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challenges concerned quality control; short read-mapping 
(Langmead et al. 2009; Li and Durbin 2009), variant call-
ing (Albers et al. 2011; Li et al. 2009; McKenna et al. 
2010), and variant annotation (Jager et al. 2014; Liu et al. 
2013; Ng et al. 2009; Yang and Wang 2015). Most of these 
challenges have now been tackled to a degree that bioin-
formatic workflows are available to analyze and interpret 
exomes in a standard fashion and provide workable results 
(DePristo et al. 2011; Pabinger et al. 2014). Some of the 
original hurdles have simply become less relevant with the 
progression of technology giving rise to more and higher 
quality sequence data and longer sequence reads (e.g., the 
ambiguous alignment of very short sequencing reads). 
Nevertheless, quality control of exome sequencing data 
still remains a necessity to guarantee reliable downstream 
results. This task has now become fairly routine through 
the development of several software packages that facili-
tate the assessment of standard quality control measures for 
exome sequencing (Li et al. 2009; McKenna et al. 2010; 
Okonechnikov et al. 2016; Quinlan and Hall 2010).

With the widespread adoption of next generation 
sequencing (NGS) technologies by the genetics community 
and the rapid decrease in costs per base, exome sequenc-
ing has become a standard within the repertoire of genetic 
experiments for both research and diagnostics (Neveling 
et al. 2013; Yang et al. 2013). Although whole genome 
sequencing represents the ultimate genetic experiment, 
exomes still offer advantages in terms of costs, speed and 
ease of data storage and analysis. The steady increase of 
sequencing capacity and the widespread application of 
exome sequencing has allowed the sequencing of thou-
sands of individuals and studies with hundred thousands 
of exomes are already in progress (Fu et al. 2013; Lohmu-
eller et al. 2013; The Deciphering Developmental Disor-
ders Study 2015; Walter et al. 2015). As an example, the 
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Introduction

Bioinformatics has been central to the analysis and inter-
pretation of exome sequencing data. Initial bioinformatics 
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Exome Aggregation Consortium (ExAC) collected a data-
set of over 60,000 individuals and will grow even larger 
in the nearby future (Lek et al. 2015). This scale at which 
exome data are now being generated has given rise to novel 
challenges in bioinformatics to store, analyze and interpret 
exome data of this magnitude (Stephens et al. 2015). In this 
review we will discuss some of the recent developments 
in bioinformatics for exome sequencing. We have summa-
rized some of the tools that we believe may be of interest to 
the reader in Table 1.

More data, more storage

With growing datasets, simply storing data becomes a chal-
lenge that all laboratories will at some point need to face. 
Sequencing instruments typically generate FASTQ files 
containing all individual sequencing reads. After alignment 
the resulting reads are stored in the Sequence Alignment/
Map (SAM) format that describes where sequence reads 
are mapped onto the reference genome. SAM files are usu-
ally compressed into the binary SAM (BAM) format that 
reduces the file size 3–4 times (Li et al. 2009). The BAM 
format is currently the de facto standard format for aligned 
reads and can be used by a large variety of downstream 
analysis and visualization tools (Li et al. 2009; Quinlan 
and Hall 2010; Thorvaldsdottir et al. 2013). Genomic vari-
ants that are subsequently identified based on the BAM file 
are then stored in a variants call format (VCF) (Danecek 
et al. 2011). The typical size of a single exome BAM file is 
within the range of Gigabytes whereas the VCF file is usu-
ally no more than 100 MB.

Storing less

The most straightforward method for reducing data storage 
needs is by simply storing less data, or by removing data 
as soon as possible. As an example, sequencing instruments 
currently only store raw images of the sequencing process 
for a limited time for trouble-shooting after which they are 
discarded. Similarly, many labs no longer keep the original 
raw sequencing reads (FASTQ file) after alignment since 
modern sequence aligners also include reads in the BAM 
file that are not aligned to the genome. This adds a little 
bit to the size of the BAM files but there is no longer any 
need for storing FASTQ files, since raw reads can now be 
regenerated from the alignment files by tools like Picard 
(http://picard.sourceforge.net.) and SAMtools (Li et al. 
2009). This potentially reduces storage requirements by 
half. In addition to this, several clinical guidelines have 
been proposed that allow diagnostic laboratories to remove 
the alignment files after 1 or 2 years (Rehm et al. 2013; 
Weiss et al. 2013). However, although VCF files contain 

the primary result of the experiment it is worthwhile to 
keep BAM files for future analysis since they contain much 
more information than VCF files, for example the identi-
fication of CNVs (Krumm et al. 2012), somatic mutations 
(Lindhurst et al. 2011), and mitochondrial DNA variation 
(Samuels et al. 2013). It is not uncommon that reanalysis of 
FASTQ or BAM files can identify additional variants that 
were initially missed (Zighelboim et al. 2014).

Compression

An alternative to the straightforward removal of large files 
to save space is data-compression. This has already been 
introduced for raw sequence files that are now by default 
compressed with gzip.

Although the SAM/BAM format is convenient in the sense 
that it contains almost all information of the original reads 
and all details about the alignment in an intuitive fashion, it 
was not designed for efficient storage (Li et al. 2009). Since 
BAM files are already in binary format, ordinary compression 
algorithms cannot significantly reduce their size. However, 
specialized compression tools use various techniques to fur-
ther reduce the size of BAM files. First of all non-essential 
information, e.g. read identifiers, can be removed. Secondly, 
the majority of the exome will be the same as the reference 
genome and can be stored more efficiently: Reference-based 
compression encodes reads based on a reference sequence 
and stores only positions that differ from the reference 
sequencing (Hsi-Yang Fritz et al. 2011; Kingsford and Patro 
2015). For regions where there are no differences to the ref-
erence genome, only coordinates and depth information are 
retained. Lastly, individual base quality scores (or Q scores) 
are typically encoded as PHRED-like scores within a range 
of 0–40 (Ewing and Green 1998). These quality scores are 
used to optimize read-mapping and variant calling. However, 
the scale of quality scores is very fine-grained and encoding 
Q scores into bins reduces storage space (Hach et al. 2012; 
Ochoa et al. 2013). Binning quality scores often results in 
compression with some loss of information (lossy compres-
sion), where the original quality scores lose precision during 
compression. The lost precision does, however, not necessar-
ily result in significant loss of accuracy for variant calling (Yu 
et al. 2015).

Based on these approaches, alternative formats such as 
Goby (Campagne et al. 2013), SlimGene (Kozanitis et al. 
2011), CRAM (Hsi-Yang Fritz et al. 2011) and DEEZ (Hach 
et al. 2014), have been introduced that attempt to keep as 
much of the original information yet at a lower cost of disk 
space than BAM. In particular, the CRAM format has gained 
a lot of traction. Compression of a BAM file to CRAM for-
mat with the Scramble tool resulted in file reductions of 
38–55 % with a compression time of a few minutes (Bon-
field 2014). CRAM compression has already been applied to 

http://picard.sourceforge.net
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Table 1  Overview of some of the novel bioinformatics tools related to the storage, analysis or interpretation of exome sequencing data

Name Description Website

Data-compression

 CRAMtools Framework to compress BAM files into CRAM format https://github.com/enasequence/cramtools

 Scramble C implementation of CRAM to compress BAM into 
CRAM format for faster encoding

http://sourceforge.net/projects/staden/files/io_lib/

 TABIX Tool to index and query bgzip-compressed VCF  
formatted files, available via SAMtools

http://sourceforge.net/projects/samtools/files/tabix/

 Genotype query tools Toolset to compress and query VCF files. Designed to 
compress large-scale cohorts

https://github.com/ryanlayer/gqt

Cloud tools

 CloudBurst Cloud-based parallel read-mapping algorithm to map 
sequence reads to a reference

http://sourceforge.net/projects/cloudburst-bio/

 Cloud aligner Cloud-based Hadoop MapReduce-based approach  
mapping of sequence reads

http://cloudaligner.sourceforge.net/

 Crossbow Cloud-computing software tool that combines  
read-mapping and the SNP genotyping

http://bowtie-bio.sourceforge.net/crossbow/index.shtml

 VAT Variant Annotation Tool (VAT) is a Cloud-based  
platform to functionally annotate variants

http://vat.gersteinlab.org/

 Mercury A whole exome sequencing analysis workflow deployed  
In the Amazon Web Services (AWS) cloud

https://www.hgsc.bcm.edu/software/mercury

Variant prioritization  
tools

 CADD Combined 63 annotations into one meta-score (C score)  
for the entire genome based on a SVM

http://cadd.gs.washington.edu/

 Eigen Spectral approach to the functional annotation of genetic 
variants in coding and non-coding regions.

http://www.columbia.edu/~ii2135/eigen.html

 DANN DANN used the same feature set and training data as 
CADD to train a deep neural network (DNN).

https://cbcl.ics.uci.edu/public_data/DANN/

 FitCons Predictions of pathogenicity for the entire genome based  
on evolutionary conservation and functional data

http://compgen.cshl.edu/fitCons/

 SPANR/SPIDEX Trained a model optimized for the prioritization of splice 
site variants with a deep learning approach

http://www.deepgenomics.com/spidex

 HAL Prioritization of splice site variants based on their effect  
of (alternative) RNA splicing

http://splicing.cs.washington.edu

 PHIVE Analysis of exome variants by computing phenotype 
similarity between human disease phenotypes and  
phenotype information from knockout experiments in 
model organisms

http://www.sanger.ac.uk/resources/databases/exomiser

 RVIS The Residual Variation Intolerance Score or RVIS is a 
gene based score to prioritize disease genes based on 
intolerant to genetic variation

http://genic-intolerance.org/

CNV detection

 CoNIFER Detects rare CNVs in exome data based on sequence 
read-depth

http://conifer.sourceforge.net/

 XHMM Uses principal-component analysis (PCA) to normalize 
exome read-depth and a hidden Markov model (HMM) 
to detect CNVs

https://atgu.mgh.harvard.edu/xhmm/

 Codex Normalization and CNV calling procedure for whole 
exome sequencing data

http://www.bioconductor.org/packages/devel/bioc/html/
CODEX.html

Data sharing

 ExAC 60,706 unrelated individuals sequenced as part of various 
disease-specific and population genetic studies

http://exac.broadinstitute.org/

 DECIPHER Database containing data from 18,533 patients who have 
given consent for broad data-sharing

https://decipher.sanger.ac.uk/

https://github.com/enasequence/cramtools
http://sourceforge.net/projects/staden/files/io_lib/
http://sourceforge.net/projects/samtools/files/tabix/
https://github.com/ryanlayer/gqt
http://sourceforge.net/projects/cloudburst-bio/
http://cloudaligner.sourceforge.net/
http://bowtie-bio.sourceforge.net/crossbow/index.shtml
http://vat.gersteinlab.org/
https://www.hgsc.bcm.edu/software/mercury
http://cadd.gs.washington.edu/
http://www.columbia.edu/%7eii2135/eigen.html
https://cbcl.ics.uci.edu/public_data/DANN/
http://compgen.cshl.edu/fitCons/
http://www.deepgenomics.com/spidex
http://splicing.cs.washington.edu
http://www.sanger.ac.uk/resources/databases/exomiser
http://genic-intolerance.org/
http://conifer.sourceforge.net/
https://atgu.mgh.harvard.edu/xhmm/
http://www.bioconductor.org/packages/devel/bioc/html/CODEX.html
http://www.bioconductor.org/packages/devel/bioc/html/CODEX.html
http://exac.broadinstitute.org/
https://decipher.sanger.ac.uk/
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tackle storage-capacity problems in large databases such as 
Sequence Read Archive (SRA) (Cochrane et al. 2011) and 
the 1000 Genomes project (http://www.1000genomes.org). 
The CRAM format is now supported by some widely used 
genomic analysis tools such as SAMtools, Picard and GATK 
(Li et al. 2009; McKenna et al. 2010). With the increasing 
support for the CRAM format, it may well replace the use of 
BAM files in the near future.

With ever growing datasets containing variants of thou-
sands of individuals, it becomes worthwhile to compress 
the relatively small VCF files as well. The Tabix format 
offers a convenient compression format for large VCF files. 
This reduces file sizes roughly 3–5 times, and also supports 
indexing to perform efficient querying of genome positions 
(Li 2011). Some common resources are already available 
in Tabix format such as dbSNP (NCBI Resource Coordina-
tors 2015) and Combined Annotation-Depended Depletion 
(CADD) scores (Kircher et al. 2014). Another option is to 
use the recently published Genotype Query Tools (GQT) to 
index and compress large number of VCF files. This tool 
also facilitates fast querying. GQT was used to compress 
the Exome Aggregation Consortium (ExAC) VCF file, con-
sisting of 9.36 million exonic variants for 60,706 individu-
als, from 14.1 TB to 28 GB (Layer et al. 2016).

All in all, the growing need to reduced storage space is 
leading to new data formats for alignment and variant files 
and smarter algorithms to query these efficiently.

Cloud‑based solutions

Compression of data is an easy and efficient way to reduce 
storage needs, but in the end the reduction in data sizes is 

limited. An alternative is to store large amounts of genomics 
data in the cloud. Cloud storage offers several out-of-the-
box advantages to local storage: it is scalable, has default 
access control policies, protects against data loss, allows 
for auditing, data encryption, easy sharing, and automa-
tion by programmable interfaces (Fusaro et al. 2011; Stein 
2010). Currently, there are multiple commercial providers 
of cloud services of which Amazon Web Services (AWS; 
https://aws.amazon.com/), Microsoft Azure (https://azure.
microsoft.com) and Google cloud platform (https://cloud.
google.com) are the largest. In addition there are non-profit 
organizations offering cloud-computing solutions such as 
Open Cloud Consortium (http://occ-data.org/).

Cloud storage is based on a “pay as you go” monetary 
model whereby one only pays for used storage that can 
be expanded ad hoc. Although cloud storage itself is rela-
tively inexpensive with less than $100 for storing 1 TB 
of data per month, there are some additional costs to con-
sider (Shanahan et al. 2014). While transferring data into 
the cloud storage is usually free of costs, analyzing and 
downloading data from the cloud can be relatively expen-
sive. For example, downloading 1 TB of data from the 
cloud costs approximately $120 per TB (Shanahan et al. 
2014). This makes it worthwhile not only to keep data in 
the cloud but also to perform the analysis there and only 
download smaller result files. Special software is, how-
ever, needed to make efficient use of the scalability of the 
cloud-computing platform. Currently there are already a 
variety of tools for cloud-based mapping of sequence reads, 
(Nguyen et al. 2011; Schatz 2009), genotyping (Gurtowski 
et al. 2012), variant annotation (Habegger et al. 2012) as 
well as complete cloud-based exome sequencing pipelines 

Table 1  continued

Name Description Website

 Café variome Platform to share genetic variant and phenotype data  
on a global scale

http://www.cafevariome.org/

 GeneMatcher Online platform designed to connect clinicians and 
researchers from around the world who share an interest 
in the same gene or genes

https://genematcher.org/

 RD-connect Platform that links up data used in rare disease research 
into a central resource for researchers worldwide

http://rd-connect.eu/

 PhenomeCentral Repository for secure data-sharing targeted to clinicians 
and scientists working in the rare disorder community

https://www.phenomecentral.org/

 MatchMaker 
Exchange

Platform enabling matching of cases with similar 
phenotypic and genotypic profiles though a number of 
databases

http://www.matchmakerexchange.org/

Phenotypes

 Phenotips A software tool for collecting and analyzing phenotypic 
information for patients with genetic disorders

https://phenotips.org/

 PhenoDB A software tool to store and analyze standardized pheno-
typic information

http://phenodb.net

 Phenominer A tool to extract structured phenotypes from text http://phenominer.mml.cam.ac.uk/

http://www.1000genomes.org
https://aws.amazon.com/
https://azure.microsoft.com
https://azure.microsoft.com
https://cloud.google.com
https://cloud.google.com
http://occ-data.org/
http://www.cafevariome.org/
https://genematcher.org/
http://rd-connect.eu/
https://www.phenomecentral.org/
http://www.matchmakerexchange.org/
https://phenotips.org/
http://phenodb.net
http://phenominer.mml.cam.ac.uk/
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(Liu et al. 2014; Reid et al. 2014). Fusaro et al. showed that 
the alignment of the entire genome (4 billion paired reads, 
35 pb long) of a person in 48 h costing approximately $48 
of cloud resources (Fusaro et al. 2011). According to Stein 
et al. the International Cancer Genome Consortium (ICGC) 
analyzed 500 genomes in the cloud for a price of $18 per 
sample whereas the authors estimate this would require 
$200 on standard computer systems (Stein et al. 2015).

Data stored in the cloud can also provide a solution 
for effective public and private data-sharing. For exam-
ple, the Amazon Web Services (AWS) contains 1000 
Genomes Project data (Clarke et al. 2012) and accom-
modates 1200 whole genome sequences of the ICGC. 
In addition, data from Ensembl and GenBank are being 
hosted in AWS and data transfer between AWS instances 
is free of charge (Fusaro et al. 2011). Furthermore, the 
US National Cancer Institute is exploring how the cloud 
could facilitate a cost-effective platform to store and share 
large amounts of tumor data (https://cbiit.nci.nih.gov/ncip/
nci-cancer-genomics-cloud-pilots).

The uptake of cloud-based solutions by academic and 
non-academic hospital laboratories has been slow, likely 
because of practical concerns, unfamiliarity, as well as 
ethical and legal concerns of storing patient DNA data in 
the cloud (Dove et al. 2015). Although data storage in the 
cloud is relatively inexpensive, transferring vast quanti-
ties of sequencing data via the Internet from and into the 
cloud may be a considerable cost and a time-consuming 
process due to low network bandwidth (Schatz et al. 2010; 
Stein 2010). In addition, moving genetic data of patients 
to a third-party server introduces issues concerning secu-
rity and privacy (Greenbaum et al. 2011). This has limited 
the use of cloud-based storage solutions for most clinical 
NGS applications so far. However, given the advantages 
and a future of routine genome sequencing, it may well be 
unavoidable that all genomics data end up in the cloud for 
analysis and for patients and their physicians to access.

Variant identification

To some extent, challenges for calling variants have 
become less urgent with improved exome enrichment 
assays, increasing sequence quality and read length and 
reduced sequencing prices, allowing for higher coverage 
sequencing of the exome in individual patients. Whereas 
early comparisons of whole exome capture kits showed 
that around 80 % of the human protein coding sequence 
regions were captured at a minimal coverage of 20× (Parla 
et al. 2011), current exome capture kits and sequencing at 
minimal 100× median average coverage capture more than 
95 % of the coding regions with a minimal coverage of 
20× (Lelieveld et al. 2015). Due to the increased coverage 

and improved sequencing quality for modern exomes, vari-
ant calling has become more reliable. Several studies have 
even demonstrated the identification of somatic mutations 
for rare syndromes (Lindhurst et al. 2011; Poduri et al. 
2013; Sato et al. 2014), which is only possible with high 
coverage. These improvements in exome quality have led 
some laboratories to reconsider the validation of sequenc-
ing variants by the gold standard Sanger sequencing. A 
recent validation study found that all single nucleotide vari-
ants with a Genome Analysis Toolkit (GATK) (McKenna 
et al. 2010) quality score above 500 were confirmed by 
Sanger sequencing and estimated that only validating vari-
ants with a quality score below this threshold would reduce 
the Sanger confirmation workload by 70–80 % (Strom 
et al. 2014). Overall the significant improvements in exome 
sequencing quality may indeed eliminate the need for vali-
dation of high quality variants. However, the detection of 
SNVs in NGS data has not been fully resolved and results 
from different variant callers remain inconsistent (O’Rawe 
et al. 2013; Pabinger et al. 2014; Zook et al. 2014). In addi-
tion, small insertions/deletion (indels) are still particularly 
problematic to identify accurately (Jiang et al. 2015b). 
Highly accurate genotypes across the genome of a single 
individual as for example provided by the “Genome in a 
Bottle Consortium” may help resolve these issues in the 
future (Zook et al. 2014).

Detection of copy number variants

From SNVs attention has moved towards the identification 
of other types of variants in exome sequencing data. In par-
ticular, the identification of copy number variation (CNV) 
from exome data poses an attractive possibility as CNVs 
are an important cause of disease (Zhang et al. 2009). 
Genomic microarray platforms such as the SNP-array 
and Array CGH are the de facto standard to detect CNVs 
(Miller et al. 2010), whereas whole genome sequenc-
ing will likely be the preferred platform for the detection 
and characterization of CNVs as well as other structural 
variants (Gilissen et al. 2014). In contrast to microarrays 
and whole genome sequencing, exome sequencing targets 
only 1–2 % of the protein coding regions of the genome. 
The sparse and fragmented nature of exome data makes it 
more difficult to identify CNVs and methods rely mostly 
on depth-of-coverage approaches. For these approaches 
a normalized read count in a genomic window of a sin-
gle individual is compared to that of other exomes. Nor-
malization of read counts is required to counteract tech-
nical issues such as poor read mappability, GC bias, and 
batch effects between sequencing experiments (Teo et al. 
2012). Many different algorithms have been devised based 
on read-depth methods, such as CODEX, Convex, Coni-
fer, and XHMM (Amarasinghe et al. 2013; Fromer et al. 

https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots
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2012; Jiang et al. 2015a; Krumm et al. 2012). Compari-
sons of CNV algorithms for exome data have shown that 
none of the algorithms performed well in all situations and 
that the resolution is limited to at least three exome tar-
gets (de Ligt et al. 2013; Fromer et al. 2012; Krumm et al. 
2012). Although this does not equal the sensitivity of high-
resolution microarrays, it is comparable to that of medium 
resolution microarrays that are still commonly used. Stud-
ies describing the large-scale application of CNV detec-
tion only based from exome data are, however, still limited 
(Poultney et al. 2013), which may perhaps hint at some of 
the underlying difficulties to obtain robust CNV calls from 
exome data. The possibility to detect copy number vari-
ants in exome data is, however, a great benefit of exome 
sequencing that should not be ignored as CNVs contribute 
significantly to disease. The identification of other types of 
structural variants such as inversions, and the accurate pre-
diction of CNV breakpoint remains challenging and whole 
genome sequencing is likely needed for this (Meienberg 
et al. 2015).

Variant interpretation

Sequencing the protein coding regions of a patient typi-
cally yields tens of thousands of variants of which the 
majority is likely to be benign and only one or perhaps 
two variants contribute to the disease phenotype (Bam-
shad et al. 2011; Gilissen et al. 2012). The most effective 
way of distinguishing benign from pathogenic variants 
is based on using population frequencies of variants. For 
this approach all variants occurring in the population at 
higher frequencies than the disease prevalence are consid-
ered as benign. Databases with collections of exome vari-
ants of individuals without clear disease phenotypes have 
therefore been tremendously helpful to prioritize variants 
in Mendelian disease. This has given rise to several ini-
tiatives for large-scale variant databases with exome data 
(Fu et al. 2013; Tryka et al. 2014). The largest of these, 
thus far, is the Exome Aggregation Consortium (ExAC) 
database, containing variants of more than 60,000 exomes 
(Lek et al. 2015). These large databases are instrumental 
to the interpretation of future exomes for Mendelian dis-
ease gene identification. In addition, a need for popula-
tion-specific databases of variation will remain, especially 
for those populations that are poorly represented in the 
large public databases (Tennessen et al. 2012). Interpre-
tation based on population frequency information from 
databases should be done with care because of the pos-
sibility of false positives (MacArthur and Tyler-Smith 
2010), founder mutations (Gunel et al. 1996), somatic or 
tissue-specific variants (Acuna-Hidalgo et al. 2015).

Coding mutations

Although accurate population frequencies are a neces-
sity for the interpretation of exomes, this will only reduce 
the number of possible candidate mutations to a couple of 
hundred or so (Gilissen et al. 2012). Further prioritization 
of pathogenic variants remains a challenging task, in par-
ticular for missense variants. Various tools such as Poly-
phen2 (Adzhubei et al. 2013), SIFT (Kumar et al. 2009) 
and PhyloP (Pollard et al. 2010), have long been used in the 
pathogenicity assessment of these protein coding variants 
based on evolutionary conservation. Unfortunately, these 
prioritization methods lack specificity and sensitivity to 
sufficiently reduce the large number of candidate mutations 
from exome sequencing on their own (Gilissen et al. 2012). 
This becomes even more apparent when considering the 
prioritization of non-coding variation from whole genome 
sequencing experiments.

However, in the last few years, novel tools have been 
published that are expected to offer better sensitivity and 
specificity compared to the traditional prioritization tools. 
The availability of genome-wide functional annotations 
of coding and non-coding variants in combination with 
algorithmic improvements resulted in novel tools adapted 
to prioritize both coding and non-coding variants. These 
novel tools can broadly be divided into two groups. The 
first group focuses on the prediction of deleterious varia-
tion by computing a functional meta-score based on inte-
grating a variety of genome-wide annotations. Combined 
Annotation-Depended Depletion (CADD) is the most well-
known example of such a framework that applies a support 
vector machine (SVM) to integrate 63 sources of functional 
and evolutionary data into a relative pathogenicity score 
(Kircher et al. 2014). Eigen (Ionita-Laza et al. 2016) and 
DANN (Quang et al. 2015) are other examples using dif-
ferent algorithmic approaches to combine large varieties 
of annotations into one pre-computed meta-score trained 
to distinguish between benign and deleterious variants. 
Fitness consequence (FitCons) (Gulko et al. 2015) is dif-
ferent in the sense that it compares patterns of divergence 
between the human population and primates to assess func-
tional sites that emerged quite recently. The second group 
of tools attempts to specifically predict non-coding regula-
tory variants. DeepSEA (Zhou and Troyanskaya 2015) and 
DeltaSVM (Lee et al. 2015) are examples of such tools 
and were trained on a variety of annotations of non-cod-
ing annotations mainly derived from the ENCODE pro-
ject (The ENCODE Project Consortium 2012). Notably, 
the DeepSEA method was based on a Deep learning algo-
rithm, which is a form of machine learning that is increas-
ingly being applied to biological problems (Alipanahi et al. 
2015; Rusk 2016).
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In spite of the potential of these tools, it remains unclear 
how well they perform in clinical practice because independ-
ent validation studies for these novel tools are still lacking. 
Moreover, such studies are hampered by a lack of sufficient 
validation data that have not already been used in the devel-
opment of the prediction software or original benchmark 
(Grimm et al. 2015). Van der Velde et al. demonstrated the 
practical utility of CADD for the interpretation of variants. 
The authors applied CADD to a set of 2210 variants that 
were manually assessed by an expert panel and found that, 
beside a relatively small number of discrepancies in favor of 
the expert, CADD scores proved valuable for the prioritiza-
tion of pathogenic variants. (van der Velde et al. 2015). How-
ever, a recent validation of CADD and other prediction tools 
using in vivo mouse models, found that about half of the 
assessed mutations that were predicted to be deleterious had 
little impact on the clinical phenotype (Miosge et al. 2015). 
This once again highlights the importance of functional vali-
dation of potential pathogenic variants.

Splice site mutations

Due to the increased read lengths, exome sequencing typi-
cally captures a large part of the extended splice site at suf-
ficient coverage for variant identification. However, muta-
tions in the extended splice site are typically excluded 
during the prioritization step because variation within these 
regions is more prevalent but also more difficult to inter-
pret. Existing algorithms for splice sites such as MaxEntS-
can (Eng et al. 2004) and NNSplice (Reese et al. 1997) 
were not designed to offer predictions for the large num-
bers of variants from exome sequencing (Jian et al. 2014). 
Like for coding variants recent developments in algorithms 
have improved the ability to interpret this type of variants.

The SPANR (splicing-based analysis for variants) tool 
is another example of a “deep learning” computational 
model scoring the effect of variants on the mRNA-splicing. 
The SPANR model is trained on 1393 sequence features 
extracted from 10,689 alternatively spliced exons and their 
corresponding mRNA expression levels in 16 human tis-
sues and offers predictions up to 300 bp within the intron 
(Xiong et al. 2015). The authors found that SPANR cor-
rectly predicted the direction of change in expression of the 
exon for 73 out of 99 (74 %) splice site mutations. Another 
novel splice site prediction tool called hexamer additive 
linear (HAL) is a model, trained on nearly two million syn-
thetic alternatively spliced mini genes, to predict the effect 
of 5′ and 3′ mutations on exon skipping (Rosenberg et al. 
2015). In a set of 286 variants within three genes (CTFR, 
BRCA2 and SMN2) the prediction accuracy ranged from 86 
to 90 %. These improvements in splice site prediction pro-
grams may open up new avenues for the interpretation of 
variants in exomes.

Gene prioritization

For the interpretation of exome data it is not sufficient to 
only determine whether a variant is likely to impair normal 
gene function, but also whether the function of a mutated 
gene is actually relevant for the disease (MacArthur et al. 
2012). Two novel approaches for the interpretation of gene 
function have gained a lot of traction.

Phenotypic interpretation of variants in exomes (PHIVE) 
is an algorithm that computes phenotype similarity between 
human disease phenotypes and phenotype information from 
knockout experiments in model organisms. This gene-level 
information is then combined with variant pathogenicity pre-
dictions and thereby achieves better rankings of pathogenic 
variants in exome data (Robinson et al. 2014). A totally dif-
ferent approach to predict deleteriousness for genes is based 
on the use of population variation to determine how intoler-
ant genes are to normal variation. Two studies independently 
showed that human disease genes are much more intolerant 
to genetic variation than other genes (Khurana et al. 2013; 
Petrovski et al. 2013). Several studies have already success-
fully used this approach to prioritize genes with likely patho-
genic mutations (Allen et al. 2013; Gilissen et al. 2014).

Overall, algorithm development has leveraged the avail-
ability of genome-wide datasets such as exome sequencing 
project (ESP) (Fu et al. 2013), encyclopedia of DNA ele-
ments (ENCODE) (The ENCODE Project Consortium 2012) 
and the International Mouse Phenotype Consortium (IMPC) 
(Brown and Moore 2012) to provide improved pathogenicity 
predictions for variants and to cope with exome-sized vari-
ant datasets. These novel algorithms represent our first steps 
to the next big challenge, the interpretation of non-coding 
variation from whole genome sequencing experiments. In 
the meanwhile, technologies for high-throughput functional 
assays are under development that may produce the high-
throughput functional validations needed to improve in silico 
variant predictions (Findlay et al. 2014).

Finding recurrent mutations

Besides the interpretation of variants and genes, progress 
has also been made in the approaches to provide proof of 
pathogenicity for novel candidate genes. While functional 
proof of pathogenicity remains crucial, it is time-consuming 
and expensive to obtain, and requires specific expertise. An 
additional layer of evidence for pathogenicity of a mutation 
in a candidate disease gene can be obtained by identify-
ing multiple patients with mutations in the same gene and 
a similar phenotype. Two different approaches for finding 
recurrently mutated candidate genes have emerged, depend-
ing on whether the disorder is either rare and monogenic or 
more common and genetically heterogeneous.



610 Hum Genet (2016) 135:603–614

1 3

Genotype‑centric approach for common genetically 
heterogeneous disorders

For genetically heterogeneous disorders, it is not possible 
to select specific subsets of patients based on their pheno-
type to perform a targeted analysis of the candidate gene. 
Therefore, screening of a large cohort of patients for addi-
tional mutations within the same candidate gene is typi-
cally performed (de Ligt et al. 2012; O’Roak et al. 2012). 
When costs allow, it is even more efficient to immediately 
screen the entire cohort by exome sequencing, rather than 
start with a small number of selected samples (Neale et al. 
2012; O’Roak et al. 2011; The Deciphering Developmen-
tal Disorders Study 2015). In such a set-up, however, the 
probability of random findings becomes very large and 
rigorous statistics are required. Statistical methods do 
not only protect against potential false positive findings 
but are also able to take into account factors like reduced 
penetrance, modifiers, and multigenic effects (MacArthur 
et al. 2014). The first large-scale exome sequencing stud-
ies already relied on different statistical approaches based 
on estimates of genome-wide mutation rates to identify 
genes enriched for de novo mutations (Neale et al. 2012; 
O’Roak et al. 2011). An improved statistical framework 
was proposed by Samocha et al. (2014) which was first 
applied by the DDD project which performed large-scale 
trio sequencing of 1133 trios with developmental disorders 
(The Deciphering Developmental Disorders Study 2015). 
After identifying de novo coding mutations in this cohort, 
a statistical approach was used based on estimates of the 
gene specific mutation rate to identify 12 novel genes that 
were enriched for de novo mutations. The same group 
also used a novel statistical framework for the identifica-
tion of recessive genes in a cohort of 4125 families with 
developmental disorders (Akawi et al. 2015). In this case a 
model was constructed to estimate the probability of draw-
ing n unrelated families with similar biallelic genotypes by 
chance from the general population. Estimates of popula-
tion allele frequencies for rare loss-of-function and mis-
sense variants were obtained from the Exome Aggregation 
Consortium data set (Lek et al. 2015). Although in both 
studies the cohorts are considered to be very large, statisti-
cal power was still limited and the authors emphasize that 
this should motivate data-sharing through international 
databases.

Phenotype‑centric approach for rare monogenic 
disorders

For many Mendelian diseases the phenotype is very 
rare, and individual groups do not have more than a few 
cases making it impossible to perform large-scale screen-
ing. The alternative is then to take a phenotype-centric 

approach where one finds additional patients with the 
same, or similar, distinct phenotype. Once more patients 
have been identified with overlapping phenotypes spe-
cific testing of candidate genes can be performed. Alter-
natively, there is the opposite approach in which first 
patients with matching genotypes are identified and final 
evidence of pathogenicity comes from the matching of 
patient phenotypes. In both cases additional evidence is 
obtained not just by the common genotype, but also by 
the shared specific phenotype of patients with mutations. 
This approach is now facilitated by various data-sharing 
initiatives for rare diseases such as DECIPHER (Bragin 
et al. 2014), Café Variome (Lancaster et al. 2015), Gen-
eMatcher (Sobreira et al. 2015), RD-connect (Thompson 
et al. 2014), and PhenomeCentral (Buske et al. 2015). 
See Brookes and Robinson for an overview of data-
sharing initiatives and databases (Brookes and Robinson 
2015). The matchmaker exchange is a recent initiative 
to integrate the information from all of these databases 
by providing a single interface for queries together with 
match-making algorithms (Philippakis et al. 2015). A nice 
example of a phenotype-centric approach is a recent paper 
on the identification RSPRY1 by which the authors iden-
tified an additional case with the same phenotype using 
the Care4Rare Canada matchmaker (Faden et al. 2015). 
This should hopefully inspire more researchers to contrib-
ute to these databases and facilitate the identification of 
the genetic cause for their patients. By contributing these 
data to public databases they do not only become avail-
able to researchers and physicians but also to the patients 
themselves (Chong et al. 2015; Kirkpatrick et al. 2015). 
A nice illustration of this is the case of Massimo Damiani 
who suffered from an unclassified form of leukoencepha-
lopathy and whose parent’s efforts resulted in the genetic 
diagnosis (Lambertson et al. 2015). The authors argue 
that these patient-led efforts have the potential to increase 
the value of matchmaking networks.

Structured phenotypes

The probability of success for matchmaking increases with 
the availability of good phenotype information. A long-
standing challenge with phenotype descriptions is the lack 
of standardization. This presents several problems such as 
the use of different clinical nomenclature for similar phe-
notypes, the uncertainty whether phenotypes are absent 
or not assessed, and the fact that it is unclear how pheno-
types are related to each other, which makes it difficult to 
perform computational analyses (Kohler et al. 2014). For 
some years these issues have been tackled by the introduc-
tion of standardized phenotype vocabularies and ontolo-
gies. Several ontologies have been developed but one of 
the most used is the human phenotype ontology (HPO) 
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(Kohler et al. 2014). HPO currently consists of more than 
250,000 phenotypic annotations (Groza et al. 2015). The 
practical benefits of using HPO have been demonstrated by 
the development of novel tools that facilitate the prioriti-
zation of exome variants (as discussed in the previous sec-
tion), but also by a recent study of the DDD project. Akawi 
et al. used structured phenotype information to statistically 
quantify the phenotypic similarity of patients with devel-
opmental delay for which rare mutations were identified 
in the same gene (Akawi et al. 2015). Although the added 
value of the integrated phenotypes in the statistical assess-
ment was limited, this will likely improve when pheno-
type information becomes more comprehensive. Obtaining 
comprehensive structured phenotypes, however, is difficult 
and time-consuming. The DDD project mandated the avail-
ability of phenotype information in HPO format for all of 
their samples (Firth and Wright 2011). Such criteria are not 
easily imposed for most other projects and several tools 
have been developed to encourage and facilitate the use 
of phenotype information. PhenoDB (Hamosh et al. 2013) 
and PhenoTips (Girdea et al. 2013) are platforms that allow 
clinicians to enter, store and analyze structured phenotypic 
data. Phenominer is a tool able to extract phenotype con-
texts from simple text to identify relationships between 
human diseases described in OMIM and literature (Col-
lier et al. 2015). In the future even the actual measuring of 
phenotypes may be automated leading to more robust and 
objective phenotypes that will also take less time of phy-
sicians to administrate (Oellrich et al. 2015), and allowing 
bioinformaticians to use these data for interpretation of 
exome variants.

Conclusions

Here we have discussed some of ongoing bioinformatic 
developments that have the potential to impact the way we 
currently analyze and interpret exome data. It is clear that 
many developments in bioinformatics are still needed with 
respect to exome sequencing and that this is still a very 
active field of development. This requires a high degree 
of flexibility and adaptiveness from those working in this 
field. Especially since new challenges are already on the 
horizon with the anticipated large-scale application of 
whole genome sequencing.
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