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Glutamate is the most abundant excitatory neurotransmitter, but 
too much of it causes toxicity by overactivating postsynaptic 
receptors. When postsynaptic receptors are activated, the post-
synaptic cytoplasmic calcium concentration rises, activating 
proteases, lipases, and endonucleases, causing cellular damage 
and cell death. Given the broad implications of this process in 
numerous neurodegenerative diseases and stroke, considerable 
effort has focused on devising strategies to remove glutamate 
from the synaptic cleft, to block receptor activation, or to limit 
the rise of intracellular calcium. In a series of exciting experi-
ments using in vitro cell culture and acute hippocampal slices, 
Divakaruni et al. not only show that neurons are capable of 
switching to a glutamate-fueled mitochondrial metabolism but 
also that when they do so, the concentration of this amino acid 
is lowered sufficiently such that excitotoxic stress is avoided.

Classical “textbook” neuronal energy production involves 
the oxidation of glucose: pyruvate produced from glucose enters 
mitochondria to fuel an oxidative TCA cycle. Unlike neurons, 
it is well established that nonneuronal cells adapt to nutrient 
availability and switch from using glucose to using alternative 
nutrients, including amino acids (Elia and Fendt, 2016). How-
ever, neurons were thought to depend on glucose to fuel energy 
production (Bélanger et al., 2011) and to use glutamate as a 
neurotransmitter. The doctrine is that there is a strict division 
of labor (Fig. 1 A). Neuronal terminals produce glutamate from 
glutamine that enters neurons from the surrounding glial cells 
that soak up excess glutamate from the synaptic cleft. In non-
neuronal cells, both glutamate and glutamine can be readily ox-
idized to produce energy, but is this not so in neurons?

Divakaruni et al. (2017) revisited the dogma that neurons 
depend on glucose to fuel their mitochondrial metabolism by 
performing 13C tracer analyses. This methodology allows de-
termining the fate of 13C-labeled nutrients by following the la-
beled carbons through the metabolic network. Strikingly, they 
found that, even in glucose-rich conditions, neurons use alter-
native nutrients for mitochondrial energy production, such as 
the amino acid leucine and β-hydroxybutyrate. Having estab-
lished that neurons are able to use alternative nutrients in their 

mitochondrial metabolism, Divakaruni et al. (2017) next asked 
how neurons respond when inhibiting the entry of pyruvate into 
the mitochondria, thus largely precluding the use of glucose. 
Pyruvate is the major downstream product of glucose and is 
transported into the mitochondria via the mitochondrial pyru-
vate carrier (MPC). Blocking this transporter excludes glucose 
and any other glycolytic carbon source, such as lactate, as a 
nutrient to fuel mitochondrial metabolism (Vacanti et al., 2014). 
The results were surprising, because inhibiting the MPC did not 
affect mitochondrial energy production and neurons seemed to 
seamlessly switch to glutamate oxidation as an alternative to 
glucose (Fig. 1 B). Although the data are compelling in neurons 
in culture, the effects in rat brain slices were less pronounced. 
However, as Divakaruni et al. (2017) explain, many other cell 
types may be masking the effects. Nonetheless, it would also 
be interesting to test such metabolic flexibility in vivo by in-
fusing 13C-labeled glutamate to determine its in vivo use and 
by isolating specific neuronal cell types from an intact brain. 
Moreover, it would be interesting to investigate what other nu-
trients beyond the ones discovered by Divakaruni et al. (2017) 
can sustain the mitochondrial metabolism of neurons.

Another interesting issue that Divakaruni et al. (2017) 
touch upon is the advantage for neurons to switch specifically to 
glutamate rather than increase their use of leucine or β-hydroxy- 
butyrate. The latter two substrates were already known as sub-
strates for energy production in neurons, but, unlike pyruvate 
that refills mitochondrial metabolites via pyruvate carboxylase, 
the use of leucine or β-hydroxybutyrate only allows sustaining 
of energy production (Hassel and Brâthe, 2000). In contrast, 
glutamate, similar to pyruvate, allows for both energy produc-
tion and the refilling of mitochondrial metabolites. Thus, when 
neurons switch to using glutamate, they are able to produce en-
ergy as well as maintain the production of mitochondrial me-
tabolites. Divakaruni et al. (2017) reasoned that if glutamate is 
oxidized, less glutamate would be available for neurotransmit-
ter release. In line with this idea, when the MPC was inhibited, 
less glutamate was indeed released upon neuronal stimulation. 
Using isotope tracing, the researchers were also able to show 
that this released glutamate had an altered composition that 
was consistent with MPC inhibition and glutamate/glutamine 
oxidation. Less glutamate release could be protective to exci-
totoxic stress that is elicited when glutamate activates postsyn-
aptic receptors. Consistent with this model, when Divakaruni 
et al. (2017) simulated neurons in which pyruvate entry in mi-
tochondria was blocked, they observed less cell death than in 
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stimulated neurons in which the MPC was not inhibited. From a 
clinical perspective, it will be interesting to test if blocking py-
ruvate entry in mitochondria in vivo is also protective in disease 
models characterized by excitotoxic stress.

Neurons are extremely compartmentalized and cell bod-
ies are most often located at considerable distances from the 
presynaptic terminals. This is interesting because glutamate is 
released specifically from presynaptic terminals. Given that met-
abolic switching protects against glutamate excitotoxicity, likely 
because it lowers the glutamate concentration, this process must 
therefore at least be active within presynaptic terminals as well. 
The experiments by Divakaruni et al. (2017) do not yet make 
the distinction, but an exciting future topic of research will be 
to decipher whether there are differences in metabolic fitness 
in the neuronal cell body versus axons or synapses. Interesting 
in this context are previous findings that presynaptic function 

during intense stimulation requires glucose-dependent glycoly-
sis and the concomitant deployment of glucose transporters to 
synapses (Rangaraju et al., 2014; Ashrafi et al., 2017). Moreover, 
glycolytic enzymes associate with synaptic vesicles (Ikemoto et 
al., 2003), and, in Caenorhabditis elegans, glycolytic enzymes 
appear to relocalize during activity to form an ad hoc compart-
ment, a “glycolytic metabolon” (Jang et al., 2016). These find-
ings suggest that synaptic compartments can regulate and need 
glycolysis in response to neuronal activity. One possibility is 
that neurons need glycolysis during acute bouts of stimulation, 
but metabolic switching may serve the chronic need for sus-
tained energy and metabolite supply. Additional electrophysio-
logical studies in the context of the described metabolic switch 
and in the context of the need for glycolysis as well as further 
studies on the compartment specificity of these processes are 
needed. Ultimately, such studies will aid in understanding how 
these metabolic processes each contribute to the energy and me-
tabolite demands of the synapse and the synaptic vesicle cycle.

There is considerable evidence that neuronal activity pro-
motes glycolysis and mitochondrial function. It will be inter-
esting to determine whether neurons—similar to cancer cells 
(Christen et al., 2016)—use metabolic regulation, which is a 
passive adaptation mechanism, to switch to other carbon sub-
strates or whether they possess mechanisms that control met-
abolic switching to nonglucose substrates. If they do, what 
are the triggers? Understanding such pathways and regulatory 
mechanisms will be important because they could potentially be 
targeted to lower the effects of excitotoxic stress that is impli-
cated in numerous neuronal diseases. At least in the context of 
refractory forms of epilepsy, diets low in carbohydrates appear 
to be beneficial (Giménez-Cassina et al., 2012). Such observa-
tions are consistent with the idea that if neurons switch from 
using glucose to alternative carbon sources like glutamate, this 
is protective, but definitive proof is lacking. It is nonetheless 
clear that changes in metabolism in neuronal clusters in the con-
text of disease have an effect on network activity and likely on 
neuronal survival as well. Further refinement in measuring the 
metabolic state of specific and defined neuronal subclasses in 
the brain as well as compartment-specific effects will undoubt-
edly yield even greater insight into disease mechanisms and 
the ways to tackle them.
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