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Urs Braun,1,2,6 Daniel Durstewitz,3,4,5 Georgia Koppe,1,2,3,4 and Emanuel Schwarz1,2,6,7,*
SUMMARY

Both mental health and mental illness unfold in complex and unpredictable ways. Novel artificial intel-
ligence approaches from the area of dynamical systems reconstruction can characterize such dynamics
and help understand the underlying brain mechanisms, which can also be used as potential biomarkers.
However, applying deep learning to model dynamical systems at the individual level must overcome
numerous computational challenges to be reproducible and clinically useful. In this study, we per-
formed an extensive analysis of these challenges using generative modeling of brain dynamics from
fMRI data as an example and demonstrated their impact on classifying patients with schizophrenia
and major depression. This study highlights the tendency of deep learning models to identify function-
ally unique solutions during parameter optimization, which severely impacts the reproducibility of
downstream predictions. We hope this study guides the future development of individual-level gener-
ative models and similar machine learning approaches aimed at identifying reproducible biomarkers of
mental illness.

INTRODUCTION

The use of advancedmachine learning (ML) tools is widely considered to provide deeper insight into the biology ofmental illness and support

precision medicine.1,2 The application of machine learning tools has focused on a broad spectrum of data types, including neuroimaging,3–5

multi-omics,6 electrophysiological,7,8 speech,9–11 or medical record data.12 In most cases, the principal aim has been the identification of

illness-related patterns present across patients with a given diagnosis (or subgroups thereof), in order to allow prediction at the individual

level. Rarely, however, haveML approaches been applied to characterize the longitudinally changing, dynamic nature of data potentially rele-

vant for mental illness. As the behavior of most biological and higher-order (e.g., cognition and behavior) systems is dynamic by nature, there

is a rapidly growing body of work in the field of psychiatry that has focused on the use of dynamical systems theory (DST) for their quantitative

analysis.13–16 DST offers a powerful theoretical framework for studying such complex systems and may have utility as a unified mathematical

language for describing functional characteristic of psychiatric conditions and the links between behavior and brain activity at different

scales.16–21

However, until recently, there were no computational approaches available to extract generative dynamical systems (DS) models

directly from data. Although there is a long history of methods for characterizing signatures of nonlinear system dynamics in experi-

mental data, such as Lyapunov exponent,22 as well as mainly linear methods such as dynamic causal modelling (DCM) for capturing func-

tional interactions,23,24 truly ‘‘generative’’ models that recreate the attractors and long-term statistics of an observed system is a fairly

recent development.14,25 These rely on the ability of the underlying models to serve as general (non-linear) function approximators,

as well as recent advances in training techniques for dynamical systems. Such generative models have been demonstrated to accurately

capture the ground truth of a given dynamical system.14,25 Machine learning model types for such an analysis include the so-called

‘‘recurrent neural networks’’ (RNNs). These belong to the class of deep neural networks and comprise ‘‘recurrent’’ connections, which

allow the model to act as a dynamical system itself and thus to emulate a generative surrogate model of brain dynamics. The inherent

alignment of mathematical principles between RNNs and DST enables RNNs to characterize the dynamical system properties underlying

the observed time series of e.g., functional MRI data.14,26 Interesting dynamical system properties that can be extracted from RNN

models include, for example, the number and geometry of attractors, or bifurcations the system undergoes, and can be quantified
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Figure 1. A simplified illustration of the PLRNN model architecture and the training process
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at the individual participant level.27,28 This makes such properties potentially useful predictors for downstream analysis, as has been

explored in a preliminary study on amyotrophic lateral sclerosis using resting-state functional magnetic resonance imaging (rs-fMRI)

data.29 In the field of neuroscience, RNNs and DST have previously been integrated as a framework to study neurophysiological func-

tions and neural computations. This approach allows researchers to peek inside the ‘‘black box’’ by interpreting RNN models trained

using experimental neurophysiological data.30 These data-driven studies have been widely used to explore topics such as synaptic

mechanisms, sequence propagation, neural circuits, interactions among brain areas, and the relationship between neural and behavioral

variables.14,30 Many of these data-driven RNNs can be considered generative models, as they can generate new data with similar sta-

tistical properties to the training data. However, this does not imply that these RNN models are generative in the context of DST. For

this, a far stricter definition is required: the inferred model must converge to the same attractor states when run independently and, at

least locally, it must have a similar vector field topology as the true DS underlying the training data.14 To achieve this goal, specially

designed model architectures, training algorithms, optimization goals, and evaluation metrics are essential.14 Therefore, the ‘‘generative

model’’ in this study refers to the generative model in the DS context.

While RNN-based generative models are powerful tools to characterize dynamical systems behavior, and algorithms for such data-driven

analysis exist,28 there are major challenges relevant for their application on brain dynamics, and psychiatry-relevant data, in general. The po-

wer of RNNmodels comes with substantial model complexity. Neural networks in general, and deep learning models in particular, are prone

to converge to saddle regions or local model minima in training.31,32 Moreover, different dynamical systems formulations may only be

compatible with a limited sample of time series measurements. Therefore, a central question is whether the solutions obtained by a given

model correspond to the ‘‘true’’ dynamical system. In supervised machine learning, where a set of features is used for the prediction of an

(e.g., clinical) outcome, an intrinsic assumption is that the feature valuesmeasured at the individual subject level relate to the same underlying

‘‘population.’’ When using features extracted from deep learning models, such assumptions may not hold, if these relate to different local

minima associated with different parameter sets. For dynamical systems modeling, this is particularly important, since models are usually

trained independently for the data from each individual, and it may be challenging (if not impossible) to a priori guarantee that repeatedly

trained models consistently yield the same parameter estimates. Consequently, machine learning tools applied downstream would not be

able to detect consistent signatures of dynamical system properties and lack predictive power.

To explore this, we used the piecewise linear recurrent neural networks (PLRNNs) model27,33,34 to reconstruct the dynamical system

underlying the input resting-state fMRI data and to extract 18 features (F01–F18, see Table S3 for details) at the individual level. These

features have been designed and proven in previous studies27,33,34 to reflect the general properties of the reconstructed dynamics in

state space, such as the count of stable fixed points, unstable fixed points, and cycles of the reconstructed system. The PLRNN model

consists of two parts: the latent layer, which learns and reconstructs the temporal evolution of the dynamical states based on signals

from the observable layer, and the observable layer is responsible for mapping between the observable input signals and the latent

dynamical states. The expectation-maximization (EM) algorithm was used for the training process. Figure 1 presents a simplified illus-

tration of the PLRNN model and its training process. The resting-state fMRI dataset used in this study includes 132 participants: 46

with schizophrenia (SCZ), 44 with major depressive disorder (MDD), and 42 healthy controls (HCs). Multiple models were inferred inde-

pendently from the time series data of each individual, in order to evaluate the consistency of the extracted dynamical features. We used

the random forest (RF) model to predict the diagnosis of each individual based on these extracted dynamical features. In addition, we

proposed and implemented both (1) a non-hypothesis-driven, graph-based approach and (2) a hypothesis-driven approach to identify

features from comparable model solutions. This study thus highlights practical aspects of using RNN models to capture dynamical sys-

tem properties from direct analysis of neural time-series data, and the use of the extracted dynamical features for machine learning and

personalized medicine approaches.
2 iScience 27, 110545, August 16, 2024
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RESULTS

A PLRNN pipeline for individual-level prediction using dynamical system features

A PLRNN pipeline was implemented for (1) modeling of the time-series data from resting state fMRI individually for each participant using 19

pre-defined regions of interest (ROI) parcellated based on the Harvard-Oxford Atlas35 (2 mm cortical probabilistic masks thresholded at 25

percent, as distributed with FSL—FMRIB software library), (2) extracting 18 dynamical features29 from each model, and (3) using the extracted

dynamical features for diagnostic classification based on RFs. To test basic properties of the pipeline, we first focused on data from patients

with SCZ and HCs, only.

An important question for the first step, the modeling of the rs-fMRI data, is its brain-regional focus. Since dynamical systemsmay differ at

different regional granularity, we first modeled all 19 ROIs simultaneously (see Tables S2 and S3). Subsequently, we focused on all respective

pairs of the 19 ROIs within the default mode network36–38 (DMN) and salience network39–41 (SN), in order to test whether this increased gran-

ularity had an impact on classification performance.

For the combined ROI analysis, the RF classifier yielded a low ROC-AUC (area under the receiver operating characteristic curve) of 0.54 in

5-fold cross validation (CV), indicating that the extracted dynamical features could not differentiate between patients with SCZ and HCs

(Table S4 shows that similar results were obtained for classifiers other than RF). For the analysis of ROI pairs within the DMN and SN, AUC

values between 0.44 and 0.72 were observed (Figure 2A), indicating at least partially independent information could be extracted from

the region pairs. However, concatenating these features in a single RF model also resulted in a low AUC of 0.58 (p = 0.22), suggesting inte-

gration of more granular dynamical system features did not enhance classification performance.
Stability of dynamical systems features

The use of dynamical systems features in machine learning critically depends on the ability of the PLRNN to consistently identify solutions

associatedwith the true dynamical system.As repeatedly traineddeep learningmodels, such as the PLRNN,may always converge on different

model parameters (here, primarily due to the initialization of the EM procedure), the robustness of the extracted dynamical features, which

represent ‘‘meta-statistics’’ related to the model parameters, is an essential question. To quantify this robustness and its impact on classifi-

cation performance, for each individual in the dataset, due to computational resource constraints, six RNNmodels were selected after only six

independent training repetitions. We first calculated the Spearman’s correlation between the dynamical features extracted from all partici-

pants and modeling repeat combinations. The median correlation was very low at 0.1 (range 0.09–0.12, Table S6), indicating a substantial

inconsistency of the extracted features. An interesting question was whether this feature robustness could be increased by averaging feature

values frommultiple repetitions. However, the overall correlation between the averaged features of the first three repetitions and those of the

last three repetitions was still only 0.12. We also applied these new generated features to the RF model, but the overall classification perfor-

mance during 5-fold CV showed no significant difference compared to the baseline model (see Tables S7 and S8 for further details).

Another useful indicator of feature robustness is the comparison of the distance between the features obtained repeatedly from the same

versus different individuals. Reproducible models should yield substantially lower distances for features repeatedly determined from the
Figure 2. Performance of RF classifiers using features from different brain regions and demonstration of weak feature robustness

(A) Average AUC scores of RF classifiers for the SCZ/HC classification task in 5-fold cross validation using features extracted from region pairs belonging to the

DMN (yellow) and SN (green). The complete results can be found in the Table S5. The full list of region indices/names can be found in Table S2.

(B) The distribution of the Euclidean distances between features extracted from different PLRNNmodels (blue: distance across participants and repeats; yellow:

distance within participants across repeats).
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same individuals. However, Figure 2B shows that across all possible within- versus between-individual comparison, the obtained distribution

of distances were highly overlapping, and not statistically different (p = 0.20). These results further support the notion that the PLRNNmodels

did not yield comparable dynamical systems features, even when repeatedly trained on the same individuals.

However, we hypothesized that the model solutions were not entirely individual-specific. In other words, we aimed to explore whether we

could identify models that were comparable across repeats and individuals, and test whether such models would allow improved classifica-

tion. For this purpose, we first employed a non-hypothesis-driven approach that employed graph clustering to identify comparable features.

Second, we conducted a hypothesis-driven manual selection based on three critical properties of the dynamical systems.
Hypothesis-free, graph-based identification of comparable RNN models

For the non-hypothesis-driven approach, we estimated the pairwise similarity between all individuals and repeats, based on the extracted

features. We assumed that similar solutions would lead to the formation of clusters in the resulting similarity graph, as demonstrated in Fig-

ure 3A, andwe only used the featureswithin the same cluster for downstreamanalysis. To identify such clusters, graph links reflecting similarity

estimates below a given cutoff value Fcut were gradually removed from the graph. In each graph with different cutoff value, we excluded all

feature records in the nodes outside the largest cluster (marked in red), averaged the remaining features for each participant and region pair,

and repeated the classification using a nested leave-one-out cross validation (LOOCV). This procedure incorporated ‘‘bagging’’ to increase

the stability of the model’s predictions, as well as feature selection to retain only the most predictive features for classification.

Figure 3B displays the performance of RFmodels using features selectedby the graph-clusteringmethod. For schizophrenia versus control

classification (SCZ/HC), it demonstrates that once the graph filtering surpassed a certain threshold (Fcut = 0.56), the classification AUC score

increased to 0.77 (p = 0.001) for a subset of 43 individuals (49% of the entire dataset), and to 0.85 (p = 0.0009) with 28 individuals (32%) remain-

ing in the dataset. This represented a significant improvement compared to the AUC = 0.58 achieved by baseline model.

We further tested depression versus control classification (MDD/HC) to explore the effect of the graph clusteringmethod. Figure 3B shows

a similar performance trend, where the RF model also achieved its best AUC = 0.73 (p = 0.007) at Fcut = 0.565, albeit with an overall lower

classification performance compared to the SCZ/HC classification. Next, we compared the combined MDD and HC groups (i.e., HC +

MDD) against SCZ, and observed that the RF model achieved an even higher maximum AUC of 0.87 (p = 3.80e�05, Figure 3B). For further

details, please refer to the Table S9.

In addition, to assess the diagnostic specificity of classification models, we utilized the MDD/HC model to predict SCZ subgroup and the

SCZ/HCmodel to predict MDD subgroup (using dynamical features from the optimal graph-clustering setting). For theMDD/HCmodel, 32%

of patients with SCZ were misclassified as MDD. For the SCZ/HC model, 29% of individuals with MDD were misclassified as SCZ. As a refer-

ence, the baseline model without using graph clustering had misclassification rates of 45% and 42% on the SCZ and MDD sets, respectively.
Figure 3. Graph clustering approach and impact on classification performance

(A) Illustration of graph-filtering cut-off (Fcut ) on the graph where each node represents an individual per model building repeat. The largest cluster is highlighted

in red, while other nodes or smaller clusters are marked in cyan.

(B) The LOOCVperformances of the RF classifiers using the graph clusteringmethod in the SCZ/HC,MDD/HC, and SCZ/non-SCZ (HC+MDD) classification tasks.

The detail of model performance can be found in the Table S9.
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The higher specificity achieved with classifiers using dynamical features optimized by graph clustering suggests that these features captured

specific dynamical system properties of the respective selected patient subgroups.
Hypothesis-driven identification of comparable RNN models

The graph-based approach aimed to identify comparable dynamical systems across individuals. It is possible that such an approach will miss

illness-relevant differences, as it focuses on a relatively small, more homogeneous subset of patients and controls. Thus, as an alternative

approach, we focused on three dynamical features that reflect the general geometric properties of the system in state space. These features

are likely to play a critical role in identifying comparable dynamical systems and their corresponding features16,26,27,42: the count of stable fixed

points, unstable fixed points, and cycles of the reconstructed system. Among the six models corresponding to each participant, we used only

those related to the most consistent values of the three features described previously for further analysis. The dynamical features extracted

from these models were averaged and the remaining models discarded. In contrast to the graph clustering approach, this method considers

all participants for analysis, and may retain dynamical system properties that are fundamentally different between patients and controls. For

the SZC/HC classification, this approach resulted in an AUC= 0.69 (p = 0.0009). For the SCZ/(HC +MDD) classification, there was no improve-

ment in performance (AUC = 0.59; p = 0.048). For the MDD/HC classification, the AUC was even lower than the baseline model (AUC = 0.66,

p = 0.006) at AUC = 0.56 (p = 0.347), indicating that the selection based on key dynamical system properties could not improve classification

performance. For further details, please see Table S10. The diagnostic specificity of the MDD/HC and SCZ/HCmodels for the SCZ and MDD

subgroups was low, with misclassification rates of 59.13% and 53.98%, respectively.
Feature contributions during classification using RF

To quantify which features and region pairs contributed to classification, we recorded their selection frequency and importance for the RF

models. Figure 4 shows which region pairs and dynamical systems features were most frequently selected in the three classification tasks
Figure 4. Feature and region pair importance for classification

The chord plots demonstrate which region pairs and dynamical features weremost frequently selected in the three classification tasks (SCZ/HC, SCZ/(MDD+HC),

andMDD/HC) and their corresponding relationships. All region pairs and feature indices are ordered clockwise based on frequencies. The top 5 region pairs are

marked in red, with detailed information listed in the following table. The full list of feature and region names can be found in Tables S2 and S3.
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(marked in red) and their respective relationships. The table in Figure 4 further illustrates the detailed information about the brain regions

related to these pairs. The name list of all 19 brain regions can be found in Table S2.

Focusing on the feature sets used by the models selected through graph-clustering, we observed a consistent set of region pairs that

was most frequently selected in the SCZ/HC and SCZ/(HC + MDD) classification tasks (please refer to the table in Figure 4). This pair set

was only partially overlapping with that found for the MDD/HC classification, consistent with the observed diagnostic specificity of the

respective models. In terms of dynamical features (see Table S3 for details and ‘‘method details’’ section for equations), F05/06/07 (vari-

ance of parameters in the both/regularized/non-regularized part of the transition matrix A and weight matrix W in Equation 1), F08

(average of the regularized part of bias vector h in Equation 1), F11/12 (mean of the regularized/non-regularized part of weight matrix

W), and F17/18 (mean/variance of regression coefficient matrix B in Equation 2) exhibited a high selection frequency across all three

classification tasks. Among these features, F05/06/07 relate to the general stability of network activity and dynamical modes.29,43 F08

reflects the mean activity level of the system; F11/12 is related to weight matrix W, characterizing how balanced or biased the connec-

tivity and connection strengths are; and F17/18 reflects whether state information is distributed evenly or unevenly across observation

signals.29
DISCUSSION

The aim of this study was to characterize computational challenges associated with the application of deep learning for the modeling of in-

dividual-level brain dynamics, and the downstream use of model parameters as potential biomarkers for mental health and mental illnesses

such as SCZ and MDD.

We observed that PLRNN models were highly prone to identify solutions with heterogeneity during parameter optimization. This may

be attributed to a well-known issue where deep learning algorithms identify only local minima, or even just saddle regions, in parameter

space.32,44 Alternatively, these heterogeneous solutions may also equally explain the data well, as these resulted in models with an over-

all similar quality of fit, it was not possible to filter out solutions prior to parameter extraction and downstream machine learning clas-

sification of SCZ and MDD. This eventually prohibits the direct usage of model parameters for downstream classification. We here there-

fore focused on ‘‘meta-statistics’’ of the model related to dynamical systems features of the underlying system. But even these may be

subject to uncertainties in parameter initialization, in the training process itself, or due to the fact that potentially different dynamical

models explain the finite experimental data equally well. In fact, we observed that models showed a substantial variability between rep-

etitions in the same participant, which was comparable to the variation observed across individuals. Consequently, patients with both

diagnoses could not be differentiated from controls with an accuracy above chance. This issue also did not be improve after averaging

multiple individual models in attempt to increase the signal-to-noise ratio related to the dynamical system of a given participant. This

suggests that the identified models did not capture comparable dynamical system properties across participants, which is an intrinsic

assumption of machine learning models to work well for the downstream prediction using the extracted model parameters.

Based on the hypothesis that solutions to dynamical systems with similar features across subjects are likely to better capture

‘‘average’’ brain dynamics and should thus be more predictive of diagnosis, we employed a graph-based selection process of compa-

rable models. This resulted in a substantial increase in classification performance for SCZ and for MDD, but required the removal of a

large fraction of participants from the analysis. More specifically, approximately 70% of participants had to be excluded from analysis for

models to achieve maximum performance. It should be noted, however, that the performance estimates obtained here likely do not

reflect generalizable estimates when tested in independent data, as these relate to a data-driven subgroup analysis. Furthermore,

cut-offs for filtering the graph were not chosen using nested cross validation, due to the limited sample size and time constraints,

and likely inflating the obtained performance measure. Despite this, the identified models showed significant differential diagnostic

specificity and were related to different features in partially overlapping brain regions. For SCZ, these regions involved particularly

the left putamen, insular and frontal medial cortex, as well as the precuneus. For depression, these regions included the precuneus,

the insular cortex, as well as the right putamen.

This study has important implications for machine learning studies using models built on the individual participant level, such as deep

learning models of time series deployed here. In particular, with complex models that are likely to identify local optima of the parameter so-

lutions, or with limited single subject data equally compatible with different dynamical models, it is vital to explore the similarity of such so-

lutions across multiple training repetitions. Otherwise, in data with small sample sizes especially, derived signatures may appear predictive,

but will likely not be generalizable.

However, the current clustering method is still not ideal, as a large fraction of the data had to be discarded for classification to reach sta-

tistically significant performance estimates. Therefore, our future works may focus on approaches that first aim at identifying parameter so-

lutions that are shared among individuals before fine-tuning suchmodels to the time series obtained for individual participants. Alternatively,

computationally efficient training procedures that allow to repeatedly infer a high number of models, could be leveraged to identify similar

(more robust) features within subjects. Also, if features are to be extracted from such models as input for downstream prediction, as has been

performed here for features describing dynamical system properties, such features could be filtered a priori to include only those with less

sensitivity to local parameter optima.

Another promising strategy would be to define such features in a data-driven manner, in order to improve their predictive value for a

given outcome of interest. Such data driven optimization may also be relevant for the identification of the specific data the analysis is

applied on. Here, we utilized ROI pairs and showed that the resulting system features are different from those obtained on the entire brain,
6 iScience 27, 110545, August 16, 2024



ll
OPEN ACCESS

iScience
Article
supporting a degree of brain-regional specificity. However, it is unclear whether this degree of aggregation is optimal in terms of capturing

the true underlying dynamical system properties, as well as in terms of maximizing predictive performance. Currently, the limited compu-

tational scalability of the deployed deep learning approaches prevented a more comprehensive analysis of a broader, data-driven selec-

tion of regions for dynamical system modeling. In the future, addressing this critical bottleneck will also aid in facilitating such analyses on

data from multiple, larger cohorts, which will allow further exploring the properties and reproducibility of dynamical system features.

In conclusion, we here provided an in-depth analysis of deep learning for the modeling of dynamical systems in fMRI time-series data, and

its downstream application for classification of SCZ and MDD. We highlighted the utility of such approaches for classification if comparable

parameter solutions can be obtained. However, identifying such comparable models is challenging, and we outlined several approaches to

support the reproducibility and feasibility of future applications of similar modeling approaches. These, in turn, are important further steps to

harness the potential of artificial intelligence in understanding and predicting human behavior.

Limitations of the study

This study has several limitations that need to be considered and addressed in future research. First, although using the graph clustering

approach to filter the dynamical features significantly improved the results of downstream prediction, a large fraction of the data had to

be discarded during this process, which may affect the generalizability of these features. Second, due to limited computational power, we

only extracted dynamical features from six independent training repetitions and only trained threemodels independently for each participant

in each repetition. Future studies could benefit from implementing more computationally efficient training algorithms that allow us to train a

larger number of models to identify more robust features for each participant. Third, the graph clustering approach we used in this study is a

similarity-based affinity graph. Although it allows us to control the filtering results using various manually chosen thresholds, it is still worth

exploring other novel unsupervised clustering algorithms to determine whether replacing our current method with these unsupervised

methods could bring additional benefits for the dynamical features. Finally, the 18 dynamical features used to describe the dynamical system

properties in this study were still manually designed. Future research should investigate whether these features can be pre-filtered to include

only those that are less sensitive to local parameter optima.
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Durstewitz, D. (2024). Bifurcations and loss
jumps in RNN training. Adv. Neural Inf.
Process. Syst. 36, 70511–70547.

29. Thome, J., Steinbach, R., Grosskreutz, J.,
Durstewitz, D., and Koppe, G. (2022).
Classification of amyotrophic lateral sclerosis
by brain volume, connectivity, and network
dynamics. Hum. Brain Mapp. 43, 681–699.

30. Perich, M.G., and Rajan, K. (2020). Rethinking
brain-wide interactions through multi-region
‘network of networks’ models. Curr. Opin.
Neurobiol. 65, 146–151.

31. Shrestha, A., and Mahmood, A. (2019).
Review of deep learning algorithms and
architectures. IEEE Access 7, 53040–53065.

32. Draxler, F., Veschgini, K., Salmhofer, M., and
Hamprecht, F. (2018). Essentially No Barriers
in Neural Network Energy Landscape (PMLR),
pp. 1309–1318.

33. Koppe, G., Toutounji, H., Kirsch, P., Lis, S.,
and Durstewitz, D. (2019). Identifying
nonlinear dynamical systems via generative
recurrent neural networks with applications to
fMRI. PLoS Comput. Biol. 15, e1007263.

34. Durstewitz, D. (2017). A state space approach
for piecewise-linear recurrent neural
networks for identifying computational
dynamics from neural measurements. PLoS
Comput. Biol. 13, e1005542.

35. Jenkinson, M., Beckmann, C.F., Behrens,
T.E.J., Woolrich, M.W., and Smith, S.M.
(2012). Fsl. Neuroimage 62, 782–790.

36. Hu, M.-L., Zong, X.-F., Mann, J.J., Zheng,
J.-J., Liao, Y.-H., Li, Z.-C., He, Y., Chen, X.-G.,
and Tang, J.-S. (2017). A review of the
functional and anatomical default mode
network in schizophrenia. Neurosci. Bull.
33, 73–84.

37. Garrity, A.G., Pearlson, G.D., McKiernan, K.,
Lloyd, D., Kiehl, K.A., and Calhoun, V.D.
(2007). Aberrant ‘‘default mode’’ functional

http://refhub.elsevier.com/S2589-0042(24)01770-X/sref1
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref1
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref1
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref1
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref1
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref2
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref2
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref2
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref2
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref2
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref3
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref3
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref3
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref3
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref3
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref4
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref5
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref5
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref5
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref5
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref5
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref6
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref6
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref6
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref6
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref7
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref7
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref7
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref7
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref8
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref9
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref9
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref9
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref9
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref9
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref9
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref10
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref10
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref10
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref10
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref10
https://doi.org/10.48550/arXiv.1909.01067
https://doi.org/10.48550/arXiv.1909.01067
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref12
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref13
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref13
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref13
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref13
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref14
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref14
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref14
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref14
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref14
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref15
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref15
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref15
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref15
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref15
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref15
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref16
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref16
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref16
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref16
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref17
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref17
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref17
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref17
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref18
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref18
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref18
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref19
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref19
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref19
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref19
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref19
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref20
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref20
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref20
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref20
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref20
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref21
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref22
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref22
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref22
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref23
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref23
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref23
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref23
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref24
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref24
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref24
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref24
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref24
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref24
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref25
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref26
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref26
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref26
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref26
https://doi.org/10.48550/arXiv.1910.03471
https://doi.org/10.48550/arXiv.1910.03471
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref28
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref28
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref28
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref28
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref29
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref29
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref29
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref29
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref29
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref30
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref30
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref30
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref30
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref31
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref31
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref31
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref32
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref32
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref32
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref32
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref33
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref33
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref33
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref33
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref33
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref34
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref34
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref34
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref34
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref34
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref35
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref35
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref35
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref36
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref36
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref36
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref36
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref36
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref36
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref37
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref37
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref37
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref37
http://refhub.elsevier.com/S2589-0042(24)01770-X/sref37


ll
OPEN ACCESS

iScience
Article
connectivity in schizophrenia. Am. J.
Psychiatry 164, 450–457.

38. Whitfield-Gabrieli, S., and Ford, J.M. (2012).
Default mode network activity and
connectivity in psychopathology. Annu. Rev.
Clin. Psychol. 8, 49–76.

39. Huang, H., Botao, Z., Jiang, Y., Tang, Y.,
Zhang, T., Tang, X., Xu, L., Wang, J., Li, J.,
Qian, Z., et al. (2020). Aberrant resting-state
functional connectivity of salience network in
first-episode schizophrenia. Brain Imaging
Behav. 14, 1350–1360.

40. Supekar, K., Cai, W., Krishnadas, R.,
Palaniyappan, L., and Menon, V. (2019).
Dysregulated brain dynamics in a triple-
network saliency model of schizophrenia and
its relation to psychosis. Biol. Psychiatry
85, 60–69.

41. Li, S., Hu, N., and Lui, S. (2019).
Dysconnectivity of multiple brain networks in
schizophrenia: a meta-analysis of resting-
state functional connectivity. Front. Psychiatr.
10, 455910.

42. Durstewitz, D., and Seamans, J.K. (2008). The
dual-state theory of prefrontal cortex
dopamine function with relevance to
catechol-o-methyltransferase genotypes and
schizophrenia. Biol. Psychiatry 64, 739–749.
43. Bertschinger, N., and Natschläger, T. (2004).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB https://www.mathworks.com/ 8.5.0 R2015a

Python https://www.python.org/ Version 3.8

R https://www.r-project.org/ Version 4.2.3

Scikit-learn https://scikit-learn.org/ Version 1.1.2

igraph https://igraph.org/ Version 1.4.1

PLRNN model https://github.com/DurstewitzLab/PLRNN_SSM Koppe et al.33

Feature Extraction https://github.com/JanineT-oss/ALS_PLRNN_classification Thome et al.29
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof. Emanuel

Schwarz. E-mail: emanuel.schwarz@zi-mannheim.de.

Materials availability

This study did not involve/generate any unique reagents.

Data and code availability

� The fMRI data used in this study cannot be deposited in a public repository as this would not be consistent with the consent signed by

all participants. Therefore, any requests for data must be submitted to the lead contact first.

� The original code for PLRNN model training and feature extraction were kindly provided by Koppe et al., and has been deposited at

online GitHub repository (feature extraction: https://github.com/JanineT-oss/ALS_PLRNN_classification and PLRNN model: https://

github.com/DurstewitzLab/PLRNN_SSM). All other packages or software used in this study can be found online with the following ver-

sions: All PLRNN models were trained and evaluated in a MATLAB 8.5.0 R2015a environment. Data preprocessing and result analysis

were performed in a Python 3.8 environment. All experiments described in section ‘‘stability of dynamical systems features’’ were con-

ducted in a Python environment using the machine learning framework Scikit-learn 1.1.2. Experiments presented in section ‘‘hypoth-

esis-free, graph-based identification of comparable RNN models’’ and section ‘‘hypothesis-driven identification of comparable RNN

models’’ were implemented in the R 4.2.3 environment using igraph package (version 1.4.1) to build the graph used to identify com-

parable RNN models.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments in this studywere performed in silico. No additional datawere collected fromparticipants. No newparticipants were recruited

for this study. No human, animal, in vitro, or genetic experiments were conducted in this study. No additional approval from the local ethics

committee was required. The dataset used in this study contain 132 records (after preprocessing), including 46 participants with SCZ (28male,

18 female, mean age 38.2 years, standard deviation 11.3), 44 participants with MDD (19 male, 25 female, mean age 35.5 years, standard de-

viation 11.2), and 42 healthy participants (22 male, 20 female, mean age 36.5 years, standard deviation 12.5). Demographic details can be

found in Table S1. The use of these data in this project is consistent with the intended use for which they were permitted and consented

to during collection. All participants were informed about the study procedures and potential risks associated with the fMRI scan both orally

and in writing before providing written informed consent. All participants were free to withdraw from the study at any time. The Medical Fac-

ulty Mannheim (Medical Ethics Committee II) at the Ruprecht-Karls-University of Heidelberg approved the study (Approval Number:

2019-733N).

METHOD DETAILS

Dataset for pipeline implementation and evaluation

In this study, we used resting-state fMRI data to build a pipeline for individual level dynamical feature extraction via RNNs and evaluate the

performance of the extracted dynamical features in a diagnostic prediction task. The dataset originally contained resting-state fMRI data from
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147 individuals. The raw data (blood-oxygen-level-dependent fMRI with an echo-planar-imaging sequence) for each participant was collected

using the 3 Tesla Siemens Prismafit scanner with a 64-channel head coil (Siemens). The scanning parameters were set as follows: multiband

acceleration factor 6, echo time (TE) 38.2ms, 60 oblique slices per volume, voxel dimensions 2.43 2.43 2.4mm3, repetition time (TR) 800ms,

31� flip angle, 204mm field of view and 64 3 64 in-plane resolution. During the scan, participants were instructed to keep their eyes open,

relax, and refrain from engaging in any specific mental activity. The task duration was 7 min and 8 s, comprising 525 whole-brain scans, while

a gray background with a fixation cross was presented. We then parcellated and extracted BOLD signals from 19 predefined ROIs based on

the Harvard-Oxford Atlas35 (2mm cortical probabilistic masks thresholded at 25 percent, as distributed with FSL), with each ROI having a

BOLD signal dimension of 525 3 1. Further preprocessing steps were performed using fMRIprep package,45 including skull-stripping, co-

registration, slice-time correction, resampling, head-motion correction, realignment, normalization, and smoothing with a 6mm FWHM filter.

Inconsistent data were also removed during this pipeline. Of the remaining 132 records, 46 were patients with SCZ, 44 patients withMDD, and

42HCs. The remaining datawere then processed using a down-samplingmethod to accelerate the training speed. (See ‘‘data down-sampling

and model tuning’’ section). Apart from the above methods, no additional aggregation or windowing methods were performed. Demo-

graphic details can be found in Table S1. The details of the 19 ROIs investigated in the present study are listed in Table S2.
Piecewise Linear Recurrent Neural Networks model for dynamics reconstruction and feature extraction

In this study, the PLRNN model27,33,34 was applied to reconstruct and analyze the dynamical system properties of fMRI data and to extract

features that describe properties of the dynamical systems.

The architecture of the vanilla PLRNN model can be divided into two parts, the latent layer (state space model) and the observable layer

(observationmodel). The latent layer is designed to learn and reconstruct the temporal evolution of the dynamical states based on the signals

passed to it by the observable layer. The observable layer is responsible for mapping the latent dynamics in the model’s state space to the

observed signals, and thus also enabling the unsupervised inference of the former from the latter.33 A standard hidden layer can be definedby

the following Equation:

zt = Azt� 1 + Wfðzt� 1Þ + Cst + h+ εt (Equation 1)

where zt and zt�1 represent latent state vectors at time t and t�1, respectively, each of sizeM3 1. The value ofM corresponds to the dimen-

sion of the latent space, which is considered as a hyperparameter and needs to be set by the user. MatrixA (M3M) is a diagonal auto-regres-

sion weights matrix and matrix W (M 3 M) is an off-diagonal connection weights matrix. f(x) denotes the nonlinear activation function Re-

LU(x) = max(0,x). C (M3K) is the coefficient matrix used to modulate st (K 3 1), a time-dependent external signal vector with K channels at

time t (if available). This external signal typically represents external stimuli presented during a cognitive task. h (M3 1) represents a constant

bias vector and εt (M3 1) is a white Gaussian noise vector with 0 mean and covariance matrix S (εt � N(0,S)).33 On the other hand, we used a

modified version of the observable layer proposed by Koppe et al.,29,33 defined as:

xt = Bðhrf � zt:tÞ + Jrt + ht (Equation 2)

where xt represents the generated temporal signal vector at time point t, with a size ofN3 1, whereN is the number of channels equal to the

observed temporal signal used for training. Matrix B (N3M) denotes regression coefficients responsible for mapping the convolved latent

states from latent space to observable space. hrf * zt:t denotes convolution between time-lagged latent states zt:t (latent states in several pre-

vious time steps) with the Hemodynamic Response Function (HRF). In addition, artifact data with R channels (e.g., motion/physiological arti-

fact data) are also considered in this layer as vector rt (R3 1) alongwith the corresponding learnableweightmatrix J (N3 R). ht is a noise vector

at the observable layer that follows a normal distribution with a mean of 0 and a covariance matrix G (ht � N(0,G)).29,33

In this study, we employed the PLRNNmodel implemented on theMATLABplatform.29 The optimization (training) process is based on the

EM algorithm, which iterates between an expectation steps, in which states are estimated given a fixed set of parameter estimates, and a

maximization step, in which model parameters are updated, until convergence. Additional information and derivations of the EM algorithm

for PLRNN training have been provided in previous study (e.g., see ref.33).

Our primary focus in this study was to acquire robust individual-level dynamical features by applying two feature aggregation methods to

dynamical features extracted from six independent training repetitions. To ensure that the quality of the final aggregated features was not

contaminated by possible low-quality source features from each repetition, we implemented a pre-selection step in each training repetition.

During each training repetition, we independently trained three models in parallel for each participant in the dataset. The decision to train

only three models, rather than more, was based on time constraints and the limitations of computing power. From three models trained for

each participant, we filtered out poorly converged models and retained only one model for future downstream analysis.

In this project, we followed the same approach as taken by previous studies, which use three metrics to evaluate the reconstruction

(training) quality of the PLRNN model: Mean Square Error (MSE), Power Spectrum Correlation (PSC), and Kullback-Leibler Divergence

(KLX). The details and effectiveness of these metrics have already been demonstrated in previous studies.27,29,33 For MSE, we calculated

the mean squared error between the 20-steps ahead generated signals by PLRNN model and the ground truth signals. The PSE evaluates

the similarity between the generated signals and the observed signals in the frequency domain by computing the correlation coefficient

of their power spectrum. A higher correlation indicates that the signals generated by the model are more similar to the real signals in the

frequency domain. For KLX, it directly evaluates whether important properties of the generated dynamical system (e.g., attractors) match

the real system in terms of geometry in state space. It provides a way to assess how well the hidden layer captures long-term dynamical
iScience 27, 110545, August 16, 2024 11
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features of the real systemwhen run in ‘generative’ mode (without receiving information about the actual observations).27,29,33 Since there are

a large number of models waiting to be evaluated, manual case-by-case analysis and selection are not feasible. Therefore, we used a simple

and direct overall score, which is the combination of all three metric scores (KLX + MSE + (1 - PSC), to rank and select the models in batches.

The MATLAB code for extracting these features has already been made available by Koppe et al. in a previous study.29 Each dynamical

system feature is calculated based on the internal parameter matrices of both the latent and observable parts of themodel, corresponding to

a numerical value that represents a certain feature of the reconstructed dynamics. For example, features such as F01, F02, and F10 quantify the

presence of stable/unstable fixed points and cycles within the dynamics. In the dynamical state space, fixed points and cycles are examples of

crucial dynamic phenomena such as attractors (if stable), repellors (if unstable), or saddles (if half-stable). Consequently, they offer valuable

global insights into the states within the reconstructed dynamics. Additionally, features such as F03 and F04, which are computed based on

the eigenvalues of the transition matrix around the fixed points, quantify the type and stability of the fixed points (i.e., whether they are at-

tractors, repellors, saddles, or spiral points, for instance).
Data down-sampling and model tuning

We faced several challenges while constructing the pipeline since the PLRNNmodel was originally designed for a different fMRI dataset with

different settings during data collection (e.g., scanning time, repetition time, etc.) and preprocessing methods (e.g., utilizing a different atlas

and noise reduction methods) compared to the INDICATE dataset used in this study.

Our first challengewas the long duration of the training process, which ismainly due to two reasons: 1) The EMalgorithmused for PLRNN is

a second-order method, which can numerically provide amore precise solution but has higher computational cost. 2) The inclusion of the HRF

function further increases the time required to estimate the state covariancematrices. These factors significantly prolong the training process,

especially when using fMRI data with a low TR. For example, training with the demodata (TR = 3.0s) from the previous PLRNNproject,29 which

has a similar data structure as the INDICATE dataset, took only about 10–15 min per participant. However, when training with our INDICATE

data (TR = 0.8s), it took approximately 10–25 h per participant. Therefore, we decided to address this problem with down-sampling tech-

niques to reduce the size of the datamatrix. Among the three down-sampling approaches, uniform sampling,max pooling, and average pool-

ing, we chose average pooling. In average pooling, each signal is divided into non-overlapping regions (based on the step size) in the tem-

poral dimension. The average value of the signal within each region is then considered as the down-sampled value for that region. However,

down-sampling always leads to information loss. To reduce training time while maintaining reconstruction quality, we tested down-sampling

the data with step sizes of 2, 3, and 4, corresponding to equivalent TR values of 1.6s, 2.4s, and 3.2s, respectively. We ultimately selected the

down-sampled data with a step size of 3 (equivalent TR of 2.4s, with dimension of 175 3 1 per ROI) as the default setting for the next phase

since it resulted in fewermodels that did not converge and outperformed the other two options in terms of the threemetrics. Second, in order

to speed up the convergence speed of the model during the training process, we referred to previous studies on the PLRNNmodel and per-

formed standardization of the data before feeding them into the model for training.

Finally, the PLRNN model, like other machine learning models, requires a process for hyperparameter tuning. In the current MATLAB

version of PLRNN, there are two important hyperparameters that need to be tuned: the l value to control regularization during training

and the dimension of the dynamical state space Z (hidden space). Referring to previous studies on the application of PLRNN models,27,29,33

we determined the search space for these two hyperparameters as l˛ f0; 10; 102; 103; 104; 105g and Z˛ f6;7;8;9;10;11;12g. In the end, based

on the grid search experiment and overall metric scores, we selected the combination of M = 7 and l = 104 as the default hyperparameter

setting in this study.
QUANTIFICATION AND STATISTICAL ANALYSIS

In this study, we usedMSE, PSC, and Kullback-Leibler Divergence (KLX) to evaluate the quality of the PLRNNmodel. The detailed definitions

of these threemetrics can be found in the referenced literature.27,29,33 We used the ROC-AUC (area under the curve) score as the main metric

to evaluate the performance of the machine learning classifiers (RF). Additionally, the statistical significance of the classification results was

evaluated using the two-sided Fisher’s Exact Test, with p < 0.05 indicating a statistically significant difference. Table S1 lists the demographic

details of the fMRI dataset used in this study, and the statistical significance of the participants’ age and sex in the dataset was evaluated using

ANOVA and the chi-square test, respectively. All calculations were conducted using MATLAB 8.5.0 R2015a, R 4.2.3, and Python 3.8

environments.
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