
rats after 4 weeks ETO (black empty dots)/SHAM (red empty dots) treatment in DVC, pF, DMH and 

Figure 1. ETO reduces Phox2b mRNA and PHOX2B protein expression within DVC. (A,B) qPCR
analysis of Pgr and Phox2b mRNA expression normalised to the endogenous standard Actb in naïve
rats after 4 weeks ETO (black empty dots)/SHAM (red empty dots) treatment in DVC, pF, DMH
and LC brain regions. Data are expressed as 2−∆Ct and each data point represents one rat to show
between-sample variability: black horizontal lines correspond to the mean. (C) Representative
Western blot analysis and quantification of the effect of ETO on PHOX2B protein expression in the
same area. Left: 80 µg of protein extract from brain tissues from SHAM (ETO-) or treated (ETO+)
rats, were size fractionated by means of SDS-PAGE and transferred to a nitrocellulose membrane
and labelled for β-tubulin (TUB) and PHOX2B. Right: relative quantification of PHOX2B protein in
ETO-treated rats. Results are reported as mean values (± SD) normalised to that of TUB in at least
three independent experiments and are expressed as fold expression over SHAM rats (=1). * p < 0.05,
Significant difference between SHAM and ETO-treated rats were assessed by Student’s t-test in each
examined area.
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Figure 2. ETO reduces the expression of PHOX2B in NTS neurons. (A) Schematic and representative
images of transverse brainstem sections at the level of the AP (top, −13.47 mm distance from Bregma)
and the DVC (bottom, −13.50 mm distance from Bregma) showing the areas of interest illustrated in
(B,C). (B,C) Phox2b+ mRNA (red) and PHOX2B (blue) and ChAT protein (green) expression in AP
(B), NTS neurons and X motoneurons. (C) in SHAM (top) and ETO (bottom)-treated rats (magnified
view insert). Scale bar = 50 µm. (D) Quantification of Phox2b mRNA (top) and protein (bottom)
fluorescence staining intensity along the rostro-caudal extension of the AP, X and NTS in SHAM (red)
and ETO (black) -treated rats. Mean corrected total cell fluorescence (CTCF) value ± SEM calculated
from five different rats per group (see methods for details). Significant differences were observed in
PHOX2B protein expression in NTS neurons (repeated-measures ANOVA, *** p < 0.001).

These results suggest that ETO treatment resulted in down-regulation of the PHOX2B
protein in the DVC, particularly in the NTS region.

2.3. ETO Treatment Does Not Affect PHOX2B Expression in RTN CO2-Sensing Neurons

We further investigated whether ETO treatment altered the expression of PHOX2B in
RTN neurons of healthy female rats (Figure 3). Representative images of Phox2b+/Nmb+

RTN neurons used for the analysis are shown in Figure 3B. Consistent with our qPCR and
Western blot data in the larger pF area (Figure 1), no significant changes in the expression
of PHOX2B in Phox2b+/Nmb+ cells were observed, both at the mRNA and protein levels,
between SHAM- and ETO-treated rats (F(1,10) = 0.983, p = 0.48; Figure 3C). Interestingly, the
mRNA levels of both Gpr4 and TASK2, two key pH sensors in RTN chemoreception, did
not show significant changes between SHAM and ETO groups (Gpr4 t(20) = 1.495, p = 0.1505,
n = 10; TASK2: t(20) = 0.5942, p = 0.5591, n = 10). These results suggest that ETO does not
affect the expression of PHOX2B, and possibly neuronal activity through gene transcription
of its target genes within the pF area.
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Figure 3. ETO does not affect expression of PHOX2B in RTN neurons. (A) Schematic and representa-
tive image of a transverse brainstem section at the level of the RTN (−11.5 mm distance from Bregma)
showing. (B) RTN Phox2b+/Nmb+ neurons in SHAM (left) and ETO (right) rats (magnified view
insert). Scale bar = 50 µm. (C) Mean-corrected total cell fluorescence (CTCF) value ± SEM calculated
from five different rats per group (see methods for details) along the rostro-caudal extension of the
RTN. Mean CTCF value ± SEM combined from five different animals per group.

2.4. ETO-Mediated PHOX2B Down-Regulation in the NTS Results in Decreased Expression of
PHOX2B Target Genes

In order to further investigate the relationship between ETO treatment and PHOX2B
activity, we investigated whether reduced PHOX2B protein levels could, in turn, affect
the expression of known PHOX2B target genes: Phox2a, Tyrosine hydroxylase (Th) and
dopamine beta hydroxylase (Dbh) [44–47]. As in the case of Phox2b, a significant reduction
in Phox2a (−14.81 ± 0.13%, t(15) = 2.577, p = 0.02, n = 9), Th (−16.74 ± 0.15%, t(15) = 2.253,
p = 0.040, n = 9) and Dbh (−22.51 ± 0.19%, t(16) = 2.541 p = 0.022, n = 9) mRNA levels
were observed in ETO-treated rats in comparison to SHAM rats at the level of the DVC
(Figure 4A). Of note, no significant changes were observed in the other areas considered,
thus, supporting the direct effect of ETO on PHOX2B expression and its transcriptional
activity, specifically at the level of DVC.

The reduction in TH expression was also confirmed at the protein level (30.45 ± 0.02%
t(4) = 15.53, p = 0.0001 n = 3; Figure 4B) in DVC, although we were unable to confirm
the reduction in PHOX2A and DBH due to the low sensitivity of the antibodies used. In
conclusion, our findings demonstrate that ETO directly affects PHOX2B and its target genes
by reducing their expression, specifically within the DVC.
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clusion, our findings demonstrate that ETO directly affects PHOX2B and its target genes 
by reducing their expression, specifically within the DVC. 

2.5. ETO Treatment Does Not Alter Baseline Breathing or Respiratory Response to Chemoreflex 
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Based on the observed ETO-induced changes in gene and protein expression in the 
DVC, a major respiratory control centre, we questioned whether respiratory behaviour 
was altered in freely behaving ETO-treated rats. When rats were tested inside a whole-
body plethysmograph in room air (i.e., resting conditions, n = 9 rats per group), there was 
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Figure 4. ETO reduces the expression of PHOX2B target genes in DVC. (A) qPCR analysis of Phox2a,
Th and Dbh mRNA expression normalised to the endogenous standard Actb after 4 weeks ETO (black
empty dots)/SHAM (red empty dots) treatment in the brain regions of interest. Data are expressed
as 2−∆Ct and each data point represents one rat measurement; black horizontal lines correspond to
the mean values. (B) Representative Western blot analysis and quantification of the effect of ETO on
TH protein expression. Left: expression of TH and TUB in NTS, pF, DMH and LC in SHAM (ETO-)
treated (ETO+) rats. Right: TH protein expression quantification relative to TUB in ETO-treated
samples (black bars) relative to SHAM (mean values ± SD)., Significant differences in Phox2a, Th
and Dbh mRNA expression and TH protein expression between SHAM and ETO-treated rats were
observed only in DVC area (* p < 0.05 and *** p < 0.001, Student’s t-test).

2.5. ETO Treatment Does Not Alter Baseline Breathing or Respiratory Response to
Chemoreflex Activation

Based on the observed ETO-induced changes in gene and protein expression in the
DVC, a major respiratory control centre, we questioned whether respiratory behaviour was
altered in freely behaving ETO-treated rats. When rats were tested inside a whole-body
plethysmograph in room air (i.e., resting conditions, n = 9 rats per group), there was no
effect of surgery or ETO-treatment on the tidal volume (TV), respiratory frequency (f ), or

allometric minute ventilation (
•
VE ALLO) during room air recordings (Figure 5A).

Hypercapnia produced dose-dependent increases in TV (5% CO2: 38 ± 19%, 7%
CO2: 82 ± 17%; p < 0.01, Bonferroni) and f (5%: 63 ± 10%, 7%: 94 ± 17%; p < 0.05;
Bonferroni) in pre-surgical recordings of ETO rats (ETO_Day 0). This led to an increased
•
VE ALLO of 127 ± 38% in 5% CO2 and 257 ± 54% in 7% CO2, as compared to restful
breathing (p < 0.001, Bonferroni; Figure 5A). Similar relationships were observed in ETO
rats 28-days post-surgery (vs. corresponding pre-surgery value: p = 1.0, Bonferroni). No

significant differences in TV, f or
•
VE were observed between SHAM and ETO-treated rats

(TV; F(1,16) = 0.788, p = 0.39; f : F(1,16) = 1.38, p = 0.26;
•
VE ALLO: F(1,16) = 2.17, p = 0.16).
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Figure 5. Etonogestrel (ETO) enhances the convective requirement ratio during hypercapnia.

(A) Tidal volume (TV), breathing frequency (f ) and allometric ventilation (
•
VE ALLO) showed expected

increases during chemoreflex activation. ETO did not alter respiratory responses when measured
under resting conditions or chemoreflex activation. However, hypoxia-induced TV was blunted and f
increased in both treatment groups post-surgery. (B) Rats treated with ETO for 28 days gained more
weight vs. SHAM but resting body temperature was unchanged. (C–F) Metabolic measurements

of O2 and CO2 production (
•
VO2,

•
VCO2) and expressed as a function of

•
VE (

•
VE/

•
VO2,

•
VE/

•
VCO2).

Data were analysed during room air (left panels; absolute data) hypercapnia (middle panel, absolute
change from room air) and hypoxia (right panel, absolute change from room air). Chemoreflex

activation led to expected increases in
•
VE/

•
VO2 and

•
VE/

•
VCO2 compared to resting conditions. ETO

treatment was significantly increased for resting
•
VO2,

•
VCO2 and the hypercapnic response, but

not the hypoxic response. * Different from corresponding baseline; † different from corresponding
pre-surgery value; ‡ different from SHAM; § different from 5% CO2; p < 0.05.
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Hypoxia increased steady state TV (17 ± 11%, p = 0.03, Bonferroni), f (124 ± 30%,

p < 0.001, Bonferroni) and
•
VE ALLO (161 ± 41%, p < 0.001, Bonferroni) in ETO rat pre-

surgical recordings (Day 0, Figure 5A). Similar respiratory responses during chemore-
flex stimulation were observed pre-surgery in the SHAM cohort (treatment effect: Tv;

F(1,15) = 0.36, p = 0.56; f : F(1,15) = 0.57, p = 0.46;
•
VE ALLO: F(1,15) = 1.37, p = 0.26). The venti-

latory pattern response to hypoxia was altered in both SHAM and ETO groups 28-days
post-surgery: hypoxia-induced increases in TV were blunted (p = 0.013, Bonferroni) while f

response was enhanced (p = 0.024, Bonferroni). However,
•
VE ALLO was unaffected (p = 1.0,

Bonferroni).

2.6. ETO Enhances Alveolar Hyperventilation during High CO2

Body weight and resting body temperatures were similar between treatment groups
prior to surgery (ETO: 309 ± 25 g, 37.4 ± 0.5 ◦C; SHAM: 324 ± 36 g, 37.1 ± 0.3 ◦C). Etono-
gestrel treatment led to significantly more weight gain as compared to SHAM rats (p = 0.008),
while resting body temperature was unchanged (p = 0.055; Figure 5B). Since female sex hor-
mone supplementation is associated with weight gain and lower metabolism [48], we next
determined if ETO treatment affected metabolism and ventilatory–metabolic relationships
in our rat model using pull-mode indirect calorimetry.

During room air, oxygen consumption (
•
VO2) was reduced in both treatment groups

28-days post-surgery (F(1,16) = 11.96, p = 0.003) and this effect was more important in
the ETO-treated group compared to SHAM rats (treatment effect: F(1,16) = 5.64, p = 0.03;

Figure 5C). Analysis of the oxygen convective requirement ratio shows that
•
Ve/

•
VO2

was increased following 28 days of ETO treatment (41 ± 28%; p < 0.001, Bonferroni;
Figure 5D) because of the reduction in O2 consumption relative to ventilation. Carbon
dioxide production was also reduced in ETO rats relative to pre-surgical (Day 0) baseline
(p < 0.001, Bonferroni) and was different from post-surgical SHAM (p = 0.043, Bonferroni;

Figure 5E). Treatment with ETO increased
•
Ve/

•
VCO2 28-days post-surgery (40 ± 25%;

p < 0.001, Bonferroni; Figure 5F). These data suggest reduced metabolism relative to
ventilation in both treatment groups at 28-days post-surgery and may result from increased
body mass, particularly in ETO-treated rats.

In terms of chemoreflex responses, the absolute change in hypercapnia vs. room

air for
•
VO2 measured at 28 days was increased compared to day 0, in both SHAM and

ETO-treated rats (p = 0.04, Bonferroni). The absolute change vs. room air for
•
VCO2 was not

affected by hypercapnia exposure in either treatment group. As expected, both
•
Ve/

•
VO2

and
•
Ve/

•
VCO2 of ETO- and SHAM-treated rats increased during 5 and 7% CO2 exposure

(Figure 5D,F). The
•
Ve/

•
VO2 and

•
Ve/

•
VCO2 during 7% CO2 were greater than those of

5% CO2 for both groups (p ≤ 0.01, Bonferroni). Interestingly, ETO treatment significantly

increased
•
Ve/

•
VCO2 during 7% CO2, as compared to both pre-surgery (pre: ∆81 ± 27;

post: ∆115 ± 36; p < 0.001, Bonferroni) and SHAM rats (SHAM post: ∆77 ± 18; p = 0.009,

Bonferroni). The increased
•
Ve/

•
VCO2 during 7% CO2 observed for ETO-treated rats may be

ascribed to the significantly decreased room air
•
VCO2 for this group (Figure 5E), combined

with further decreases in absolute
•
VCO2 in 7% CO2 at day 28 vs. day 0 (p = 0.01, Bonferroni,

absolute
•
VCO2 day 0 = 19.1 ± 4.7; day 28 = 12.9 ± 6.5) and slightly increased minute

ventilation. These data suggest that ETO treatment enhances the hyperventilatory response
to high CO2.

Hypoxia did not change
•
VO2 or

•
VCO2, as compared to baseline; however,

•
Ve/

•
VO2

and
•
Ve/

•
VCO2 were increased relative to room air, indicating expected increases in ven-

tilation. No significant differences in metabolic measurements were observed between
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ETO-treated rats and SHAM controls in hypoxia (
•
Ve/

•
VO2: F(1,13) = 1.32, p = 0.27;

•
Ve/

•
VCO2:

F(1,13) = 1.41, p = 0.26).

2.7. ETO Increases Inter-Breath Variability

Changes in the convective requirement ratio,
•
Ve/

•
VCO2, noted for room air and

7% CO2 conditions in response to ETO treatment may indicate enhanced excitability or
instability in the underlying respiratory control networks [49]. To test this concept, we
measured breath cycle period (inspiration to subsequent inspiration) during room air
breathing and constructed Poincaré plots to visualize respiratory variability. These plots,
shown in Figure 6, illustrate that the 4-week ETO treatment enhanced the inter-cycle
variability, primarily by increasing the incidence of shortened cycles (i.e., data points closer
to the origin). These data were quantified as standard metrics: SD1, SD2, SD1/SD2 and
area, which define an ellipse representative of inter-cycle variability (standard deviation).
Treatment with ETO increased SD2 (pre- vs. post-surgery p = 0.004; vs. SHAM p = 0.028,
Bonferroni) and Area (pre- vs. post-surgery p = 0.003; vs. SHAM p = 0.021, Bonferroni;
Table 1).
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treatment (B) red. Inset, ellipses fit to the data based on measures of SD1 and SD2 (see methods and
Table 1).
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Table 1. Poincaré analysis of breath cycle period variability between ETO-treated rats and SHAM
controls. Standard deviation (SD1, SD2) calculated for each rat defines two axes an ellipse fitted
to the dataset. Values are expressed as mean ± SD. Statistical significance (*) indicates p < 0.05 for
Bonferroni post hoc test.

SHAM ETO

Poincaré
Analysis Pre-Surgery 4 Weeks Pre-Surgery 4 Weeks p-Value

SD1 0.085 ± 0.022 0.086 ± 0.019 0.086 ± 0.016 0.101 ± 0.019
Pre-post p = 0.129

Interaction p = 0.178
Treatment p = 0.305

SD2 0.149 ± 0.026 0.152 ± 0.034 0.151 ± 0.024 0.196 ± 0.043
Pre-post p = 0.022 *

Interaction p = 0.038 *
Treatment p = 0.080

SD1/SD2 0.569 ± 0.098 0.579 ± 0.132 0.579 ± 0.109 0.531 ± 0.113
Pre-post p = 0.547

Interaction p = 0.359
Treatment p = 0.671

Area 0.041 ± 0.017 0.042 ± 0.016 0.041 ± 0.012 0.063 ± 0.019
Pre-post p = 0.019 *

Interaction p = 0.028 *
Treatment p = 0.110

3. Discussion

This study investigated whether cellular and functional changes in respiratory control
occur following administration of a potent progestin contraceptive drug, ETO. Because
of the serendipitous observation that desogestrel improves ventilatory function in CCHS
patients [19,20] and the respiratory potentiation observed in neonatal rodents following
acute administration [19,38,50], we sought to investigate whether the active metabolite of
desogestrel, ETO, may also have an effect on ventilation or gene expression in respiratory
control areas, following chronic administration in adult female healthy rats. In our study,
we chose to deliver ETO through a body-weight-appropriate Nexplanon® rod section to
obtain continuous ETO serum levels comparable to the ones reported in women using
Nexplanon rods for contraceptive purposes [41] and avoid daily injections that could
result in stress for the animals. We opted not to use an ovariectomized rat model because
our objective was to assess whether ETO supplementation was effective compared to
physiological, rather than hormonally impaired, conditions.

While ETO administration did not significantly affect Tv, f and
•
Ve ALLO during

baseline breathing, and hypoxic and hypercapnic chemoreflex responses in healthy female
rats, the same ETO dose induced changes in metabolism (with consequent increased
hyperventilatory response in hypercapnia), increased respiratory variability, and reduced
gene and protein expression levels of PHOX2B and some of its target genes in the NTS, an
important relay structure in cardiorespiratory and metabolic function.

ETO is a potent progestin of the gonane family, with a 25-fold greater affinity to PGRs
than progesterone itself [32,40,51]. The biological effects are associated with genomic and
non-genomic actions through PGRs, in addition to modulation of other neurotransmitters
and channels in the brain [31,32,39,51,52]. Interestingly, recent work from our group has
shown that in vitro, ETO down-regulates PHOX2B expression and its transcriptional activ-
ity. Specifically, ETO reduces the expression level of PHOX2B and its known target genes
(T-cell leukaemia homeobox 2 and DBH) in neuroblastoma cell lines through activation of
the nuclear PGR [39]. We, therefore, investigated whether this effect could also be observed
in vivo, and we analysed different brain areas that are known to express PHOX2B and PGR
and have a role in respiratory control. While ETO did not affect overall expression of PGR
in any of the brain areas investigated, we observed a significant reduction in both mRNA
and protein levels within the DVC. This reduction also affected known PHOX2B target
genes that are present in this area, Phox2a, Th and Dbh [44,46,53]. Histological analysis
verified that within the DVC dissected area, neurons in the AP and X were not apparently



Int. J. Mol. Sci. 2022, 23, 4816 12 of 21

affected, but neurons in the NTS displayed a significant reduction in PHOX2B protein level.
Surprisingly, the PHOX2B levels in the parafacial region, specifically in the Nmb/Phox2b
-expressing neurons of the RTN, were not affected by the ETO treatment, an effect that may
be explained by low levels of PGRs detected in these neurons.

The effects of progesterone and its synthetic derivatives on ventilation have been
previously investigated, with various outcomes, depending on models used, dose, mode
of administration, and sites of action [22,54–60]. Overall, there is general agreement that
progesterone and its analogues act on various areas of the brain to potentiate ventilation,
although the mechanistic details of these effects need further investigation [51,61].

The specific effects of ETO on breathing have been explored in neonatal
rodents [19,38,50] and an increased respiratory frequency was observed in vivo and in vitro,
possibly acting through modulation of GABAergic, glutamatergic and serotoninergic neu-
rotransmission [19]. Furthermore, acute ETO administration in newborn rodents enhanced
ventilation in vitro and ex vivo under metabolic acidosis and this effect was attributed to
activation of supramedullary structures [38], possibly orexinergic neurons [50].

In contrast to perinatal data, we failed to observe any change in f and
•
VE ALLO in

normoxia, hypoxia or hypercapnia in female rats chronically treated with ETO, although
changes in respiratory variability were observed in normoxia. The differences in baseline
breathing or chemoreflex response compared to previous studies may be due to different
delivery methods, higher hormonal levels in mature rats compared to new-borns [62],
different species, developmental changes in PGR expression [63–65], or distinct mechanisms
of actions of ETO through development [22,66]. However, ventilatory effort at rest and
during chemoreflex activation is driven, in part, by metabolic rates [67] and our data show
that significant weight gain by ETO-treated rats was concurrent with reduced metabolism

at rest (decreased
•
VO2 and

•
VCO2). Interestingly, ETO treatment increased the convective

requirement ratio during 7% CO2, suggesting a “mismatch” in respiratory control, whereby
ventilatory effort was higher than predicted by metabolic rates [67]. Enhanced convective
requirement ratios have been conceptualized by applying the concept of “loop-gain” to
the sensitivity and efficiency of the neural, pulmonary and circulatory components of
respiratory control to changing blood gases [49]. Based on our data, we propose that chronic
ETO treatment enhances chemoreflex responsiveness to high CO2 (i.e., increased controller
gain). While we cannot rule out changes in pulmonary or circulatory efficiency, the fact
that ETO treatment enhanced responsiveness to high CO2, and not hypoxia, suggests
changes specific to neural pathways governing the hypercapnic chemoreflex. Given that
enhanced CO2 chemoreflex is associated with respiratory instability (such as periodic
breathing [49,68]) and that blood CO2 (PCO2) plays a role in restful breathing [69], our
data demonstrating increased breath cycle variability during room air in ETO-treated
rats supports enhanced gain of the respiratory neural networks involved in CO2 sensing
and integration.

Our molecular results in the NTS are particularly interesting, as this area has an im-
portant role in relaying multiple autonomic functions and integration of chemosensory
stimuli [11,12], some of which are altered in CCHS pathology [70]. Although we cannot, at
present, conclude that changes in expression of PHOX2B and its target genes in the NTS
are responsible for the observed respiratory effects, these results raise the possibility that
the NTS is the possible site of action of desogestrel in CCHS patients’ recovery [19,20].
Indeed, the NTS was originally proposed as a key site responsible for progesterone-induced
ventilatory potentiation [56,57]. It is possible that the stimulatory effects of progesterone
and its synthetic derivatives in the NTS may become apparent following downstream tran-
scriptional changes of target genes, such as Phox2b and Phox2a, as shown here, or through
yet-unidentified pathways. Since the functional and transcriptional role of PHOX2B on
cellular function in these NTS neurons is unknown, it will be an important step forward to
understand what role PHOX2B may have on the respiratory relay network, beyond its key
role in the development of the autonomic nervous system and the NTS. Interestingly, recent
work shows that PHOX2B neurons in the NTS are chemosensitive and partial lesioning of
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PHOX2B NTS neurons reduces the chemoreflex response [71,72], while their stimulation
potentiates breathing [72], suggesting that these neurons may potentially contribute to
chemoreflex responses in physiological conditions or in the absence of a functional RTN.

It is well known that CCHS is caused by mutations in the PHOX2B gene, resulting in
aberrant protein production [73–76], although the exact pathogenetic role of the PHOX2B
mutant protein is still unclear. Many mechanisms have been proposed for the insurgence
of CCHS, among which haploinsufficiency is one [77]. However, respiratory defects may
also depend on the gained toxic function by mutant proteins [74,78,79]. Given the role
of PHOX2B as a fundamental transcriptional regulator, it is reasonable to assume that
transcriptional dysregulation, resulting in abnormal expression of target genes, may be
an important pathogenetic mechanism. Given the ETO-induced changes observed in the
NTS, it will be important to investigate what is the transcriptional role of PHOX2B in these
neurons and whether the down-regulation of PHOX2B protein expression may affect the
expression of altered molecular targets in pathological conditions.

4. Materials and Methods
4.1. Experimental Animals

Experiments were performed using female Sprague–Dawley rats (age 10–20 weeks,
mean ± SD: 14 ± 2 weeks) bred born to pregnant dams obtained from Charles River and
housed at the University of Alberta Health Sciences Animal Housing Facility to (Senneville,
QC). Animals were maintained on a 12-h dark/light cycle and received food and wa-
ter ad libitum. All handling and experimental procedures were approved by the Health
Science Animal Policy and Welfare Committee at the University of Alberta (AUP#461)
and performed in accordance with guidelines established by the Canadian Council on
Animal Care.

4.2. Determination of Oestrous Cycle

Vaginal smears by lavage were obtained daily to monitor changes in vaginal cytology
resulting from fluctuations in circulating hormones over the oestrous cycle. Smears were
obtained using a plastic pipette filled with ~100 µL distilled water and examined under a
light microscope (Zeiss, Primo Star, Jena, Germany). Proestrus was defined by the disap-
pearance of leukocytes from the preceding day with a dominance of nucleated epithelial
cells either appearing in clumps or with mucous, as described by [80]. Only rats exhibiting
regular oestrous cycles of 4–5 days were utilized in experiments.

4.3. Surgical Implantation of Nexplanon®

Nexplanon® rods (MERCK, Kenilworth, NJ, USA) were implanted subcutaneously
to deliver Etonogestrel (ETO). In an initial pilot study, 14 female rats (200–250 g) were
implanted with either 250, 500 or 1000 µm long sections of Nexplanon® rods to determine
the appropriate length to achieve comparable ETO serum levels as observed in women
instrumented with Nexplanon® rods for contraception (~200 pg/mL [40,41]). Analysis
determined that 1000-µm length of Nexplanon® rod resulted in the desired serum levels
and was used in all subsequent experimental rats. Briefly, rats were pre-treated with
1.5 mg/kg Metacam analgesic and anesthetised with isoflurane (3% in 21% O2; via nose
cone) and a 0.5 cm skin incision was made below the shoulder blades (using aseptic
techniques) to permit implantation of the Nexplanon® rod (1000 µm; SHAM rats received
the same surgical procedures but no implant). Bupivacaine (0.1 mL, s.c.) was administered
post-surgically. Four weeks following implantation, rats were anesthetized with urethane
(1.5 g/kg, i.p.) and ~2 to 2.5 mL blood samples were collected intracardially. After 30 min
at room temperature, samples were centrifuged at 2000× g (15 min) and the serum stored
at −20 ◦C. Serum ETO concentration was determined by liquid–liquid extraction methods
performed by Q2 lab solution (Q2 Solutions, New York, NY, USA). Both serum and the
internal standards underwent reverse phase high-performance liquid chromatography and
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tandem mass spectrometric detection (SCIEX, API6500, Framingham, MA, USA) utilizing a
turbo ion spray interface in the positive ion mode.

4.4. Data Acquisition and Analysis of Respiratory Measurements

Rats were habituated to the whole-body plethysmography chambers (Buxco, 5 L) on
two occasions (~1.5 h) 3–4 days before baseline recordings. On the day of the experiment,
rats were placed in the chamber and testing commenced once the animals were quiet but
awake (30 min–1 h). Various gas mixtures were produced by a GSM−3 (CWE Inc., Ardmore,
PA, USA) and delivered continuously at 1.5 L/min. Ventilatory reflexes were measured
during exposure to 5% and 7% CO2, and 10% O2 (8–15 min). Oxygen consumption and CO2
production were determined by recording the% composition of gasses flowing into, and
out of, the recording chamber (Respiratory Gas Analyzer, AD Instruments). Estrous testing
conducted post-experimentally in ETO-treated rats verified a drug-induced cessation of
oestrous cycling, resulting in maintenance of the dioestrus and/or proestrus stages. SHAM
rats were recorded only in the proestrus stage to limit confounding effects of cycling sex
hormones on breathing.

Respiratory data were analyzed from rats during quiet wakefulness in the last 5 min
period of each gas composition. We used the barometric method (open-flow system)
described by [81,82]. Briefly, raw pressure signals were recorded by a Validyne differen-
tial pressure transducer connected to a CD15 carrier demodulator (Validyne Engineering,
Northridge, CA, USA) and digitized using a Powerlab 8/35 (AD Instruments, Sydney,
Australia). Analysis was done in LabChart 8 (v8.1.19, AD Instruments, Colorado Springs,
CO, USA) using the Blood Pressure module to derive tidal volume (TV) and breathing
frequency (f, breaths·min−1). The amplitude of the pressure signal was converted to TV
(ml·kg−1) using the equations of [83] and calibrated against 1 mL of dry air injected into
the empty chamber using a rodent ventilator (f = 50, 75, 100, 150 beats·min−1). Chamber
temperature and humidity were continuously monitored using a RH-300 water vapour
analyzer (Sable Systems, Las Vegas, NV, USA) plus HPR Plus Handheld PIT Tag reader
(Biomark, Boise, ID, USA) or digital thermometer/hygrometer sensor (Wifehelper), de-
pending on the setup configuration. Rectal temperature was read using a Homeothermic
Monitor with Probe (507222F, Harvard Apparatus, Holliston, MA, USA). Minute ventila-

tion (
•
VE) was calculated as f × TV and expressed as ml·min−1·kg−1, and allometrically

corrected for weight gain according to [67] resulting in the parameter,
•
VE ALLO. Metabolic

parameters
•
VO2,

•
VCO2,

•
VE/

•
VO2 and

•
VE/

•
VCO2 were calculated by pull-mode indirect

calorimetry [67]. Briefly, the composition of dry gas flowing into, and out of, the recording
chamber was measured by using an AD Instruments Gas Analyzer (Colorado Springs, CO,
USA) and applying the equations of [84,85]. Metabolic measurements were corrected to
standard temperature and pressure (STPD). Breath cycle period was measured between
the start of inspiration to the subsequent inspiration using the peak analysis feature in
Labchart 8 applied to 10 min of room air data. Quantification of Poincaré plot data was
performed using equations defined by [86,87]. Briefly, standard deviation calculated from
the dataset defines the width (SD1) and length (SD2) of a fitted ellipse (Figure 6A, inset).
Area is calculated as π × SD1 × SD2. Data were analysed using SPSS (13.0) to perform
a student’s t-test (weight gain) or Mann–Whitney test (body temperature; Figure 5B) or
repeated-measures ANOVA with Bonferroni post-hoc (Figures 5A,C–F and 6).

4.5. Tissue Collection and Thionine Staining

Rats were anesthetized with 3% isoflurane (nose cone) and blood samples collected in-
tracardially and the serum stored at −80 ◦C until further use. Under isoflurane anaesthesia,
rats were then decapitated, and the brain was quickly removed and placed on an ice-cold
tissue chopper (Mc Ilwain Tissue Chopper). The brain was sliced into 1–2 mm sections and
regions of interest were collected using a 2 mm diameter tissue punch according to gross
anatomical coordinates: medial hypothalamus (MH; 2 mm section taken 2 mm caudal to
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anterior commissure, posterior; either side of 3rd ventricle), locus coeruleus (LC; 1 mm
section taken 1 mm caudal to the aqueduct end; left and right sides of 4th ventricle). The
parafacial region (PF), including the retrotrapezoid nucleus and midline structures, was
collected as the 1 mm ventral margin of the brainstem in a 1–1.5 mm slice caudal to the one
used for LC. The dorsal vagal complex (DVC), including NTS, AP and X, was collected
from the dorsomedial brainstem in a 2-mm thick section collected around the obex. Fresh
resected tissues were immediately frozen in dry ice and stored at −80 ◦C for RNA and
protein extraction.

To confirm the anatomical boundaries and reduce the variability among samples, the
leftover tissues were processed for thionin counterstaining. After dissection, tissue was
fixed in PFA, cryoprotected in 30% sucrose and frozen in Tissue-Tek O.C.T compound at
−80 ◦C, and sectioned on a cryostat (MODEL CM1950, Leica Biosystems, Buffalo grove,
IL). Fifty µm thick brain sections were washed in phosphate buffer saline (1X PBS: 11.9 mM
phosphates, 137 mM sodium chloride, 2.7 mM potassium chloride), mounted sequentially
on microscope slides, and dried overnight. Slides were then rehydrated in increasingly
graded ethanol and reacted with thionin for 30 s, dehydrated, and coverslipped with
CytoSeal 60 mounting medium (Electron Microscopy Sciences) and observed under Zeiss
Primo Star binocular microscope.

4.6. Total RNA and Protein Extraction

The total RNA and proteins were isolated from the same tissue simultaneously. Tissue
samples were thawed, disrupted and homogenised in QIAzol Lysis Reagent (Qiagen). After
the addition of chloroform, the homogenate was separated into aqueous and organic phases
by centrifugation (6000× g). The RNA in the upper phase was collected and purified using
the RNeasy Mini kit Qiagen), according to the manufacturer’s instructions.

Proteins in the lower organic phase were precipitated by adding 4 volumes of ice-cold
acetone and incubated for 30 min on ice. After centrifugation at 1200× g, the pellet was
washed with ice-cold ethanol and protein samples from three rats were pooled together.
Finally, pooled proteins were resuspended in sodium dodecyl sulphate (SDS) buffer and
stored at −80 ◦C; the total protein concentration was evaluated using BCA Protein Assay
(Thermo-Fisher Scientific, Waltham, MA, USA).

4.7. Reverse Transcription and qPCR

To study the effect of ETO on Phox2b and its target genes mRNA expression level,
one µg of RNA was reverse transcribed using the GoScript™ Reverse Transcriptase kit
(Promega, Madison, WI, USA) according to the manufacturer’s instruction manual, and the
cDNAs of interest were then amplified and quantitatively analysed using a StepOnePlus™
Real-Time PCR System (Thermo-Fisher Scientific, Waltham, MA, USA). The TaqMan®

primer and probe assays (Life Technologies, Inc.) used in the study were the follow-
ing: rat Phox2b (ID #Rn01413076_mH), rat Phox2a (ID #Rn00587898_m1), rat Pgr (ID
#Rn01448227_m1), rat Th(ID #Rn00562500_m1), rat Dbh (ID #Rn00565819_m1) and the en-
dogenous control rat Actb (ID #Rn00667869_m1). Each sample was run in duplicate, and the
results were calculated using the 2−∆Ct and the 2−∆∆Ct methods to allow for normalization
of each sample to Actb [88]. Results are shown as relative expression ± SD, and statistical
analysis was performed to assess differences, within each brain area, between SHAM
and ETO groups (unpaired two-tail student’s t-test) using GraphPad Prism 5 Software
(GraphPad Software, Inc., San Diego, CA, USA). p values < 0.05 were considered significant.

4.8. Western Blot Analyses

In order to evaluate the effect of ETO on PHOX2B and its target gene protein levels,
80 µg of protein extract from the areas of interest was analysed by means of Western
blot as previously described [89]. Protein extracts were separated on a 10% denaturing
polyacrylamide gel in the presence of 0.1% SDS extract. A standard molecular weight
(Precision Plus Protein™ Standards Bio-Rad) was loaded in parallel to assess protein
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molecular weights. After gel separation at 80 V in Tris-glycine (Trizma base 25 mM, Glycine
192 mM, SDS 0.1%), the proteins were transferred to nitrocellulose membranes (Amersham)
by electroblotting at 110 mA 90 min in transfer buffer (Trizma base 25 mM, Glycine 192 mM,
MetOH 20%). The membrane was then washed with distilled H2O, saturated with blocking
buffer (non-fat milk 5%, Tris-HCl pH 7.5 20 mM, NaCl 150 mM, Tween®20 0.1%) for at least
1 h and incubated over night at 4 ◦C with the appropriate antibody diluted in blocking
buffer. The primary antibodies used in the study were: polyclonal rabbit anti-PHOX2B
(1:500 Novus Biologicals), monoclonal rabbit anti-beta Tubulin SR25-04 (1:1000; Novus
Biologicals) and polyclonal anti-TH (1:1000; Millipore Sigma). On the following day, the
membrane was washed in blocking buffer (3 × 5 min), incubated with the secondary
antibody, and diluted in blocking solution for 1 h. The excess antibody was then removed
by multiple washes with blocking buffer; TS 1X buffer (Tris-HCl pH 7.520 mM, NaCl
150 mM) + Tween®20 0.1%; three washes in TS 1X + Tween®20 0.3% and three final washes
in TS 1X. Primary antibodies were revealed by infrared-conjugated anti-rabbit IgG IRDye®

(800CW, Abcam, Cambridge, UK) and scanned with the Odyssey Infrared Imaging System
(LI-COR Biosciences, Lincoln, NE, USA). Densitometric analysis of the obtained signals
was carried out using Image Studio software (LI-COR Biosciences, Lincoln, NE, USA),
and the results are shown as the mean ± SD of at least three independent experiments.
Statistical analysis was performed to assess differences, within each brain area, between
SHAM and ETO groups (two-tailed student’s t-test; GraphPad Prism 5). p values of < 0.05
were considered significant.

4.9. In Situ Hybridization (RNAScope) and Immunofluorescence

Following the plethysmography recordings (4-weeks post-Nexplanon implantation),
rats were transcardially perfused in 4% paraformaldehyde (PFA) and the brains were post-
fixed in 4% PFA and cryoprotected in 30% sucrose in 1× PBS frozen in O.C.T and sectioned
on a cryostat (MODEL CM1950, Leica Biosystems, Buffalo Grove, IL, USA). Thirty µm thick
sections were mounted on slides for combined RNAScope® in situ hybridization (Advanced
Cell Diagnositcs-ACD Bio, Newark, CA, USA) and immunofluorescence detection to
quantify Phox2b mRNA and protein expression within the RTN and the DVC according to
our previous protocols [90]. In order to reduce inter-animal variability in our results, the
experiments were performed concurrently on all tissue sections by an investigator blinded
to the animal group.

For the RNAScope assay, slides were processed as detailed in [90] and incubated
with probes for Phox2b (Rn-Phox2b-O1-C1 #1064121-C1, ACDBio, Newark, CA, USA) and
Nmb (RN-NMB-C2 #494791-C2, ACDBio) for 2 h at 40 ◦C. In parallel, two sections/rat
were treated with positive (low-copy housekeeping gene) and negative (non-specific bac-
terial gene) control probes provided by ACDBio. Finally, slides were processed using the
RNAScope Multiplex Fluorescent Assay kit V2 (ACDBio) according to the manufacturer’s
instructions. Phox2b and Nmb probes were visualized using Opal 570 and Opal 690 reagent,
respectively (1:1000; PerkinElmer, Woodbridge, ON, USA).

Immediately following the RNAScope assay, immunofluorescence staining was per-
formed using commercial mouse monoclonal antibody against PHOX2B (B-11: sc-376997,
1:100, Santa Cruz Biotechnology, Dallas, TX, USA) and the goat polyclonal antibody against
ChAT (1:500; #AB144P, EMD Millipore, Burlington, MA, USA) followed by the secondary
antibodies as follows: donkey CY5-conjugated anti-mouse IgG and donkey Cy2-conjugated
donkey anti-goat IgG (1:200; Jackson Immuno Research Laboratories Inc., West Grove, PA,
USA). Slides were then cover-slipped with Fluorosave mounting media (EMD Millipore,
Burlington, MA, USA) and fluorescence labelling was observed and acquired under a Leica
TCS SP8 Laser Scanning Confocal microscope (Concord, ON, USA).

4.10. Histological Analysis and Quantification

For quantification of Pho2xb mRNA and protein expression in serial section, the
opening of the central canal was set as our reference point (−13.50 mm from Bregma
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according to the Paxinos atlas coordinates [91]). To identify and quantify the expression of
Phox2b in RTN neurons, we analysed one every nine sections (240 µm interval) in 1 mm
caudo-rostral distribution from the opening of the central canal and encompassing the facial
motor nucleus. The mRNA expression for Nmb was used as marker of RTN CO2-sensing
neurons [92]. To investigate Phox2b expression within the DVC we selected 4 sections
surrounding the opening of the central canal (i.e., −14.22 µm, −13.74 µm, −13.50 µm,
−13.26 µm and −12.78 µm from bregma), and ChAT staining was used as anatomical
marker to distinguish between PHOX2B-positive cells in the X (ChAT+/PHOX2B+) and the
NTS (ChAT−/PHOX2B+).

Under the Leica TCS SP8 Laser Scanning Confocal microscope, exposure time and
acquisition parameters were set for the SHAM group and kept unchanged for the entire
dataset acquisition. The collected images were than analysed using FIJI software [93] by
selecting one cell at a time in an image and measuring the area, integrated density and
mean grey value. Using the calculation for the corrected total cell fluorescence (CTCF)
= integrated density (area of selected cell × mean fluorescence of background reading),
as previously described [94], the fluorescence intensity of each cell was calculated using
Excel (Microsoft Office 365 for Windows). For each image, three background areas were
used to normalize against autofluorescence. For each section three images were acquired
with a 25× objective, so that at least fifty cells per single tissue sample were available for
analysis. This resulted in a more accurate mean fluorescence value under each condition,
which was then used for statistical analyses. The statistical analyses were made using
repeated-measures ANOVA and GraphPad Prism 5 Software (GraphPad Software, Inc.,
San Diego, CA, USA). p values of < 0.05 were considered significant.
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