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Developing ground robots for agriculture is a demanding task. Robots should be capable
of performing tasks like spraying, harvesting, or monitoring. However, the absence of
structure in the agricultural scenes challenges the implementation of localization and
mapping algorithms. Thus, the research and development of localization techniques are
essential to boost agricultural robotics. To address this issue, we propose an algorithm
called VineSLAM suitable for localization and mapping in agriculture. This approach uses
both point- and semiplane-features extracted from 3D LiDAR data to map the
environment and localize the robot using a novel Particle Filter that considers both
feature modalities. The numeric stability of the algorithm was tested using simulated
data. The proposed methodology proved to be suitable to localize a robot using only
three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared
against a state-of-the-art approach considering three real-world experiments in a
woody-crop vineyard. Results show that our approach can localize the robot with
precision even in long and symmetric vineyard corridors outperforming the state-of-
the-art algorithm in this context.
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1 INTRODUCTION

The development of autonomous robots in agriculture is a challenging and active research topic
(Emmi et al., 2014). To implement such systems, the autonomous navigation issue must be solved,
i.e., robots should be capable of driving autonomously within multiple environments Shalal et al.
(2013). Consequently, autonomous robotic platforms should be endowed with robust localization
systems, that allow recovering their absolute pose in the agricultural environment (Vougioukas,
2019). Simultaneous Localization and Mapping (SLAM) allows calculating the travelled trajectory
while mapping the environment simultaneously (Bailey and Durrant-Whyte, 2006; Durrant-Whyte
and Bailey, 2006). In agriculture, the implementation of SLAM is particularly important since it leads
to creating maps that farmers can use in various tasks. When robots have this ability, they can
perform several autonomous operations such as precision agriculture (application of fertilizers,
nutrients and water), plant protection, harvesting, monitoring, and planting (Bergerman et al., 2016;
Roldán et al., 2018; Pinto de Aguiar et al., 2020). Even so, the implementation of SLAM in outdoor
agricultural environments can be challenging since the characteristics of illumination and terrain
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irregularities can difficult the perception stages, and therefore,
compromise the SLAM systems (Aguiar et al., 2020a).

To perform accurately, one of the most important steps of
SLAM is perception. In this context, the use of 3D LiDARs has
become popular in outdoor environments since they allow a high-
range field of view perception of the environment. The point
clouds generated by these sensors contain several types of features
that are important for SLAM approaches. Regarding point
features, one important descriptor is smoothness (Zhang and
Singh, 2017), that for a given point pi and a set of continuous
points S, can be calculated as

c � 1
|S| · ‖pi‖

∑
j∈S,j≠i

pj − pi( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣. (1)

With the application of threshold levels to c, two main types of
point features can be extracted. Features with small values of c are
present in high-curvature locations and therefore are called edge
features. On the contrary, features with high smoothness are
called planar features. Shan and Englot (2018) use these concepts
in their proposed SLAM pipeline, LeGO-LOAM. In this work, the
raw point cloud is first segmented to remove noise, and then edge
and planar features are extracted. Other approaches propose the
extraction of point features in the SLAM context. Steder et al.
(2010) project the point cloud onto a range image and calculate
the second derivative of the depth. With this formulation, high-
curvature features are extracted from the range image. Chen et al.
(2015) extract curb features from a 3D point cloud with a range
up to 50 meters. This approach uses a distance criteria, and a
Hough transform to process the point cloud and collect the
desired features.

Point features extracted from 3D point clouds can have high
computational cost in localization and mapping algorithms due
to their usual high density. Even if the SLAM approaches are
robust to this issue, the fusion of these perception techniques with
other feature types can improve performance (Grant et al., 2019).
Thus, as detailed in Table 1, many works use plane features in the
mapping and localization stages. To extract such features, one of
the most common techniques is Random Sample Consensus
(RANSAC) (Gee et al., 2008; Ulas and Temeltas, 2012;
Taguchi et al., 2013; Elghor et al., 2015). This algorithm
receives as input a set of points and calculates the best fitting
plane to those points, removing the input set’s outliers. Other
approaches use Convolutional Neural Networks (CNN)s (Yang
et al., 2016) or Principal Component Analysis (PCA) (Viejo and
Cazorla, 2007) for plane extraction. In terms of representation, a
plane i is usually characterized as

mγi � π, d{ }, (2)
where π � [π1, π2, π3]T represents the plane unit normal vector,
and d the plane distance to the origin. Other representations are
also present in the literature. For example, Elghor et al. (2015)
also preserve the number of inliers found in the RANSAC
procedure in the plane representation. Also, Gee et al. (2008)
represent a plane by its origin and two orthogonal basis vectors.
All these representations are suitable for infinite planes. For
localization and mapping, this representation can be improved
using semiplanes. With this type of features, the matching
procedure becomes more robust since other correspondence
techniques can be applied, such as semiplane overlapping
(Yang et al., 2016). Ulas and Temeltas (2012) use a Convex
Hull algorithm to extract semiplanes extremas and feed an

TABLE 1 | Summary of the current state-of-the-art on plane-based localization and mapping.

References Application Feature extraction Mapping

Taguchi et al. (2013) 3D reconstruction of indoor spaces using
hand-held sensors.

Points: image feature detector; planes: RANSAC
algorithm.

RANSAC-based registration algorithm.

Yang et al. (2016) Localization and mapping of low-texture
indoor environments.

CNN-based plane detection. Point and semiplane registration.

Viejo and Cazorla
(2007).

Egomotion estimation in indoor and
outdoor semi-structured environments.

Plane extraction using a PCA technique. Iterative Closest Point (ICP) algorithm used for plane
registration.

Grant et al. (2019) Velodyne point-plane SLAM in challenging
indoor and outdoor environments.

Find groups of points that arise from planar
surfaces in a scan-line basis (Grant et al., 2013).

Registration with a developed algorithm: Iterative
Closest Point Plus Plane Optimization (IC3PO).

Zhang et al. (2019b) SLAM in indoor environments. Plane segmentation using a connected
component-based approach.

Points added by triangulation and observed planes
added if no correspondence is found.

Kaess (2015) Mapping of indoor environments using
hand-held sensors.

Plane segmentation from point cloud data. Infinite plane representation and mapping.

Weingarten and
Siegwart (2006)

Localization and mapping of indoor
environments.

Divide and conquer approach: best-fitting planes
from small regions (Weingarten et al., 2003).

3D map builds using an Extended Kalman
Filter (EKF).

Gee et al. (2008) SLAM in indoor environments using hand-
held sensors.

Planar surfaces extracted using RANSAC. Registering based on similarity test.

Elghor et al. (2015) 3D reconstruction of indoor environments. Planes extracted using RANSAC. Planes registered and fused using a weight
function.

Lenac et al. (2017) Planar representation of indoor and
outdoor environments.

Plane segments extracted by a 2D Delaunay
triangulation.

Registration using the overlapping between planes.

Ulas and Temeltas
(2012)

Outdoor SLAM. Planes extracted using RANSAC. Planes matched and registered using: orientation,
translation and closeness.

Our approach Autonomous navigation in outdoor
agricultural environments.

Point-wise and three stage semiplane-wise
feature extraction.

Point registration and semiplane matching and
merging algorithm for registering and mapping.
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outdoor SLAM algorithm. Similarly, Weingarten and Siegwart
(2006) represent semiplanes by a set of convex polygons and use
them in a 3D SLAM algorithm. Lenac et al. (2017) also use this
representation and incorporate the polygons extremas in each
semiplane characterization vector.

Plane mapping and registration can be more challenging than
feature point mapping. In the latter, the general approach is to use
a nearest neighbor search, optimized by efficient data structures
such as 3D voxel maps. Two main factors are usually considered
to solve plane matching and mapping: the difference between the
plane normals and plane-to-plane distance (Viejo and Cazorla,
2007; Grant et al., 2013). With the consideration of bounded
planes, Pop-up SLAM (Yang et al., 2016) also uses the
overlapping area between semiplanes. After a successful
matching procedure, the plane-based mapping step either adds
new features to the map or updates the existing ones in case of
correspondence. In SLAM, the mapping procedure is
interdependent of localization. From Table 1, one can verify
that most works use graph-based optimization to localize the
robot using planes. For example, Zhang X. et al. (2019) build a
pose graph where points and planes are marked as landmark
nodes, and add structural constraints between planes in the
graph. Kaess (2015) formulates planar SLAM as a factor graph
finding a solution for the localization and mapping through least-
squares optimization. Some works also adapt the ICP scan-
matching algorithm to be used considering planar features.
Viejo and Cazorla (2007) propose a two-step ICP that
considers separate orientation and position alignment. This
approach uses information given by the normal vector
orientation and the geometric plane position. In addition,
some works are based on Gaussian filters (Gee et al., 2008;
Ulas and Temeltas, 2012; Zhang X. et al., 2019). In these, the
state vector comprises the robot pose and the plane landmarks. In
comparison with point feature-based SLAM, this approach has
the advantage of reducing the state’s dimension.

Given all of the above, it is clear that 3D LiDARs provide rich
information for localization and mapping approaches. Besides
the previously mentioned LeGO-LOAM approach, and its
ancestor LOAM (Zhang and Singh, 2014), other approaches
use this sensor to provide reliable SLAM systems. Kuramachi
et al. (2015) propose a range and inertial odometry algorithm that
fuses a 3D LiDAR and a gyroscope to recover the 6-DoF robot
pose andmap the environment. This LiDAR odom etry technique
can either be approached traditionally using iterative algorithms,
or in more sophisticated manners, such as using Artificial
Intelligence (AI). For example, Choy et al. (2020) propose a
deep global registration algorithm that is designed for pairwise
registration of 3D scans. The key innovation of this approach is
the use of a 6-DoF Convolutional Neural Network (CNN) for
correspondence confidence prediction. In the same context, Li
and Wang (2020) propose DMLO, a deep matching LidAR
odometry algorithm which presents a learning-based matching
network which provides accurate correspondences between two
scans. In this work, we make use of a rich feature extraction
process that considers both point and semiplane features, and
implement a filter-based algorithm for localization and mapping.
As represented on Table 1, to the best of our knowledge, the

Particle Filter (PF) has not been approached together with
semiplanes features in the SLAM context. The most common
approach is to use optimization-based localization algorithms
such as Bundle Adjustment and factor graph optimization. Thus,
in this work, we extend the state-of-the-art to consider the use of a
6-DoF PF that supports two modalities of features: point-wise
and semiplane-wise features. This filter-based algorithm was
initially applied to robotics to solve the localization and
kidnapping problems (Thrun, 2002). Zhang Q.-B. et al. (2019)
use the PF to develop a robust localization algorithm that works
when a priori environment map is available, considering range
observations. Due to its capacity to accommodate multi-
dimensional problems, the PF was later used to solve the
SLAM issue. FAST-SLAM (Montemerlo et al., 2002) is one of
the most popular examples, being able to solve the SLAM
problem with a PF considering a landmark-based feature
extraction procedure. In the agricultural context, the PF was
also applied in autonomous navigation algorithms. Hiremath
et al. (2014) use a PF to implement a row following algorithm
in a maize field. The filter state is composed of robot heading,
lateral deviation, distance between the rows of plants and the end
of the rows. Similarly, Blok et al. (2019) use the PF and a 2D laser
sensor to localize an agricultural platform for in-row navigation
in orchards.

In this work, we propose VineSLAM (dos Santos et al., 2016;
Aguiar et al., 2021), a 6-DoF SLAM algorithm for agricultural
environments that uses point and semiplane features extracted
from 3D point clouds. Our approach presents the following main
contributions:

• A three-stage algorithm for semiplane extraction;
• A semiplane matching and merging algorithm that allows
efficient registering and mapping;

• A novel localization procedure based on a PF that can use
both point and planar information.

We model the agricultural environment as points and
semiplanes. In each time step, edge and planar point features
are extracted, and three semiplanes are searched in the
environment. The first semiplane is the ground, and the other
are two semiplanes, one in each side of the robot, that present the
higher number of inlier points. This formulation is a reaction to
the context where VineSLAM is intended to solve localization and
mapping: agricultural cultures mainly characterized by woody-
crop topologies. Thus, besides edge and planar features, usually
only three semiplanes are available in the environment. These
semiplanes are essential to the estimation of the three
components of the robot’s orientation. The ground plane is
particularly important to estimate the roll and pitch
components, and the vegetation planes to estimate the yaw
component. Without these features, the algorithm would rely
only on point-based features which could lead to drift in the
orientation components over time. Also, if we rely only on
semiplanes, we would always have to extract a minimum of
three non-coplanar semiplanes to compute the 6-DoF
localization of the robot. Thus, it is essential to merge the
point and planar features.
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Our approach relates to the state-of-the-art feature extraction
and matching steps but differs in the registration. We aplly a
plane merging algorithm that constantly updates and grows the
semiplanes present on the map. With this approach, we can
capture large planar ground surfaces, as well as extensive
vegetation planes. Also, we propose a novel localization
algorithm that uses a PF fusing information at both point and
planar levels. As reported in Table 1, most works in the state-of-
the-art apply plane-based localization and mapping in indoor
environments. Our approach is suitable for unstructured outdoor
environments, and it was tested in a woody-crop vineyard. The
PF approach was adopted in this work due to three main reasons.
The first is relative to sensor fusion. Our aim is to implement a
generic algorithm that is agnostic to the type of sensors used,
i.e., an approach that can use any kind of sensor if an adequate
weight function is provided for each one of them. With this,
particles should be weighted by the combination of all the weight
sub-functions. The second motivation for the use of this kind of
filter to solve the SLAM problem is the straightforward
parallelization scheme that it provides. Powerful processors
such as Graphics Processing Units (GPU)s can be used
considering that the calculations performed per particle can be
executed in a separate processing core. Finally, the third is the
support for multiple noise distributions in relation with other
approaches that usually only support Gaussian noise. In this way,
particles can be sampled and innovated with the distribution that
best fits with the robot itself, and the scenario where it is
inserted in.

The remainder of this paper is structure as follows. Section 2
details the contributions of this work. Section 3 contains two
simulation experiences to validate the proposed approach.
Section 4 presents the test and validation of this work in real-
world experiments. Finally, Section 5 details the conclusions of
this work.

2 VineSLAM: Localization and Mapping on
Agriculture
This work proposes VineSLAM, a localization and mapping
algorithm based on 3D points and semiplane features
extracted from an input point cloud. Figure 1 shows a high-
level representation of the approach.

The system is divided in three main layers:

• Perception: 3D point cloud processing to extract edge,
planar and semiplane features;

• Mapping: Multimodal registration of the types of features
extracted to build a consistent 3D map of the agriculture
environment;

• Localization: PF-based procedure that uses both point- and
semiplane-based information to localize the robot.

Thus, our approach is able to efficiently extract point and
semiplane features from a 3D point cloud, and use them to build a
map of the crop and localize the robot within this map.

2.1 Perception
In the perception stage, three feature types of two different
modalities are extracted: edge and planar features (points), and
semiplanes. The point features are searched in sharp edges and
planar surfaces. In the semiplane extraction case, this work
searches for three semiplanes in the environment for each
frame. The first is a flat ground surface, and the others are
two semiplanes, one in each side of the robot. This
formulation allows the extraction of large ground surfaces by
recurrent plane registration. In woody-crop cultures, these
semiplanes usually extract the morphology of the vegetation
canopies. The extraction of point and semiplane features is
described in 1) and 2) respectively.

1) Point-level feature extraction: To extract point features, our
approach relates with LeGO-LOAM Shan and Englot (2018)
in that it uses the smoothness descriptor c present in (Eq. 1).
Points are projected into a range image and sorted by their
value of c. The points with larger c are considered edge
features, and the ones with lower c are considered planar
features. Figure 2 shows an example of this feature extraction
procedure in a woody crop vineyard.

2) Semiplane-level feature extraction: Our approach can
simultaneously use points and semiplanes to map the
agriculture and localize the robot. The representation of
semiplanes includes more dimensions than point features,
and their extraction involves more complex procedures. In
this work, we represent semiplanes as follows:

FIGURE 1 | System architecture partitioned in three main layers:
perception, localization and mapping.

FIGURE 2 |Corner (yellow) and planar (red) feature extraction example in
a woody crop vineyard.
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mγi � π, p0, e{ }, (3)
where π represents the unit normal vector, p0 the centroid defined
by the points that compose the semiplane, and e the set of extrema
points that limit the convex semiplane. The semiplane extraction
is processed in two main steps: point candidate selection and
plane fitting. In this step, the main goal is to extract three
semiplanes from the input point cloud, the horizontal ground
and two other arbitrary semiplanes.

For selecting the ground semiplane point candidates, two
different parameters are used. The first is the point vertical
angle Yang et al. (2021) (Figure 3) represented as δ. Given the
point cloud projection into the range image and two points in
consecutive rows, and defining the difference between these two
points as Δp = [Δx, Δy, Δz], the vertical angle is compute as

δ � arctan
Δz���������

Δx2 + Δy2
√ . (4)

The second criteria is the point’s height. Given the sensor
position’s prior knowledge in the robot’s referential frame, and
considering that it is mounted horizontally, only points that have
a height component closer to the sensor altitude are considered.
Thus, if this criteria is met and if δ is bellow a well-defined
threshold, the point is considered as candidate for the ground
plane. For the two remaining planes, a simpler point candidate
selection is performed. In this case, the input cloud points that
were not selected as ground candidates are divided into two main
sets, one on each side of the robot. With this formulation, the goal
is to extract two robust semiplanes both at the right and left sides
of the robot.

After extracting the point candidates for the three planes, we
implement a RANSAC algorithm in each set of points. This
approach fits the best plane model represented by its hessian
coefficients to the input set of points. In the end, the algorithm
retrieves the set of inlier points that belong to the extracted plane,
as well as its normal vector π. This formulation outputs an infinite

plane. To convert it to a semiplane, we extract a convex polygon
that bounds all the inlier points that constitute the plane. To do
so, a Convex Hull algorithm is applied to calculate the semiplane
extremas e, represented in (Eq. 3). Since agricultural
environments are highly unstructured, semiplane outliers can
be extracted. In this work, the outliers are filtered based on the
semiplane area. Only convex polygons with an area superior to a
defined threshold configured by the user are considered and
stored. Figure 4 shows an example of the extraction of the ground
plane and the vegetation canopies in a woody crop vineyard.

2.2 Mapping
In the mapping stage, two registration procedures are proposed,
one for points and the other for semiplanes. A 3D voxel grid is
implemented and used to store the point feature map and
perform efficient search algorithms. A more complex feature
matching algorithm is computed, and a map merging procedure
is proposed to update the semiplanes in the global map
continuously. These algorithms are described in 1) and 2)
respectively.

1) Point-level mapping: Unlike LeGO-LOAM’s approach
that uses a standard KdTree to store feature points and map
the environment, our work implements a 3D voxel grid map.
This data structure, besides being less memory-efficient is
more time-efficient since the searching algorithm is
performed by just accessing each cell index. This 3D map
is an extension of the standard 2D grid map, considering a
discretization also in the z coordinate. Each cell is indexed by
specific 3D discrete coordinates and can be efficiently accessed
with these coordinates. Also, the map recognizes the different
types of features supported. Thus, each cell can contain
several types of features, and the searching procedures
account for each type for faster processing. With this data
structure, the point-based mapping procedure is performed
using the information about the robot pose provided by the
localization layer and using a local search algorithm. Given a

FIGURE 3 | Vertical angle definition. Green dots are estimated ground
points, and red dots non-ground points. The vertical angle is estimated
between two consecutive points of the same column in the range image. FIGURE 4 | Semiplane feature extraction example in a woody crop

vineyard. The blue lines represent the polygons edges, the red dots their
extremas and the dark dots the semiplane inliers points.
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set of input point features Mλ � {mλ1,mλ2, . . . ,mλN} in their
homogeneous form and the robot’s pose Tr, each feature is
converted to the maps’ referential frame as follows:

~mλi � Tr mλi , i ∈ 1, . . . , N{ }. (5)
Then, a local search is performed for each feature in the 3D

voxel grid map. The nearest neighbor of each feature is
searched by the procedure represented in Figure 5. Each
feature’s nearest neighbor can be located either in its cell, in
adjacent cells, or even in more distant cells. Depending on the
voxel resolution, the user can specify if the local search
algorithm looks for neighbors just in adjacent cells or if it
continues for more remote cells in case of failure. This decision
sets the stop criteria of the algorithm, that iteratively looks for
the nearest feature in a region using a well-defined path as
specified in Figure 5. In cases where no neighbor is found, the
feature is registered and saved in the voxel map.

2) Semiplane-level mapping: The semiplane mapping procedure
consists of two main tasks: semiplane matching and
registering. The first step is to start with the matching
algorithm, like in the point features case, to convert the
observed semiplanes to the maps’ referential frame. Thus,
we apply a similar transformation as the one represented in
(Eq. 5) to the semiplane inlier points and extremas. Then, to
improve the matching procedure, we refine the normal vector
estimation of the transformed semiplanes using a Principal
Component Analysis (PCA) algorithm. Given the set of
transformed semiplane points ~Mγ � { ~mγ1, ~mγ2, . . . , ~mγN}, we
define S = YYT, where

Y �
~mγ1 − p̃0
~mγ2 − p̃0
. . .

~mγN − p̃0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

and p̃0 represents the transformed semiplane centroid. The
refined normal vector corresponds to the eigenvector of S with

the smallest eigenvalue. After this, the matching procedure is
computed considering three different correspondence criteria:

• Overlapping area;
• Normal vector difference;
• Centroid-to-plane distance.

If an observed and a global map’s semiplane meet these
criteria, one can conclude that both planes overlap, have the
same orientation, and are at the same position. Thus, they are
considered as correspondences.

To compute the overlapping area between semiplanes, the
local plane reference frame is extracted from the normal
vector, and the semiplanes boundaries are projected into
this frame. The z component is ignored since it is expected
that, in the local plane reference frame, the boundaries lie in
the X-Y plane (z = 0). Working in two dimensions, the
interception between the two polygons is computed, and its
area is calculated. If the overlapping area is higher than a
threshold level, the normal vector difference is computed to
check if the planes have the same orientation. Finally, the
distance between the observed semiplane centroid to the
semiplane in the global map is computed.

After the matching step, semiplane registration is
performed to build the semiplane global map iteratively.
Semiplanes that were not matched with any in the global
map are directly registered in the global map. For the ones
that were matched, a map merging algorithm is proposed. The
semiplane representation is recomputed by merging inliers
points between the two correspondences, recalculation of the
normal vector using (Eq. 6), and boundary merging using
Convex Hull. This process allows semiplanes to grow with
newly observed features and to map large bounded surfaces.
The process of registration can be observed in the following
video: https://youtu.be/Yx8el67eTCw.

2.3 Localization
The localization procedure aims to compute the robots’ 6-DoF
pose using the feature extraction and mapping algorithms
described. To this purpose, in contrast with the state-of-the-
art, this work implements a PF with the novelty of considering
point-semiplane particle weight calculation. This means that the
filter can consider and balance both feature modalities and work
in the absence of each one of them. The PF is standardly divided
into three main steps: a prediction step where the particles are
innovated through a motion model, the particles weight
calculation given the observed features, and the resampling
step to replace particles with lower weight by others with
higher weight. These three steps are described in 1), 2) and 3)
respectively.

1) Motion model: For predicting the particles likelihood
distribution, they are innovated through a 6-DoF model
proportional to an estimated relative motion. A LiDAR
odometry algorithm based on the Iterative Closest Point (ICP)
Besl and McKay (1992) method is implemented to estimate the
frame-to-frame 6-DoF robot motion, where an input wheel
odometry control ut is used as first guess for the iterative

FIGURE 5 | Point feature nearest neighbor local search. In a discrete 3D
space, the nearest neighbor of a point feature can be in the grid map layer
where the feature is located or at the top and bottom adjacent layers. A local
search in these three layers is performed to find the nearest feature as
described in the figure. If a feature is found when searching in the blue path,
the search ends. Otherwise, the search continues through the yellow path.
The user can tune the stop criteria.
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algorithm. The particles spreading is proportional to the distance
measured by the scan-matching algorithm du. Let us define the
following matrices:

• ΔT: the LiDAR odometry increment represented as an
homogeneous transformation; and

• Tn: an homogeneous transformation matrix computed by
sampling a minimal parameter space (6-DoF) from a
Gaussian distribution with standard deviation du.

Thus, a particle j is innovated at the instante t as follows:

Tj,t � Tj,t−1 ΔT Tn. (7)
2) Weight update: The particles weight calculation is the most

critical and innovative step of the proposed localization
procedure. The major challenges are the consideration of
multi modal inputs (points and semiplanes) and the creteria
balance on the semiplane-based weight calculation, since two
parameters are used to compute the weight. To account for both
modalities, a two-step weight calculation is performed using two
subfunctions:Wλ for the point (edge and planar) features andWγ

for the semiplane features. The particles weight is represented as a
likelihood function P(zt|Tj,t, Z0:t−1) where zt represent the feature
observations at the instant t, Tj,t the particle’s pose, and Z0:t−1 the
map build so far.

In the point-feature case, features are converted to maps’
reference frame using each particle pose as follows:

~mλi � Tj,t mλi , i ∈ 1, . . . , N{ }. (8)
Then, correspondences are found using the 3D voxel grid map

search algorithms described in Section 2.2. Considering the set of
K correspondences found { ~mλi ↔ mλ,gi : i ∈ {1, . . . , K}}, where
the subscript g denotes for features in the global map, the point-
feature weight subfunction is computed as

Wλ � 1���
2π

√
σλ

∑K
i�1

exp
−1
σλ

· ‖ ~mλi − ~mλ,gi‖( ), (9)

where σλ is the standard deviation of the point-feature
measurement, and ‖.‖ represents the L2 norm. This
formulation states that the weight of the particle increases
exponentially with the decrease of distance between two
correspondences, and that it is as higher as the number of
correspondences K found.

In the semiplane-feature case, the first step is also the
conversion of them to the maps’ reference frame. The set of
extremas of each semiplane ei and its corresponding centroid p0i
are converted to this referential using each particle pose as in (Eq.
8). Then, correspondences between the observed semiplanes and
the ones already registered in the global map are searched using
the three criterias described in Section 2.2: overlapping area,
normal vector difference, and centroid-to-plane distance. Given
the set of K correspondences found
{ ~mγ ↔ mγ,gi : i ∈ {1, . . . , K}}, where the subscript g denotes
for features in the global map, the semi-plane weight
subfunction is modelled as a multivariable function as follows:

Wγ � ∑K
i�0

wγ πi( ) · wγ p0i( ), (10)

where

wγ πi( ) � 1���
2π

√
σπ

exp
−1
σπ

· ‖~πi − ~πgi‖( )
wγ p0i( ) � 1���

2π
√

σp0

exp
−1
σp0

·D p0i , ~mγ,gi( )( ),
σπ and σp0 represent the standard deviations of the normal

vector and centroid measurements respectivelly, ~π(.) the
semiplane’s normal vector, ~p0(.) the semiplane’s centroid, and
D(.) the point-to-plane distance operator. Figure 6 represents the
semiplane-based weight for a single correspondence. As
represented, the importance given to the normal vector
difference (to account for plane rotation) and to the centroid-
to-plane distance (to account for plane displacement) can be
tuned by the standard deviations of each measurement. The
tunning step can be challenging since the multivariable
function considers two variables in different spaces (vectors
and distances). Overall, the particle’s weight decreases
exponentially with the increase of difference between
correspondence’s normal vector and centroid-to-plane distance.

Given the definitions (Eqs 9, 10) the particle likelihood is
computed as

P zt|Tj,t, Z0: t−1( ) � Wλ ·Wγ. (11)
In this way, the particle with the highest weight is the one that

presents the best alignment both in the point-feature and
semiplane-feature spaces. The final robot pose per frame is
computed by the weighted average of all particles’ pose.

3) Resample: The resampling step of the PF is used to
substitute low-weight by high-weight particles. In this work,

FIGURE 6 | Likelihood of the semiplane-based weight calculation
represented as a multivariable function. The likelihood decreases
exponentially with the increase of difference between normal vectors and
centroid-to-plane distance. Their corresponding standard deviations
can control the impact of each one of the variables in the final likelihood.
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the multinomial resample algorithm Douc and Cappe (2005) was
implemented to accomplish this. This approach draws N samples
from a uniform distribution ui and selects the particle j for
replication if

ui ∈ ∑j−1
p�1

wp,∑j
p�1

wp
⎡⎢⎢⎣ ⎞⎠, (12)

where wp represents the particle’s p weight. To avoid the well-
known problem of particle degeneracy that happens when either
all the particles are in the wrong place or they are highly
condensed, resampling is not executed for all iterations. This
method is only employed when a significant robot motion is
observed (either in translation or rotation in the six degrees of
freedom). The user can set the amount of motion required to
perform resampling.

3 SIMULATION EXPERIMENTS

This work’s major innovation is the use of semiplanes to map the
environment and localize the robot within it. As discussed in
Section 2.3, one of the biggest challenges in the proposed
semiplane-based localization is the weight given to the normal
vector difference and the centroid-to-plane distance. This Section
presents two simulation experiences to validate the numeric
stability of the approach. Three orthogonal planes are used to
localize the robot in the simulated environment and no point-
features are considered.

3.1 Methodology
The simulation’s main goal is to verify if, with three orthogonal
planes is possible to localize the robot. Thus, the environment
present in Figure 7 was built containing two perpendicular walls.
The third semiplane is the ground. The robotic platform used for
real experiments that will be detailed in Section 4 was modeled
and inserted in the simulation. This platform is based on a Husky
robotic base. To obtain the raw wheel odometry inputs, the Husky
simulator1 was used, that considers the error caused by the wheel

slippage. To obtain the LiDAR data, the Velodyne simulator2 was
used with a simulated Gaussian noise with standard deviation of
0.008 m.

Given all of the above, the simulation experiments were
carried out by two different sequences: a translation-only
motion and a rotation-only motion. The idea is to validate
that, using only three perpendicular semiplanes, the proposed
approach can estimate translations and rotations. The PF
algorithm used 500 particles to estimate the robot’s motion.

3.2 Localization Performance
As referenced before, under the same simulated environment,
two different experiments were performed. The semiplane feature
extraction procedure describe in Section 2.2 resulted in the
successful detection of the three semiplanes (two walls and the
ground) as shown in Figure 8. In the first experiment, the robot
moves forward without rotating. Figure 9A shows the x and y
deviation to the ground truth, as well as the absolute distance
error (meters). Overall, the semiplane-based localization
procedure presents an average distance error of 0.069 1 m for
this sequence. This shows that the semiplane extraction algorithm
is accurate in estimating the normal vectors, centroids and
extremas. More importantly, using only three orthogonal
semiplanes, the localization procedure can localize the robot
with low error.

Regarding the rotation-only experiment, Figure 9B shows the
estimated yaw rotation in reference with the ground truth, as well
as the corresponding rotation error. For this sequence, the
average rotation error obtained was 5.01 degrees. One of the
well-known localization issues is the estimation of motion in
rotation-only movements. These scenarios are more challenging
than translation motions since the perception of the environment
changes faster, challenging the matching procedures. Besides, the
odometers tend to present higher errors in rotations due to wheel
slippage. For all these reasons, this type of motion shows to
impact the filter’s performance. Even so, the localization

FIGURE 7 | Simulation environment containing three perpendicular
planes: the ground and two walls.

FIGURE 8 | Semiplane feature extraction of the three simulated
semiplanes.

1https://github.com/husky/husky_simulator 2https://bitbucket.org/DataspeedInc/velodyne_simulator.git
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approach can estimate the robot rotation with acceptable
performance, using only three semiplanes.

In the real world, the presence of at least three orthogonal
semiplanes is not always guaranteed. For example, in vineyards,
the most common scenario is detecting the ground plane and two
parallel vegetation planes. With this configuration there are no
constraints to estimate the forward component of the translation.
Due to this, the proposed approach fuses points with semiplanes.
Nevertheless, this simulation aims to show that the proposed
formulation is suitable for semiplane-only localization. The
simulated experiments performed show that the algorithm can
perform accurately in translational and rotational movements.

4 RESULTS

To test the proposed solution, our robotic platform AgRob V16
Aguiar et al., 2020b; Santos et al. (2020) present on Figure 10 was
used. The robot is equiped with a Velodyne Puck (VLP-16) and
was placed in Aveleda’s vineyard, in Portugal. It travelled three
different sequences that will be described later on. Section 4.1

details the experiments performed in this context, and Section 4.2
describes and analysis the results obtained.

4.1 Methodology
The proposed VineSLAM localization and mapping algorithm
performance was analysed in three different sequences described
in Table 2. The characteristics of each sequence are different not
only due to the different travelled paths, but also because they
were recorded in different seasons of the year. Two of them in the
summer, which means that the vineyard present a high density of
foliage, and other in the winter and without foliage. Sequence 1
has almost 70 meters of extension and is the less symmetric
sequence since, besides being inside a corridor, it is at the border

FIGURE 9 | Simulation results using three perpendicular planes in the localization and mapping procedures for a (A) translation-only trajectory, and for a (B)
rotation-only trajectory.

FIGURE 10 | AgRob V16 robotic platform used to test the proposed
approach placed in a woody-crop vineyard.

TABLE 2 | Summary of the experiments performed in Aveleda’s vineyard.

Experiment Distance (m) Foliage stage Season

Sequence 1 69.73 With Summer
Sequence 2 23.52 Without Winter
Sequence 3 81.72 With Summer

FIGURE 11 | Satellite image of Aveleda’s vineyard. The sub-figures
represent the sequences (1, 2 and 3) traveled by the robot.
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of the vineyard. Thus, the high-range LiDAR used can capture
scene objects that are not present in the corridor. Sequence 2
presents the smallest path (23.52 meters). Nevertheless, it is
challenging since the path is inserted in the middle of the
vineyard, with a high density of corridors. This sequence was
recorded during the winter, which means that the vineyard had
not foliage. Finally, sequence 3 is the most extensive, with more
than 80 meters. In this, the robot travels along two vineyard
corridors and is also placed in the middle of the vineyard. Thus, in
most cases, the environment is highly symmetric, compromising
the localization and mapping algorithm. Figure 11 shows a
satellite image with the three sequences represented.

To test and our approach, the proposed VineSLAM algorithm
was executed in the three sequences and compared with the state-
of-the-art LeGO-LOAM (Shan and Englot, 2018) SLAMmethod.
We consider LeGO-LOAM the state-of-the-art in outdoor 3D

SLAM using LiDAR sensors. This method was tested in extensive
outdoor experiments, and proved to perform better than its
ancestor, LOAM. From the literature, one can see that LeGO-
LOAM is aligned with robust 3D SLAM approaches, such as
G-ICP (Ren et al., 2019). Thus, in this work we test LeGO-LOAM
in harsh agricultural environments, and benchmark it against our
approach, VineSLAM.

To validate the results, Global Navigation Satellite System
(GNSS) was used as ground truth, and the Absolute Pose Error
(APE) was measured using this reference. The maximum, mean
and Root Mean Squared (RMS) APE errors were annotated for
each experiment.

4.2 Localization Performance
The robot localization estimation is evaluated in sequences 1, 2
and 3 and compared with the state-of-the-art SLAM approach
LeGO-LOAM. It is worth noting that the sequences are present in
long vineyard corridors, which can be problematic for SLAM
approaches. One of the key issues of SLAM is the well-known
corridor problem where the forward component of motion has
high uncertainty due to the symmetries of the scene. In the
Aveleda vineyard, this can happen since vine trunks are equally
spaced, and consequently, the agricultural environment is highly
symmetric.

The APE is used to analyze the obtained results. For each
timestamp, the absolute difference between the reference and the
estimated poses is calculated. Table 3 summarizes the results

TABLE 3 | Absolute pose error metrics for VineSLAM and LeGO-LOAM under the
three test sequences.

Experiment Method Max (m) Mean (m) RMS (m)

Sequence 1 VineSLAM 2.65 1.41 1.58
LeGO-LOAM 2.26 0.81 0.93

Sequence 2 VineSLAM 0.84 0.38 0.44
LeGO-LOAM 20.81 10.49 11.87

Sequence 3 VineSLAM 1.17 0.64 0.69
LeGO-LOAM 29.57 21.39 22.48

FIGURE 12 | Average pose error (m) and its corresponding Root Mean Squared Error (RMSE), median, mean and standard deviation for (A–C) VineSLAM and
(D–F) LeGO-LOAM under the three experiments performed.
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obtained for both methods in the three sequences. Figure 12 plots
the APE over time, as well as its corresponding RMS error, mean,
median and standard deviation. To highlight the APE during the
robot motion, Figure 13 maps it onto the trajectory and
represents the error through a color code. Finally, to have a
clear perception of our VineSLAM approach and LeGO-LOAM
in reference with the ground truth, Figure 14 presents all the
trajectories in the same graphic for each sequence.

For sequence 1 it is possible to verify that LeGO-LOAM
performs better than VineSLAM. In particular, for this
sequence, the state-of-the-art approach outperforms

VineSLAM in approximately 0.6 meters considering the RMS
error. This was the sequence where LeGO-LOAM presented
better performance since, as referenced before, it could find
structure outside the corridor placed in the vineyard’s border.
As can be observed in Figure 13A VineSLAM present the higher
error when the robot performs a rotation inside the corridor.
Even so, both methods showed acceptable performance even in
this challenging environment.

For sequences 2 and 3, we verified that LeGO-LOAM
localization estimation has degenerated, i.e., the state-of-the-art
algorithm fails to estimate the robot pose for these two sequences.

FIGURE 13 | Absolute pose error (m) mapped onto the trajectory for (A–C) VineSLAM and (D–F) LeGO-LOAM with reference to the ground truth.

FIGURE 14 | VineSLAM’s and LeGO-LOAM’s localization estimation with reference to the ground truth for sequences (A) 1, (B) 2, and (C)3.
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The environment’s high symmetry impacts its localization
algorithm since, in many instants, LeGO-LOAM estimates that
the robot is stopped when it is moving. Thus, for sequence 2 this
method presents an RMS error of 11.87 meters and for sequence
3 22.48 meters. Figure 12E shows that LeGO-LOAM
accumulates error over time for sequence 2. For the other
sequence, the same happens until the robot turns around, the
moment where this method starts estimating movement again. In
these two sequences, the proposed VineSLAM approach’s
contribution is highlighted since it can maintain a precise
robot localization in both of them. Especially for sequence 3,
where the robot travels more than 80 meters over two vineyard
corridors, VineSLAM achieved an RMS error of 0.69 meters.

Overall results show that VineSLAM is suitable for localization
and mapping in agricultural environments. The PF approach
considers not only point-features but also semiplanes to map and
localize the robot. This approach proved to be accurate even in
challenging agricultural environments, improving the state-of-
the-art. In most cases, LeGO-LOAM underestimates translation
due to the corridor’s symmetry, while the PF approach proposed
in VineSLAM can overcome this issue using a discretization of
the 6-DoF state space in 500 different particles. From Figure 14
one can verify that VineSLAM follows the GNSS reference with
accuracy in the three sequences while LeGO-LOAM only does so
in the first. This proved that the localization and mapping
research is still open for improvement. For harsh
environments such as vineyards, dedicated approaches should
be proposed to tackle the more generic state-of-the-art
algorithms’ limitations.

5 CONCLUSION

This work proposes an extension of the state-of-the-art in
localization and mapping oriented to agricultural robots. In
this context, we propose VineSLAM, an algorithm that uses
both points and semiplanes to map the environment and
localize agricultural robots. The integration of all this
information in a single pipeline is done efficiently with a 3D
voxel map proposal to accelerate search algorithms and
innovative semiplane-based mapping techniques. Also, a PF is
used with a novel update step, where the likelihood of the particle
considers both feature modalities. Results show that our
formulation can localize a robot using only three orthogonal

semiplanes. Under real-world experiments in a woody-crop
vineyard, VineSLAM achieved RMS errors of 1.58, 0.44, and
0.69 meters for three sequences. Overall, our approach
outperforms the state-of-the-art LeGO-LOAM algorithm that
fails in two of the three sequences.

In future work, we would like to extend the mapping
algorithms of VineSLAM. In particular, features with semantic
representations will be extracted from agriculture environments,
such as trunks and fruits, and used in the mapping and
localization procedures. Additionally, we would like to
partition the global map in a graph-like fashion considering a
topological structure. A sensor fusion approach will be adopted to
improve the localization redundancy and robustness. Finally, the
algorithm will be tested in different agricultural scenarios such as
greenhouses and orchards.
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