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Abstract

Background: Prediction models are used in clinical research to develop rules that can be used to accurately predict
the outcome of the patients based on some of their characteristics. They represent a valuable tool in the decision
making process of clinicians and health policy makers, as they enable them to estimate the probability that patients
have or will develop a disease, will respond to a treatment, or that their disease will recur. The interest devoted to
prediction models in the biomedical community has been growing in the last few years. Often the data used to
develop the prediction models are class-imbalanced as only few patients experience the event (and therefore belong
to minority class).

Results: Prediction models developed using class-imbalanced data tend to achieve sub-optimal predictive accuracy
in the minority class. This problem can be diminished by using sampling techniques aimed at balancing the class
distribution. These techniques include under- and oversampling, where a fraction of the majority class samples are
retained in the analysis or new samples from the minority class are generated. The correct assessment of how the
prediction model is likely to perform on independent data is of crucial importance; in the absence of an independent
data set, cross-validation is normally used. While the importance of correct cross-validation is well documented in the
biomedical literature, the challenges posed by the joint use of sampling techniques and cross-validation have not
been addressed.

Conclusions: We show that care must be taken to ensure that cross-validation is performed correctly on sampled
data, and that the risk of overestimating the predictive accuracy is greater when oversampling techniques are used.
Examples based on the re-analysis of real datasets and simulation studies are provided. We identify some results from
the biomedical literature where the incorrect cross-validation was performed, where we expect that the performance
of oversampling techniques was heavily overestimated.

Keywords: Prediction models, Class-imbalance, Random undersampling, Simple oversampling, SMOTE,
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Background
In clinical research the goal is often to estimate the
probability that patients have or will develop a disease,
will respond to a treatment, or that their disease will
recur; prediction models can be used to accurately pre-
dict the outcome of the patients based on some of
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their characteristics. Prediction models represent a valu-
able tool in the decision making process of clinicians
and health policy makers and are extensively used in
medicine [1], however the majority of prediction studies
in high impact journals do not follow the current method-
ological recommendations, limiting their reliability and
applicability [2].
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Prediction models are often developed on class-
imbalanced data: for example, data gathered from screen-
ing programs usually include few patients with the
disease (minority class samples) and many healthy sub-
jects (majority class samples). Suchmodels tend to achieve
poor predictive accuracy in the minority class [3]. Sam-
pling methods are the most widely used strategy to
improve the predictive accuracy of the minority class,
their aim is to obtain a balanced distribution prior to
building the prediction model. Undersampling techniques
remove some of the majority class subjects, while over-
sampling methods generate additional minority class sub-
jects based on the observed data. These techniques are
also often applied in the field of bioinformatics [4–7].
Synthetic Minority Oversampling TEchnique (SMOTE

[8]) is a sampling method that is widely used to improve
the performance of the prediction models [9, 10]. SMOTE
generates new minority class samples on a random point
of the line joining a minority class sample and one of
its nearest neighbors. Additionally, frequently a prede-
fined proportion of majority class samples is randomly
selected and discarded from the training set. In system-
atic studies it was observed that random undersampling
tends to outperform SMOTE in most situations [11, 12].
However, others showed that on specific datasets SMOTE
performed better than undersampling [13–15]. SMOTE
was also evaluated for high-dimensional data, where the
number of variables greatly exceeds the number of sam-
ples [16]. High-dimensional data are increasingly often
used for developing the prediction models in medicine
[17–19]. It was shown that SMOTE performs poorly in the
high-dimensional setting when compared with random
undersampling [16].
In the absence of an independent validation dataset, the

performance of the prediction models on new samples is
usually estimated using cross-validation (CV). In k-fold
CV the dataset is divided into k parts, one part is with-
drawn and used as a test set, the other k − 1 parts are
used to build the prediction model. The process is iter-
ative: each of the k folds is used once as a test set and
the performance of the classifier (prediction model) is
obtained averaging the results. In order to correctly per-
form CV it is essential to observe the principle that all
the steps involved in the building of the prediction model
must be performed using only the training data. For this
reason the sampling step should not be performed on the
entire dataset, but instead only on the training set of each
partition generated during the CV procedure. Failing to
do so will produce unreliable and overoptimistic cross-
validated estimates of the performance of the prediction
model.
Although the importance of correct CV is well recog-

nized in the statistical community [20], numerous papers
where oversampling was not correctly implemented in CV

can be found. For example, Naseriparsa and Kashani [13]
investigated the usefulness of combining SMOTE with
principal component analysis, Lopez-de-Uralde et al. [14]
used SMOTE for the automaticmorphological categoriza-
tion of carbon black nano-aggregates and Taft et al. [5]
applied SMOTE to improve adverse drug event predictive
models in labor and delivery. All these papers showed that
SMOTE improved the cross-validated accuracy of the pre-
diction models; however, these cross-validated estimates
are expected to be overoptimistic, as CV was used after
SMOTE-augmenting the entire dataset and the SMOTE-
sampling step was not included in CV. Similar incorrect
uses of CV on oversampled data can be found in numer-
ous papers (see [6, 15, 21], to name only some of the most
recent examples).
Two groups have studied the over-optimism in the

estimation of the prediction error due to incorrect CV
[22, 23]. These works focused on the bias due to the
omission of the variable selection step in CV and had
a large impact on the quality of subsequent published
research, especially when considering high-dimensional
data.
Others showed that similar problems are encountered

when classifier parameter tuning is based on minimizing
cross-validated error rates, which is performed outside
CV loop [24]. To our knowledge our study is the first
to evaluate the bias due to incorrect CV for prediction
models that use sampling techniques.
In this paper we illustrate the problems using publicly

available datasets from the UCI machine learning repos-
itory [25] and gene expression microarray datasets. The
results are explained also from a theoretic perspective
as well as using a small simulation study. The implica-
tion of our results for practical predictive modeling with
class-imbalanced data are discussed.

Methods
We considered only prediction models for two classes,
with nmin samples in the minority class and nmaj in the
majority class, using classification trees (CART [26]). In
CART theGini index was used as ameasure of node impu-
rity, there had to be at least two samples in the node to
attempt the partition of the data and the maximum depth
of each tree was set to 30. The classifiers were fitted using
the function rpart included in the rpart R package.
We used three types of sampling techniques to reduce

the class-imbalance problem: random undersampling,
simple oversampling and SMOTE. Sampling was per-
formed before CV (incorrect analysis, Sampling followed
by CV) or included in the CV procedure (correct anal-
ysis, CV includes Sampling). Six types of cross-validated
performance measures were evaluated for each classi-
fier. The results were evaluated using simulated and real
class-imbalanced data.
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All analyses were performed with R language for statis-
tical computing (R version 3.0.3) [27].

Evaluation of the cross-validated performance of the
prediction model
We evaluated six cross-validated performance measures.
Overall predictive accuracy (PA, defined as the propor-
tion of correctly classified samples), predictive accuracy
for the minority and for the majority class (PAmin and
PAmax, defined as PA evaluated using only minority or
majority class samples, respectively), g-means (GM =√
PAminPAmax), area under the receiver operating char-

acteristic (ROC) curve (AUC) ([28], chapter 4) and F1
measure F1 = 2·Precision·PAmin

Precision+PAmin
(where Precision is the pro-

portion of samples that were correctly classified in the
minority class, also known as minority class predictive
value).
Cross-validated estimates of these performance mea-

sures provide nearly unbiased estimates of the values that
would be obtained on independent samples.

Simulated data
The aim of the simulations was to show how the use of
correct and incorrect CV impacts the cross-validated per-
formance measures. We used the setting where there is no
real difference between the classes, i.e., when the devel-
oped prediction models are uninformative about the class
membership of new samples.
In this case the correct value of AUC and GM is 0.50

and PAmin + PAmax = 1; deviations from these values
of the cross-validated measures indicate that the CV was
not performed correctly. The term overoptimism will be
used to indicate a positive bias in the estimation of the
performance measures.
All variables were simulated independently from a

Gaussian distribution with zero mean and unit variance.
We varied the size of the dataset (n = 100, 500, 1,000,
10,000) and the number of variables (p = 10, 100),
while the level of class-imbalance was kept fixed at 10%
(nmin

n = 0.1). Different number of CV folds was also con-
sidered (k =2, 5, 10). The results were averaged over 1,000
simulation runs.

Real data
Ten publicly available datasets from the UCI machine
learning repository [25] were used. The description of
the datasets is given in Table 1. These datasets were
selected as they exhibit various levels of class-imbalance,
ranging from small (sonar dataset, 46.6% minority sam-
ples) to large (ozone dataset, 2.9 % minority samples),
they have very different sample size (ranging from 32
to 17,307 samples) and number of variables (from 5 to
72), and the difficulty of the classification task varies.
All multi-class classification tasks were transformed into

binary classification task by merging the classes; the
name of the resulting minority class is reported in
Table 1.
Additionally, six high-dimensional classification tasks

were considered in our analysis. We reanalyzed the breast
cancer microarray gene expression data of Sotirou et al.
[29], Wang et al. [30] and Ivshina et al. [31] consider-
ing the prediction of Estrogen receptor status (ER; all
datasets), grade of the tumor (Grade; Ivshina and Sotiriou
datasets) and relapse of the tumor (Wang dataset), see
also Table 1. The data were preprocessed as described
in the original publications. Missing data were present
in the cDNA two-channel dataset [29]: the genes with
more than 10% of missing values were removed from
the analysis and the remaining missing values were
replaced with zeros. The 1,000 variables exhibiting the
largest variance were pre-filtered and used for further
analysis.
We performed 500 runs of 5−fold CV and reported the

averaged results.

Sampling techniques
In random undersampling nmin samples from the major-
ity class were selected without replacement and combined
with all minority class samples; the classifier was trained
using the reduced and balanced dataset of size 2 · nmin.
In simple oversampling nmaj samples from the minor-

ity class were randomly selected with replacement and
combined with the majority class samples to form the
augmented and balanced dataset of size 2 · nmaj.
In SMOTE we generated 1, 2 or 5 new samples for each

minority class sample; in the following these analyses are
indicated as 100-, 200- and 500-SMOTE, respectively. The
number of majority class samples retained in the analy-
ses was equal to the number of newly generated minority
class samples (undersampling fraction of 100%); 5 nearest
neighbors were used. For SMOTE we used the function
SMOTE in the DMwR package [32] in R (with parameters
k = 5, perc.under = 100, perc.over = 100, 200, 500).
Under- and oversampling were programmed in R.

Cross-validation
In k-fold CV the dataset was divided into k parts (folds),
k − 1 parts were used to build the prediction model, the
remaining part was used to evaluate its performance. We
used balanced folds, i.e., the number of samples included
in each fold and the level of class-imbalance in each fold
was approximately the same. The process was repeated k
times so that each of the k folds was used once as a test set.
The performance of the predictionmodel was obtained by
averaging the results from the k folds.
To evaluate the impact of resampling methods on CV

results, two types of analyses were performed (graphi-
cally presented in Fig. 1 for 2-fold CV). In the correct
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Table 1 Description of the datasets. Size of the dataset (n), number of variables (p), number of minority class samples (nmin) and
number of majority class samples (nmaj)

Name n p nmin nmaj nmin (%) Name minority

Indian 768 8 268 500 34.9 Positive

Parkinson 195 22 48 147 24.6 Healthy

Hepatitis 155 19 32 123 20.6 Dead

Abalone 4,177 8 1,307 2,870 31.3 Female

Letter 17,307 16 689 16,618 3.4 A

Lung 32 56 9 23 28.1 1

Tae 151 5 49 102 32.4 Low

Breast 106 9 22 84 20.8 Adi

Sonar 208 60 97 111 46.6 Rock

Ozone 2,536 72 73 2,463 2.9 Ozone day

Sotiriou:er 99 7,650 34 65 34.3 ER-

Sotiriou:grade 99 7,650 45 54 45.5 Grade 3

Ivshina:er 245 22,283 34 211 13.9 ER-

Ivshina:grade 245 22,283 55 234 22.4 Grade 3

Wang:er 286 22,283 77 209 26.9 ER-

Wang:relapse 286 22,283 107 179 37.4 Relapse

CV the dataset was first split into k folds, the sampling
method (over-, undersampling or SMOTE) was applied
to the training set constituted of the k − 1 folds and a
reduced or augmented training set was obtained (proce-
dure is indicated as CV includes Sampling, first row, in

Fig. 1). In the incorrect CV different sampling techniques
were first applied to the entire dataset and CVwas applied
to the over- or undersampled data, as described above
(indicated as Sampling followed by CV, second row, in
Fig. 1).

Fig. 1 Combination of sampling and CV methods used in the simulations and real data analyses. CV includes Sampling (first row) constitutes the
correct approach, while Sampling followed by CV (second row) is the incorrect approach. The samples included in the original dataset are indicated
using upper cases, while their copies are indicated with lower cases
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Results
Illustration of the problem
The problem when performing CV after simple over-
sampling (incorrect CV) is that the same samples can
be included when building the prediction model and
when evaluating its performance (Fig. 1, third panel).
The probability that the same sample (either the origi-
nal minority sample or its exact replica) is included in
the training and test set can be obtained theoretically
and is a function of the following: (1) sample size (n =
nmin + nmaj; when the sample size is smaller the prob-
ability is larger), (2) proportion of samples included in
the test set (ptest ; when the proportion is smaller the
probability is larger), and (3) proportion of minority class
samples,

1 −
( n−nmaj/nmin
nptest−nmaj/nmin

)

( n−1
nptest−1

) , (1)

when nptest ≥ nmaj/nmin and one otherwise.
As an illustration, we graphically show in Fig. 2 how the

probability that a test (left-out) sample has a replica in the
learning fold depends on the level of class-imbalance in a
dataset with n = 100 samples when 2-fold split is used
(ptest = 0.5). The probability is very large for large levels

of class-imbalance and approaches zero when the class
distribution is more balanced.
In practice having large probabilities that replicas of

test samples are included in the learning folds consti-
tutes a problem. When the same sample is used to
build the prediction rule and to evaluate its performance,
the estimate of its performance is overoptimistic as it
is obviously easier to correctly predict the class of the
samples that were already used in the training phase
due to over-fitting. This problem is illustrated from a
more theoretic perspective in Additional file 1, where
we consider one nearest neighbor classifier (1-NN, [33])
in combination with random undersampling or simple
oversampling.
Next, we used simulated data to show how the incor-

rect CV (sampling followed by CV) can lead to invalid
conclusions focussing on the case where the prediction
models are uninformative and the correct values of the
performance measures are known (AUC = GM = 0.5,
PAmin + PAmax = 1). See the Methods section for more
details.
Here we show the results for the situation where the

number of folds was set to 2 and there were 10 variables.
The cross-validated AUC obtained for different values of n
are shown in Fig. 3, exact numerical results for n = 1, 000
are shown in Table 2.
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Fig. 2 Probability that at least one of the replicas of a sample included in the test fold is included also in the training fold, as a function of the
proportion of minority class samples (pmin). The figure shows how the probability that a test sample has a replica in the learning fold depends on
the level of class-imbalance (pmin) in a dataset with n = 100 samples when using 2 fold CV
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Fig. 3 Cross-validated AUC for different sample sizes and classification
rules obtained on simulated data. AUC obtained with different
classification rules for simulated data with 10 variables (simulated
independently from a Gaussian distribution with zero mean and unit
variance) and 2 CV folds. There were n = 100, 500, 1,000 and 100,00
samples

The cross-validated AUC was equal to 0.5 for all
prediction models when the correct CV was performed.
The cross-validated AUC obtained with the incorrect
CV was equal to 0.5 for undersampling, while it was
substantially overestimated when data were oversam-
pled or when SMOTE was used to generate synthetic
samples. For SMOTE the overoptimism of AUC (posi-
tive bias) was larger when a larger fraction of synthetic
samples were generated and for smaller datasets; the
bias obtained with oversampling was even larger. For
example, when the dataset consisted of 100 samples the
difference between AUC obtained with the incorrect and
the correct CV was 0.40, 0.29, 0.18 and 0.11 for over-
sampling, 500-SMOTE, 200-SMOTE and 100-SMOTE,

respectively. Similar conclusions would be reached
analyzing the other performance measures reported in
Table 2.
Simulation results obtained in other settings are

reported in the Additional file 2. In brief, we observed that
increasing the number of variables and the number of CV
folds slightly increased the overoptimism caused by the
incorrect CV.

Results on real data
Like in the simulated example the correct and the incor-
rect CV are compared on each dataset. See the Methods
section for more details. Here we report the results for
AUC graphically in Fig. 4 (UCI datasets) and Fig. 5 (gene
expression microarray datasets); exact AUC, GM and
F1-measure are reported in Additional file 3.
The results when performing the correct and the incor-

rect CV were the same when the datasets were under-
sampled, thus there was no bias when performing the
incorrect CV (Figs. 4 and 5; Additional file 3). On the
other hand, there was significant overoptimism in the
cross-validated performance measures when performing
the incorrect CV in combination with oversampling or
SMOTE; the bias was larger when more synthetic samples
were generated with SMOTE.
The bias was especially large for the smaller datasets,

as for example the lung dataset where the difference
between AUC obtained with the incorrect and the cor-
rect CV was as large as 0.14 with oversampling and
0.23 with 500-SMOTE. The difference between AUC
obtained with the incorrect and the correct CV was how-
ever very small for very large datasets; the bias for the
abalone dataset and the letter dataset for example
was only marginal. This is in line with our simulated
example where we observed that the overoptimism due
to the incorrect CV is smaller when the dataset is larger.
The bias was also only marginal when the prediction
task was very easy, as in the breast dataset, where

Table 2 Accuracy measures for simulated data. Accuracy measures obtained with different classification rules for simulated data with
10 variables (simulated independently from a Gaussian distribution with zero mean and unit variance), 1,000 samples and 2 CV folds

PA PAmin PAmaj GM F1 AUC

Under (incorrect) 0.5003 0.5015 0.4991 0.4978 0.4996 0.5005

Under (correct) 0.4999 0.5009 0.4998 0.4985 0.1668 0.5003

Over (incorrect) 0.7624 0.8438 0.6809 0.7575 0.7801 0.7986

Over (correct) 0.7191 0.2254 0.7740 0.4151 0.1380 0.5004

100-SM (incorrect) 0.6422 0.7492 0.4281 0.5644 0.7359 0.5858

200-SM (incorrect) 0.6565 0.7462 0.5220 0.6230 0.7224 0.6431

500-SM (incorrect) 0.7012 0.7715 0.6168 0.6892 0.7378 0.7148

100-SM (correct) 0.4520 0.5582 0.4402 0.4940 0.1692 0.4993

200-SM (correct) 0.5294 0.4629 0.5368 0.4966 0.1643 0.4998

500-SM (correct) 0.5997 0.3757 0.6245 0.4824 0.1579 0.5007
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Fig. 4 Cross-validated AUC for different UCI datasets. Datasets are ordered by their AUC obtained by correct CV

very accurate predictions could be obtained with random
undersampling.
A similar behavior was observed also when considering

gene expression data, but in this case the over-optimism
when performing the incorrect CV in combination with
oversampling or SMOTE was even larger. For example,
AUC obtained with the correct CV with 500-SMOTE was
0.54 and with the incorrect CV the AUC was 0.91 for the
wang:relapse dataset.
These results clearly show that the incorrect CV favors

oversampling techniques as they appear to perform much
better than random undersampling. However, when the
correct CV is used, we obtained consistent results regard-
less of the sampling method applied.

Discussion
In this paper we addressed the importance of correct CV
for the assessment of the performance of the prediction
models in medicine when some under- or oversam-
pling method is used to improve the predictive accuracy
for the minority class. There are some published stud-
ies in the field of biomedical informatics where under-

or oversampling techniques are applied to the entire
dataset and then CV is used on these modified datasets
to estimate the performance of the prediction model.
Our results using simulated data show that this type of
incorrect CV leads to biased conclusions: oversampling
techniques unjustifiably appear to perform better than
undersampling techniques.
We explained that the reason for this bias is that over-

sampling techniques generate minority samples that are
more similar or even identical to the original minor-
ity class samples and are hence easier to be correctly
classified. This leads to overoptimistic cross-validated
estimates of the accuracy of the minority class, while
the accuracy for the majority class remains large due
to the class-imbalance bias. Undersampling techniques,
on the other hand, do not suffer from such bias and
therefore unjustifiably appear to performworse than over-
sampling techniques when evaluated with the incorrect
CV. We observed that when the CV was performed
correctly, i.e., the dataset was first split into k folds and
then under- or oversampling techniques were applied
only to k − 1 folds used for training the classifier, the
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Fig. 5 Cross-validated AUC for different gene expression microarray datasets datasets. Datasets are ordered by their AUC obtained by correct CV

under- and oversampling techniques that we considered
perform very similarly. These results are further veri-
fied and illustrated by using 10 publicly available datasets
from the UCI repository and 6 gene expression microar-
ray datasets, with varying degree of class-imbalance and
where the differences between the classes were moderate
or large.
The practical implication of these results for predic-

tion models in medicine is twofold. The performance of
the predictive model can be much worse when used on
independent set of data than suggested by the incorrect
CV. Specifically, the accuracy for the minority class sub-
jects from the independent dataset will be much worse
than suggested by the incorrect analysis. In practice this
can have large negative consequences as it would mean
that a larger proportion of subjects that have a disease
will be incorrectly predicted to be healthy than suggested
by the incorrect CV. Another implication is that the per-
formance of the prediction model could be improved by

using a different sampling technique than suggested by
the incorrect analysis. Consider the UCI hepatitis
data set as an example. The incorrect CV would suggest
that oversampling is the most appropriate sampling tech-
nique for this dataset. However, the correct CV actually
shows that this is the least appropriate technique for this
dataset and that much better performance of the pre-
diction model can be obtained by using undersampling.
Even more extreme differences were observed for high-
dimensional data.
It should be noted that the resistance to the incor-

rect CV observed for random undersampling does not
apply to all undersampling techniques. To name an exam-
ple from the field of bioinformatics, Rahman and Davis
[21] proposed a cluster based undersampling technique
to balance cardiovascular data. In their approach the
majority class samples are clustered into 3 clusters by
using K-means clustering and then these clusters are ran-
domly undersampled and combined with all minority
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samples to obtain 3 datasets. Their results show a 22
percentage points increase in accuracy of this approach
when compared with random undersampling. The prob-
lem, however, is that in their analysis the CV is applied
after augmenting the dataset. We believe that this result
is invalid as their method considers only majority class
samples from the same cluster that are more similar
to each other and it is hence easier to correctly clas-
sify them. Therefore, such analysis suffers from the same
overoptimism as was described for the oversampling
techniques. Special care is therefore needed also with
undersampling techniques which generate datasets where
minority class samples are, after reducing the dataset,
more similar to each other. Such examples are NearMiss
and the “most distant” undersampling techniques [34],
where the use of incorrect CV could also lead to invalid
conclusions.

Conclusion
Researchers proposing new under- or oversampling tech-
niques or researchers applying these techniques to
improve the performance of prediction models that use
CV to evaluate their models, should always include the
sampling step in the CV loop, as their conclusions can
otherwise be strongly misleading. Special care is also
needed in the review process where the reviewers should
always check if the correct CV was performed. It is also
important that the researchers provide a clear and exact
description of how the analysis was performed, as it is cur-
rently often impossible to say with certainty if the correct
CV was performed or not. Attention is also needed when
evaluating the effectiveness of the prediction models that
were already proposed in the literature as there are numer-
ous examples where the performance of these models was
not estimated correctly.

Additional files

Additional file 1: Effect of the incorrect CV on 1-NN. In the Additional
file we illustrate the problem that was presented in the main text by
considering one nearest neighbor classifier (1-NN) in combination with
random undersampling or simple oversampling. (PDF 61.3 Kb)

Additional file 2: Results using simulated data (3 figures). In the
Additional file we report the performance measures (AUC, GM and
F1-measure) for different number of simulated variables (p), sample sizes
(n) and CV folds (k). (PDF 151 Kb)

Additional file 3: Results using real data (6 tables). In the Additional file
we present the performancemeasures (AUC, GM and F1-measure) obtained
by reanalyzing UCI and gene expression microarray datasets. (PDF 109 Kb)
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