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CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling 
molecules interacting with CD80/86, known to be critical for immune response initiation 
and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, 
resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and pre-
vents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune 
responses, particularly in murine models, clinical experience in kidney transplantation 
with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, 
cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was 
thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory 
T cells from pathogen-specific immune responses with alloantigens. Recently, the 
standard view that memory T cells arise from effector cells after clonal contraction has 
been challenged by a “developmental” model, in which less differentiated memory T 
cells generate effector cells. This review delineates how this shift in paradigm, given the 
differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, 
could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and 
highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to 
control post-transplant immune responses.

Keywords: CD28, CTLA-4, costimulation blockade, memory T cell, effector T cell, transplantation immunology, 
heterologous immunity, CTLA4-ig

introduction

The importance of costimulation to allo-immune response has been widely demonstrated. A com-
parative study of xeno- and allo-immune response by Lafferty et al. in the late 60s was at the origin of 
this concept (1, 2). To their surprise, they found that “as the genetic relationship between donor and 
recipient becomes more distinct, the degree of reactivity falls to an undetectable level.” They proposed 
that something more than antigens, with species compatibility, was required to stimulate an allograft 
response. They called this second signal the allograft stimulus. This became the costimulation signal, 
when extended to the entire T-cell response, within the second signal theory (3).

Later, CTLA-4, an inhibitory cell surface molecule with the same ligand on antigen-presenting cell 
(APC) as CD28, namely CD80/86, was discovered, defining the CD28/CD80/86/CTLA-4 balance. 
This pathway became an attractive focus in the transplantation field and has been the target of much 
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research over the past few decades, leading to the development of 
CTLA4-Ig (4). This fusion protein binds CD80 and CD86, pre-
venting ligation of CD28 and also of CTLA-4. In spite of its proven 
effectiveness in inhibiting allo-immune responses, particularly 
in murine models, clinical experiences in kidney transplantation 
with belatacept (a high-affinity CTLA4-Ig molecule) have exhib-
ited a high incidence of acute, cell-mediated rejection (5). The 
etiology of this belatacept-resistant rejection has been ascribed 
to heterologous immunity, i.e., the cross-reactivity of the pool of 
memory T cells from pathogen-specific immune responses, with 
alloantigens (6).

From the beginning, Lafferty et al. found that, once generated, 
activated cytotoxic T lymphocytes are able to kill any cell that 
expresses foreign antigens, that is, once activated the requirement 
for allogenic stimulus is lost (2). Based on a small number of stud-
ies, the idea that CD28 costimulation is unnecessary for CD4 + 
and CD8  + T-cell memory responses has become a generally 
accepted paradigm in immunology (7). This is consistent with the 
classic view that most T cells die after reacting to pathogens, but 
some of them, cells that are capable of destroying the pathogen, 
give rise to memory cells. Thus, the loss of the costimulation 
requirement is considered as a selective advantage to the memory 
T cells, which increases the efficiency of recall responses.

However, lines are shifting: in the memory field a new model, 
known as “developmental,” where naïve cells directly develop into 
memory cells without transitioning through an effector stage, is 
emerging. At the same time, data from experimental models, 
which are increasingly relevant to anti-infectious immune 
response, challenge the current paradigm of dispensable CD28 
costimulation by memory T cells. Furthermore, advances in 
the field of cancer immunotherapy provide indication on the 
impact of CTLA-4 blockade, including on a preexisting immune 
response. This review delineates how this shift in paradigm could 
profoundly affect our understanding of the CD28/CD80/86/
CTLA-4 blockade and highlights the potential advantages of 
selectively targeting CD28, instead of CD80/86, to control post-
transplant immune responses.

what we Can Learn from CD28-Negative  
T Cells

A way to investigate the requirement of CD28 for antigen-expe-
rienced T cells is to focus on CD28-negative T lymphocytes, for 
which there is little doubt that activation is CD28 independent.

As noted above, usually the loss of CD28, and consequently 
of the costimulation requirement, is regarded as a special state, 
achieved following an immune response by the most efficient 
clones and generating the best protective anamnestic response 
due to memory cells (8).

CD28-negative T cells are absent from umbilical cord blood, 
then emerge over time and finally a majority of peripheral 
blood T cells become CD28 negative (9). The loss of CD28 is 
an immunological feature primarily observed in humans and 
primates. Substantial progress has been made in understanding 
the molecular, cellular, and functional features of CD28-negative 
T cells since their initial identification in the early 90s (9, 10). On 
the one hand, they gain cytolytic activities supported by elevated 

expression of key molecules including perforin and granzyme, 
they have a low activation threshold, and in selected cases, render 
cell activation independent of the recognition of the appropri-
ate antigenic peptide. On the other hand, they have a reduced 
capacity to proliferate and survive after TCR activation, display-
ing signs of lymphocyte exhaustion with dominant inhibitory 
receptors (8–10). Thus, their overall impact is negative, since their 
accumulation comes at the expense of an appropriate immune 
response and gives rise to the risk of autoimmunity.

CD28-negative T cells do not appear to be memory cells, 
whose function would be to improve a recall response, but ter-
minally differentiated cells arising as a consequence of immune-
senescence. This contradicts mainstream thinking, where loss of 
the costimulation requirement is considered as an advantage for 
memory cells.

The Developmental Model and Possible 
Prediction of Costimulation Requirement

A new model for the linage relationship of T-cell subsets suggests 
that less differentiated memory T cells give rise to effector cells, 
and not vice  versa, so memory cells are derived directly from 
activated naïve cells that have never experienced an effector state 
(11–13).

This model is called developmental because it proposes that 
T-cell differentiation is largely a linear and unidirectional pro-
cess, whose driving force is the cumulative history of antigenic 
stimulation, going from naïve cell to terminally differenced 
effector T cell via a memory stage, with progressive chroma-
tin change. Cell maturation has been likened to a ball rolling 
down a hill, with cells progressively losing potential energy, 
i.e., “stemness” and proliferative capacities, but gaining effector 
and homing capacities (Figure  1). This process is associated 
with progressive characteristic changes in cell surface molecule 
expression that allow us to classify cells into various subsets. The 
loss of CD28 is one of the last events occurring during matura-
tion (13). This fits with the features of CD28-negative T cells 
described above (9, 10).

CD28 loss, and from a broader perspective, loss of the costimu-
lation requirement, would not then reflect an advantage inherent 
to memory acquired following an immune response, incidentally 
with a risk of immunopathology by inappropriate reactivation, 
but a feature of cells reaching the end of a progressive maturation 
process with limited potential but with effector capacities, and 
restricted to peripheral tissues.

Origins of the Notion That Memory T Cells 
are Costimulation-independent

The costimulation field has become much more complex since 
the publication of Lafferty’s allogenic stimulus hypothesis. 
Numerous activators and inhibitors of ligand/receptor interac-
tions have been described on both sides of the immunological 
synapse and given the appellation cell surface signaling mol-
ecules. Their distribution is extremely variable according to their 
developmental stage, the localization of the different lymphocyte 
subsets and their propensity to impact on each other through 
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feedback loops. The fate of each cell thus depends on the inte-
gration of signals derived from a large complex of stimulatory 
and inhibitory interactions (14). This framework, much more 
complex than the standard view of the second signal model, is 
required to interpret the results of the numerous studies that have 
been conducted over recent years on the CD28/CD80/86/CTLA-4 
triad. Some conclusions, sometimes considered as “ground rules”, 
have to be tempered by the inevitable limitations of the particular 
experimental methodologies and model systems. One of these 
ground rules is the paradigm that memory T-cell activation is 
CD28 independent; an idea based on a small number of in vitro 
studies and ones on CD28-deficient mice.

CD28 signaling requirements in memory CD4 + and CD8 + 
T-cell responses have been much less well studied than those on 
primary response generation. A first experimental model used 
by Steinman 30  years ago was the mixed lymphocyte reaction 
(MLR) (15, 16). “Memory cells” resulting from primary MLRs 
were actually not true memory cells as defined today, but rather 
lymphoblasts. Unlike naïve T cells that proliferate only after stim-
ulation with allogenic dendritic cells (DCs), these lymphoblasts 
proliferate regardless of the APC subset, including macrophage 
or B cell. The conclusion was that once activated, lymphocytes 
become independent of second signals.

These data were confirmed by Croft (17, 18). Adoptive transfer 
of TCR transgenic T cells, previously activated specifically in vitro, 
allowed exploration of antigen-specific memory responses. 
Indeed, after homeostatic proliferation in the host, they become 
memory-like, and, once harvested from spleen, they could be 
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FiGURe 1 | CD28 requirement and CTLA-4 mediated inhibition 
evolve through T cell run, highlighting consequence of different 
strategies targeting the CD28/CD80/86/CTLA-4 axis. Upper panel: 
according to the developmental model, during immune response, T cells 
differentiate progressively ranging from naive to effector via the memory 
stage. Throughout this process, like a ball rolling down a hill, they lose their 
proliferative potential but gain effector and homing competences. We 
assume that simultaneously their activation threshold, and so CD28 
dependency, decreases but that conversely the importance of CTLA-4 
intrinsic inhibitory signaling gradually increased. Lower panel: dotted line, 
control condition; red line, CTLA-4 blockade; green line, CD28 selective 

blockade; blue line, CD80/86 blockade; broken line represent sufficient 
level for T-cell activation and mounting an efficient response. For naive  
T cells, due to the lack of CTLA-4 signaling, selective and non-selective 
CD28 blockade would be equally efficient in controlling their activation. In 
the case of terminally differentiated T cells, preserving CTLA-4 mediated 
signals could be essential, especially in the absence of a CD28 
requirement, suggesting a relevant advantage of the CD28 selective 
blockade compared to CD80/86 antagonist. Memory T cells might 
represent a middle path in which the intensity of the TCR stimulation, more 
important in allo-immune context especially with direct presentation, is 
probably critical.

specifically re-activated ex vivo with specific peptides exogenously 
loaded onto various cultured APCs. Then using APC from 
CD80/86-deficient mice or CTLA4-Ig, the CD28-independence 
of these memory T cells was demonstrated (19, 20).

We should stress that all the previously discussed in  vitro 
studies have examined CD28 costimulation requirements under 
conditions where the T-cell stimulus was not equivalent to the 
stimulus received in physiological conditions. Peptide was exog-
enously loaded onto cultured APCs, and thus the requirement 
for costimulation may have been overcome due to the strength 
of TCR signaling (21). Indeed, even for a primary response, the 
costimulation requirement can be overcome if sufficiently high 
levels of TCR stimulation are obtained. Viola et  al., showed 
in vitro that, independent of the nature of the TCR stimuli, if TCR 
stimulation exceeds a minimum threshold, complete activation 
is achieved and in the presence of CD28 costimulation, that 
threshold is significantly lower (22), especially in memory T cells 
(23). Thus, the costimulation requirement is a quantitative phe-
nomenon and has to be investigated in the light of the strength 
of TCR stimulation.

However, evidence in vivo was provided in a report by Suresh 
et  al. showing that, in lymphocytic choriomeningitis virus 
(LCMV) infected CD28-deficient mice, memory LCMV-specific 
CD8 + T-cell response seems to be normally reactivated. Indeed 
when they were re-challenged with a lethal dose of LCMV, all the 
mice survived while all naive controls died (24).

At first sight, the use of CD28-deficient mice to investigate 
a memory response in  vivo may seem questionable, since the 
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primary response, and consequently the establishment of 
memory cells in these animals, is greatly reduced (25). But 
initial studies using LCMV-infected mice revealed that, unlike 
for principle viruses, an efficient primary CD8 + T-cell response 
can be generated in the absence of CD28 costimulation (25). The 
reason for this discrepancy was ascribed to higher levels of TCR 
stimulation, which could overcome the need for costimulation. 
Therefore, using this model to explore the recall responses actu-
ally makes little sense. In addition, more detailed studies suggest 
a number of deficiencies in terms of the primary LCMV-specific 
T-cell response in CD28-deficient mice. In particular, the expan-
sion of virus-specific CD4 T cells was reduced by about a factor 
of 10 (26) and results with B7-deficient mice indicate that B7 
costimulation is required for induction and maintenance of 
LCMV-specific CD8  +  T-cell memory (27). Finally, although 
CD28-deficient mice have normal levels of B- and T-cell popula-
tions, given the importance of CD28 costimulation in thymic 
T-cell development (28, 29), lack of CD28 induces a defect in 
regulatory T cells and could lead to defective mature T cells. 
Taken together, this complicates using these mice to study 
memory responses.

In the early 2000s, based on in  vitro studies and models of 
LCMV infection in CD28-deficient mice, despite their meth-
odological and technical limitation, the prevailing belief was 
that CD28 costimulation was not required for memory T-cell 
activation.

Revisiting the Concept

The accepted hypothesis began to be questioned with studies (30, 
31) in which in vivo depletion systems were used to analyze the 
role of DCs in reactivating CD8 memory T cells during recall 
response to three different microbial infections. Without DCs 
during recall response, a profound decrease in the number of 
CD8 memory T cells was observed, suggesting that costimulation 
through DCs was required for optimal memory response.

More evidence against the proposition that costimulation 
is dispensable for memory T cells comes from successes in the 
treatment of autoimmune diseases, which by definition involve 
pre-existing auto-reactive T cells. CTLA4-Ig has proved effec-
tive both in experimental models (32, 33) and in the clinic with 
psoriasis (34) and rheumatoid arthritis (35).

Furthermore, except for the specific case of LCMV infection, 
a lack of costimulation by CD28 impaired secondary response 
in numerous other infectious models has been found (36–42). 
Whether these observations indicate requirements for CD28 
costimulation during the initial priming or during the recall 
response is not clear and has not been investigated in detail.

In several more recent works (27, 43–50), reactivation of 
specific memory T-cell populations in immunized WT mice has 
been investigated using specific tetramers, or by adoptive transfer 
of labeled memory T cells. Assessment of a CD28 requirement 
was made through either adoptive transfer in CD80/86-deficient 
hosts or through costimulation blockade at the moment of recall, 
using CTLA4-Ig or anti-CD28 antagonist antibodies.

The essential function of CD28 for conferring host protection 
during secondary infection has been confirmed using the cre-lox 

system allowing a CD28-inducible KO in a model of infection by 
N. Brasiliensis (51). Mice were infected a first time, then a second 
one after treatment with tamoxifen allowing an efficient CD28 
deletion. Compared with WT, these mice had a delayed expulsion 
of adult worms in the small intestine.

Finally, a more recent study highlighted the critical importance 
of the CD28 pathway to memory T-cells homeostasis (52). Again 
in a context of LCMV infection, Kalia et al. demonstrated that 
without Tregs, memory T cells in a quiescent state proliferated and 
engaged terminal differentiation. CTLA-Ig by blocking CD80/86 
interaction with CD28 rescued memory defects (maintaining a 
quiescent state) by mimicking Treg known to modulate the level 
of ligand available for CD28 through CD80/86 trans-endocytosis 
on APC mediated by CTLA-4 (53).

Thus, currently, extensive research using more relevant experi-
mental models has demonstrated that the optimal elaboration of 
secondary T-cell immunity, as well as memory T-cell homeostasis, 
is dependent on productive CD28/CD80/86 interactions, in the 
setting of anti-infectious immune response.

Allo-immune Response

As a starting point, we have to distinguish two dramatically 
different scenarios for the involvement of immune memory 
response in transplantation. First, recipients who are sensitized 
to HLA antigens, which occurs mainly through blood transfu-
sions, pregnancy, or previous organ transplantation (54–56). To 
date, very little research has been done on use of T-cell-specific 
costimulation blockade strategies in HLA-sensitized recipients 
and as such it will not be addressed in this review. Second, there 
are recipients without HLA-specific immunization. In such case, 
memory T-cell involvement is not, at first sight, obvious.

In the early 90s, shortly after its discovery, the CD28/CD80/86 
interaction blockade, later associated with CD40–CD40L block-
ade, raised great hopes in the transplantation field. In murine 
models, numerous studies demonstrated that blockade of these 
co-stimulatory pathways during transplantation was highly 
effective at tolerizing naive donor-reactive T cells and prolonging 
graft survival. This occurred irrespective of the blockade modal-
ity: CTLA4-Ig (57–59) or anti-CD80/86 antibodies (4). While 
treatment with CTLA4-Ig in rodents demonstrated high efficacy, 
experiments in non-human primates demonstrated much more 
modest prolongation of allograft survival (60–62).

Initially, a weak affinity of the first CTLA4-Ig for CD86, com-
pared with CD80, was hypothesized as the source of this lack of 
effectiveness (4). Thus, a second generation of CTLA4-Ig, LEA29Y, 
with a better affinity for CD86, was developed. Translation of 
LEA29Y into non-human primate models of renal transplanta-
tion showed superior prolongation in graft survival compared to 
CTLA4-Ig as a monotherapy, and dramatically improved survival 
when used as part of a combined immunosuppressive regimen 
including either mycophenolate mofetil (MMF) and steroids 
or anti-IL-2R (basiliximab) (63). Based on these encouraging 
results, LEA29Y (belatacept) was moved into clinical trials as 
the principal component of an immunosuppressive regimen 
consisting of basiliximab, steroids, and MMF (5). As expected, 
this study showed improvement in renal function compared with 
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cyclosporine-treated recipients owing to reduced CNI-related 
renal toxicities (5, 64). However, the incidence of biopsy-proven 
acute rejection was higher in belatacept-treated recipient, giving 
rise to a new concept: the “belatacept-resistant rejection,” its 
counterpart being resistance to tolerance induction in rodent 
experimental models.

As detailed above, based on studies in  vitro and in CD28-
deficient mice, the perception that memory cells did not 
require costimulation signaling by CD28 was deeply ingrained. 
Consequently, memory T cells were presumed to be the guilty 
party in belatacept-resistant rejection via heterologous immunity, 
the concept that without bystander activation, virus-specific 
memory T cells can become activated by unrelated viruses, 
through molecular mimicry (65). On the top of this, unexpected 
cross-reactivity between virus-specific CTL clones and unin-
fected allogenic targets has been demonstrated (66). This activity 
could be attributed to dual recognition of pathogen-peptide/
self-CMH complexes as well as peptide/allo-CMH complexes (6, 
67). The most famous example is in seminal studies by Burrows 
et al. demonstrating that CD8 + T cells specific to EBV-EBNA3A 
restricted by HLA-B8 were cross-reactive with HLA-B44 present-
ing a self-peptide. Recently, the molecular understanding of this 
phenomenon has improved (68, 69) and its magnitude in the 
transplantation context has been clarified (70).

Heterologous immunity was suspected of playing a major role 
in mediating costimulation blockade-resistant allograft rejection, 
observed in situations where transplant recipients have an immune 
history. Several studies argue for this hypothesis, showing that 
naive recipients that had previously been infected with different 
pathogens became refractory to the tolerance-inducing effects of 
costimulation blockade (71, 72). This resistance is transmitted 
by adoptive transfer of CD8 and/or CD4 from an immunized 
to a naive animal (73). Furthermore, in a more relevant model 
of kidney transplantation in NHP, where tolerance was induced 
by costimulation blockade combined with donor-specific 
transfusion (DST), it was revealed that the higher frequency of 
alloreactive memory cells (when measured by ELISPOST assay) 
correlated with the occurrence of acute rejection (74).

Collectively, these studies concluded that resistance to the 
tolerance-inducing effects of costimulation blockade in experi-
mental models and belatacept-resistant rejection in the clinic 
were caused by heterologous immunity (75, 76). How can this 
conclusion be reconciled with the recent data showing that 
effective memory T-cell recall response actually requires CD28 
costimulation? One explanation could be that in the non-phys-
iologic context of transplantation, the strength of the antigenic 
challenge overcomes the costimulation threshold, particularly in 
Ag-experienced cells.

An early and Only Cellular Rejection?

Heterologous immunity occurs through the interaction of a 
recipient Ag-experienced T cell with a donor APC, in transplant 
immunology this is called the direct recognition pathway. If we 
assume that the strength of the antigenic challenge during an allo-
immune response overcomes the CD28 requirement threshold, it 
should again be through the direct recognition pathway. Yet the 

main immunological issue in kidney transplantation concerns 
the late onset of kidney dysfunction caused by chronic rejection 
mainly driven by the indirect pathway (i.e., the interaction of a 
recipient T cell with a recipient APC exposing donor allogenic 
MHC peptides) (77), which presumably has a higher physiologi-
cal CD28 requirement threshold. In addition, the onset of de novo 
DSA can explain a large proportion of chronic rejection. Its onset 
is dependent on allogenic B-cell response that receives help 
from a highly specialized subset of CD4 T cells in the germinal 
center (GC), the follicular helper T cells (Tfh) (78). A recent 
study revealed that help for a GC alloantibody response could 
only be provided by CD4 T cells by the indirect pathway (79). 
The fact that CD28 costimulation is greatly required for primary 
Tfh response probably explains the lack of DSA in experimental 
models and belatacept-treated recipients exhibiting remarkably 
low levels of DSA (64).

The above points suggest that costimulation blockade-resistant 
rejection should occur early, driven by the direct pathway and 
consequently without the development of specific alloantibodies, 
except, obviously, in the case of prior specific immunization.

Are experienced-T-Cell Subsets on equal 
Terms with Costimulation Blockade 
Resistance?

Even in cases involving the direct recognition pathway, it is likely 
that all Ag-experienced T cells are not equal in terms of CD28 
requirement. Recent studies on tolerance induction by costimula-
tion blockade (80–85) substantiate the view mentioned above that 
CD28 requirement loss would not reflect an inherent advantage to 
any memory response acquired following an immune response, 
but would be a feature confined to cells reaching the end of a 
progressive process of maturation.

When allo-specific CD8 T Central Memory (TCM) and T 
Effector Memory (TEM) cells were transferred into wild-type 
recipients, they were found equally effective at rejecting allografts. 
When transferred into aly-deficient recipient (aly-deficiency 
leads to an absence of secondary lymphoid organs), TEM cells 
were significantly better than TCM at rejecting allografts (86). 
This suggests that TCM, but not TEM, reactivation requires the 
presence of APC with costimulation molecules to proliferate and 
gain effector and homing capacities.

In line with this, in a model of heterologous immunity generated 
by a latent γHV68 infection of WT mice, effector T cells (CD44high 

CD127lowCD62Llow) and TEM (CD44highCD127highCD62Llow-int) 
were found to be responsible for resistance to tolerance induction 
by costimulation blockade, in contrast to TCM (80).

In a murine model, decreasing the amount/duration of antigen 
exposure during priming impacted the ability of donor-specific 
experienced T cells to mediate costimulation blockade-resistant 
rejection (81). Interestingly, only donor-specific T cells that were 
generated under conditions of reduced Ag exposure failed to 
mediate costimulation blockade (referring to as CD80/86 block-
ade) resistant rejection. Overall antigenic stimulation undergone 
by T cells during priming is proposed as predicting cell fate, rang-
ing from unpolarized cells to terminally differentiated cells (87). 
Thus in the case of poor antigenic stimulation, the accumulation 
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of unpolarized cells could explain the success of the costimulation 
blockade.

The differential effects of belatacept on cell proliferation in 
response to either viral peptide processed on self APC or allo-
genic stimulation seem to confirm this proposition (82). Xu et al. 
showed that a large percentage of the repertoire proliferated in 
response to alloantigen, but contained few polyfunctional cells 
(advanced in their maturation and expressing IFNγ, TNFα, and 
IL-2). By contrast, the proportion of cells responding to a viral 
peptide was low and consisted predominantly of mature poly-
functional TEM. When belatacept was added to the cell culture 
medium, only the more mature cells escaped the costimulation 
blockade. This again demonstrates that only T cells that have 
reached a late maturation stage are independent of CD28.

Furthermore, this could explain the relative success of the 
association of belatacept and alefacept, a CD2 antagonist, in 
an experimental model of kidney transplantation in NHP (83). 
Indeed, CD8+CD2+ were the most differentiated in terms of 
cytotoxic molecule expression and polyspecificity.

Hence among experienced T cells, those liable for costimula-
tion blockade resistance are mature cells, having completed the 
progressive process of differentiation, including the loss of the 
CD28 costimulation requirement for their activation.

Interestingly, recent data have revealed that end-stage renal 
disease patients, compared to healthy controls, have a significant 
greater number of memory T cells showing progressive terminal 
differentiation, similar to what is observed in old people with 
immune-senescence (88). Likewise, anti-thymocyte globulins 
(ATG)-treated recipient exhibit more late stage differentiated T 
cells, including CD28 negative (89). Hence, kidney transplant 
candidates, by definition with impaired renal function, could be 
especially affected by belatacept-resistant rejection.

Beyond having a CD28 requirement, CTLA-4 might also 
play a role in belatacept-resistant rejection. Halloran et al. have 
recently demonstrated that CTLA-4 transcripts dominate the 
molecular landscape of T-cell-mediated rejection (TCMR) (90), 
highlighting the possibility that an active negative regulation of 
T cells in tissue could explain the occurrence of robust TCMR in 
belatacept-treated recipients.

CD28 Selective Blockade

Up to now, “CD28 blockade” referred to inhibiting B7, either with 
a CTLA4-Ig or anti-CD80/86 antibody. Obviously, concomitant 
inhibition of the CTLA-4 pathway is the main drawback of this 
strategy. As suggested above, the selective blockade of CD28 
signaling (i.e., blocking only CD28/CD80/86 interactions) should 
present the advantage of respecting the immune-modulatory 
signals mediated by CTLA-4. The recent development of mono-
valent antagonist anti-CD28 binders makes this strategy feasible 
and safe (91–95), clearly differentiating them from agonist or 
superagonist anti-CD28 antibodies (96–100).

CD28 antagonists prevent acute allograft rejection in mice 
(101) and primate (92). The potential benefit of preserving 
CTLA-4 pathways would be due to its extrinsic action, mainly 
through regulatory T cells. Indeed, use of CD28 antagonist is 
associated with Treg accumulation in the graft, where they most 

likely modulate pathogenic T cells and promote prolonged allo-
graft survival (92).

But CTLA-4 has also intrinsic, cell-autonomous roles (102). 
For experienced T cells, we would expect the advantages of a selec-
tive CD28 blockade compared with CTLA4-Ig, if two conditions 
are met: (i) cells independent of CD28 costimulation for their 
activation are at play in the context of allo-immune responses 
and (ii) that activation of these same cells is regulated by CTLA-4. 
We have seen above that CD28-independent alloreactive cells do 
exist even though this concerns probably only a few singular cell 
subsets. Whether experienced T cells are regulated by CTLA-4 is 
the focus of the following paragraph.

Are experienced T Cells Regulated by 
CTLA-4?

Targeting CTLA-4 with ipilimumab for melanoma immuno-
therapy was the first clinical demonstration of the physiological 
role of CTLA-4 acting as an immune checkpoint that controls 
T-cell reactivity (103, 104). Initial work indicated that the maxi-
mal activity of anti-CTLA-4 treatment required the targeting 
of CTLA-4 on both effectors and Tregs (105). It has also been 
suggested that anti-CTLA-4 antibodies lead to the depletion of 
Tregs within the tumor microenvironment in a Fcγ receptor-
dependent manner (106–108), concomitant with an increase in 
the number of activated T cells in peripheral blood (109–112) 
as well as the tumor site (113–115). Two non-mutually exclusive 
scenarios can explain this second observation. First, anti-CTLA-4 
treatment could improve the priming, then expansion of tumor-
specific naive T cells. Second, it could increase the magnitude 
of the preexisting memory/effector tumor reactive T cells by 
turning off inhibitory mechanisms (116). Recent advances argue 
for the latter. Cha et  al. measured the frequency of individual 
rearranged TCRβ genes after anti-CTLA-4 treatment in cancer 
patients. Clinical outcome was associated with maintenance of 
high-frequency clones present at the start of the treatment. The 
bulk of the change in clone frequency occurred in the effector/
memory T-cell compartment rather than in the naive T-cell pool, 
suggesting that treatment boosted meaningful preexisting T-cell 
responses (117). More recently, it has been evidenced in mice 
that preexisting anti-tumor T-cell responses are amplified by 
checkpoint blockade therapy. Anti CTLA-4 and anti PD-1 in a 
sarcoma model regulated a subset of genes in CD8 tumor-specific 
infiltrating lymphocyte (TIL) (especially Granzyme B, IFN-γ, and 
TNF-α that are known to cause acute rejection), whose enhanced 
expression is similar to that observed in CD8 T cells from mice 
during acute secondary viral infection. The depressed genes 
were similar to those of exhausted CD8 T cells in chronic viral 
infection (particularly LAG-3 and TIM-3) (118). In a melanoma 
model, anti-CTLA-4 predominantly inhibits Treg cells in TIL but 
also reinvigorates exhausted PD-1 + Eomes + CD8 T cells (119).

In the context of rejection prophylaxis by CTLA4-Ig, CTLA-4 
is also blocked (at least it cannot interact with CD80/86 anymore). 
It is tempting to speculate that, similar to that which is observed 
in tumors, some preexisting transplant infiltrating lymphocytes 
in an advanced stage of differentiation, which are supposed to 
be costimulation independent, could be reinvigorated by the 
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CTLA-4 blockade with belatacept. Indeed CTLA-4 might inhibit 
T cells even in the absence of CD28 (120) and data from clinical 
trials provide indirect evidence for such an “immune checkpoint 
inhibitory” effect of CTLA4-Ig. In inflammatory bowel disease 
(IBD), patients treated with CTLA4-Ig demonstrate minimal 
improvement and disease exacerbation was seen in some treat-
ment groups (121). The development of IBD has also been 
reported in a patient treated with CTLA-4 Ig for rheumatoid 
arthritis (122).

which Cells are Responsible for 
Belatacept-Resistant Rejection?

Regardless of maturation stage, we can assume that both the 
threshold of CD28 requirement and the intrinsic regulation by 
CTLA-4 pathway differ between various T-cell subsets.

Polarized Th17 could be responsible for Belatacept-resistant 
rejection, since an elevated level of Th17 memory cells has 
been associated with acute rejection with belatacept (85), and 
as mentioned above, in IBD, which is a Th17-mediated disease, 
CTLA4-Ig treatment has exhibited minimal efficacy and even, 
in a few cases, disease exacerbation (121). In addition, Candida 
albicans immunization of mice conferred resistance to costimula-
tion blockade following transplantation. C. albicans polarizes the 
response toward Th17 cells and enhances expression of CTLA-4 
on Th17 cells. Mycobacterium tuberculosis, which polarizes the 
response toward Th1 cells, does not confer such resistance (84). 
These data were verified using mice genetically deficient for 
hallmark T-cell transcription factors such as B6.RORγt KO and 
B6.T-bet KO (123). Thus, Th17 cells might be particularly sensi-
tive to regulation by CTLA-4, and CTLA4-Ig might hamper this 
regulation.

Turning to Tfh, the initial priming instigating a Tfh response is 
CD28 dependent, including in the allo-immune response context 
(124). By contrast, primed Tfh lose their CD28 requirement when 
they secondarily interact with B cells (125). Furthermore, at that 
stage, CTLA-4 also regulates Tfh function in a cell-intrinsic man-
ner (126). Again, like Th17, Tfh accumulates with immune history 
and has the features required to prompt resistance to CTLA4-Ig.

Potential Advantage of Targeting CD28 
instead of CD80/86

Recently (127), we performed a direct assessment of FR104 (93), a 
selective CD28 Fab antagonist, versus CTLA4-Ig (LEA26Y) in kid-
ney allograft in baboon. The biologics were used de novo together 
with an initial 1-month treatment with a low dose of tacrolimus, 
weaned between months 1 and 2, after which the recipients were 

under monotherapy with the biologics. Biopsy-proven acute 
rejection animals were treated with boluses of steroids. In the 
CTLA4-Ig group (n = 5), four out of the five recipients developed 
severe acute cellular rejection before, during or just after tacroli-
mus weaning and this proved to be corticoresistant. In the FR104 
group (n  =  5), only two animals developed an acute rejection 
episode, just after tacrolimus weaning, and this could be reversed 
by steroids. A transcriptional analysis of 1-month biopsies did not 
reveal any significant differences except the remarkable excep-
tion of IL-21, stronger in CTLA-4 treated animals, whose main 
source is Tfh cells. Immunohistochemistry revealed some CD4 
T cells expressing PD-1, the main marker used to identify Tfh 
and IL-21. We then assessed in vitro proliferation of stimulated 
Tfh (CXCR5 + ICOS + PD-1 +) using human tonsil tissue and 
found that inhibition was more effective with FR104 than with 
CTLA4-Ig. This was confirmed in an experimental model of 
immunization with KLH in mise where, as expected, primary 
Tfh response was equally inhibited with both CD28 selective 
blockade and CTLA4-Ig, unlike the recall response in which the 
CD28 selective blockade was more efficient in controlling Tfh 
response. Of interest in a model of islet transplantation, mIL21R.
Fc rescues CTLA-Ig-treated mice, resulting in tolerance in 100% 
of the mice versus 55% in a CTLA4-Ig monotherapy group, and it 
was demonstrated that IL-21 acted as an antitolerogenic cytokine 
by preventing Treg generation and inhibiting Treg function (128).

Summary

In the field of transplantation, the initial great hopes for CD28/
CD80/86/CTLA-4 blocking strategy have been dashed in the 
confrontation with clinical reality. The presence of a complex 
repertoire of preexisting experienced T cells either free of a CD28 
costimulation requirement and/or controlled by the CTLA-4 
immune checkpoint is a likely explanation.

However, the picture might not be so dark. First, because 
primary Tfh response is strictly under the control of CD28, 
explaining why a costimulation blockade with belatacept pre-
vents the induction of alloantibodies. Second, a loss of a CD28 
requirement might not be exhibited by memory cells, but rather 
confined to terminally matured cells, to some extent exhausted. 
Although in the context of allo-immune response, these cells 
could cause severe rejection, the risk of a rescuing inhibitory 
signal mediated by CTLA-4 and of eliciting belatacept-resistant 
cellular rejection could be alleviated by the use of CD28-specific 
antagonists, which are currently in clinical development that will 
block CD28-mediated signals, without preventing CTLA-4 sig-
nals. This novel approach might have the potential advantage of 
controlling post-transplant immune responses more effectively.
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