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Abstract
Understanding the molecular mechanisms underlying complex phenotypes requires systematic analyses of complicated
metabolic networks and contributes to improvements in the breeding efficiency of staple cereal crops and diagnostic accu-
racy for human diseases. Here, we selected rice (Oryza sativa) heterosis as a complex phenotype and investigated the
mechanisms of both vegetative and reproductive traits using an untargeted metabolomics strategy. Heterosis-associated
analytes were identified, and the overlapping analytes were shown to underlie the association patterns for six agronomic
traits. The heterosis-associated analytes of four yield components and plant height collectively contributed to yield hetero-
sis, and the degree of contribution differed among the five traits. We performed dysregulated network analyses of the
high- and low-better parent heterosis hybrids and found multiple types of metabolic pathways involved in heterosis. The
metabolite levels of the significantly enriched pathways (especially those from amino acid and carbohydrate metabolism)
were predictive of yield heterosis (area under the curve = 0.907 with 10 features), and the predictability of these pathway
biomarkers was validated with hybrids across environments and populations. Our findings elucidate the metabolomic land-
scape of rice heterosis and highlight the potential application of pathway biomarkers in achieving accurate predictions of
complex phenotypes.

Introduction
Variations in the levels of specific metabolites are closely re-
lated to the quantitative changes in complex phenotypes. For
example, in a previous study in tomato (Solanum

lycopersicum), most of the identified metabolites that belong
to central metabolic pathways were significantly correlated
with whole-plant phenotypic traits (Schauer et al., 2006).
Recently, 40 plasma metabolites explained the variance in gut
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microbiome a-diversity in humans (Wilmanski et al., 2019).
Although the combination of metabolites has potential for pre-
dicting multiple polygenic phenotypes (Wen et al., 2014; Dan
et al., 2019, 2020), the prediction of individuals with the same
performance is hampered by molecular heterogeneity (Chen et
al., 2014; Menche et al., 2017; Guo et al., 2019). Moreover, the
contribution of statistically insignificant metabolites to pheno-
typic variances under one condition was ignored in the other
conditions. With the rapid advancements in dysregulated net-
work analysis of metabolomics (Chong et al., 2018; Shen et al.,
2019), the development of metabolomic biomarkers at the
pathway level after discrete metabolites provides approaches
to increase the predictability of complex phenotypes.

Heterosis, which has been widely used for improving
global food production, has complex characteristics, and the
metabolomic mechanisms have yet to be elucidated
(Darwin, 1876; Williams, 1959). With continuously growing
populations and dramatic climatic changes, the breeding of
new heterotic and adaptive hybrids are a major challenge
for traditional breeding programs (Varshney et al., 2018;
Hickey et al., 2019). Previous studies conducted on hybrid
crops (including maize, wheat, and rice) have demonstrated
that the screened metabolites detected from leaves or roots
have predictive power for biomass (Lisec et al., 2011), grain
weight and production (Zhao et al., 2015; Xu et al., 2016;
Dan et al., 2019), and yield heterosis (Dan et al., 2020).
Obstacles such as feature selection and cross-validation pro-
cedures still exist (Crossa et al., 2017; Dan et al., 2019), and
the metabolomic connections between components (e.g.
grain number and grain weight) and complex traits (e.g.
yield and biomass) are largely unknown. Therefore,
metabolome-based precision designs require optimization to
achieve accurate predictions across populations and
environments.

To understand the metabolomic mechanisms of heterosis
and identify robust pathway biomarkers for yield heterosis in
rice, we identified heterosis-associated analytes and revealed
their contribution to six agronomic traits. The metabolic
pathways involved in heterosis were identified through dysre-
gulated network analysis of the high- and low-better parent
heterosis hybrids, and the finding of overlapping pathways
revealed the metabolomic landscape of heterosis for both
vegetative and reproductive traits. Quantitative changes in
the significantly enriched pathways were predictive of yield
heterosis, and the pathway biomarkers at a small number
were further validated with hybrids across environments and
a separate hybrid population, suggesting a wide application
potential for predicting complex phenotypes.

Results

Identifying heterosis-associated analytes for six agro-
nomic traits
To identify metabolic analytes associated with rice (Oryza
sativa) heterosis, we phenotyped grain yield; four yield com-
ponents (seed setting rate, grain weight, grain number, and

tiller number); and plant height (PH, a yield-related trait) for
a hybrid population (complete diallel crosses with 18
parents) and collected untargeted metabolite profiles from
15-d-old parental seedlings (Supplemental Table S1).
Previous results have demonstrated that the calculated aver-
age parental metabolite levels are appropriate for represent-
ing the hybrid metabolite profiles (Dan et al., 2020). We
performed a Pearson correlation analysis on the transformed
parental metabolite levels and better-parent heterosis (BPH),
which estimates the degree of hybrid performance outper-
forming the better parent, with the high values always pur-
sued by the breeders, of the six investigated traits
(Supplemental Figure S1). Although the degree of heterosis
largely varied across traits at both individual and population
levels (Figure 1A), closer links between the average parental
metabolite levels and heterosis were observed based on the
number of significant correlations, compared to those of the
differences in and ratios of the values (Figure 1B).

Next, we performed partial least squares (PLS) regression
analysis (Wold, 1975), which handles high-dimensional meg-
avariate relationships, on the average parental metabolite
levels to identify predictive analytes for heterosis, namely,
heterosis-associated analytes. The number of latent factors
that are proxies for blocks of directly observed variables
ranged from 1 to 17, and 3 or 4 latent factors, at which the
r value was the highest, were chosen for each trait in build-
ing predictive models (Supplemental Figure S2). In addition,
both 10-fold cross-validation and a permutation test were
performed for the six predictive models to estimate the is-
sue of overfitting (Supplemental Figure S3). The optimal
number of predictive analytes ranging from 100 to 300 was
chosen for each trait after removing redundant feature in-
formation (Figure 1C). The correlation coefficients between
the observed and predicted values of BPH for PH and grain
yield at the maturation stage were 0.68 and 0.60, respec-
tively (Figure 1, D and E), showing a higher predictability for
the vegetative trait than those for reproductive traits
(Supplemental Figure S4). For PH, 100 heterosis-associated
analytes were identified, and an analyte (peak tag:
M163T337_NEG) was annotated as 4-hydroxycinnamic acid
with the corresponding standard (Figure 1F). The metabolite
levels of 4-hydroxycinnamic acid, whose positive relationship
with PH has been confirmed in diverse plants (Gui et al.,
2011; Riedelsheimer et al., 2012b; Li et al., 2015), had signifi-
cant positive correlations with PH heterosis (Figure 1G).
None of the heterosis-associated analytes overlapped with
the five reproductive traits (Figure 1H). In yield heterosis,
more weight was observed for seed setting rate and tiller
number, compared to grain number and grain weight, based
on the number of overlapping heterosis-associated analytes.

Connections of heterosis-associated analytes among
traits
To investigate the connections of heterosis-associated analy-
tes among the traits, we performed both partial and
Pearson correlation analyses on heterosis of the five
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reproductive traits and PH (Figure 2A). Notably, heterosis of
seed setting rate (R = 0.72) and tiller number (R = 0.66) con-
tributed more than those of grain number (R = 0.34) and
grain weight (R = 0.16) to yield heterosis, based on the cor-
relation coefficients. We then investigated the relationship
between the metabolite levels of the 27 overlapping
heterosis-associated analytes for yield and seed setting rate

(Supplemental Table S2), and found that all analytes had
consistent positive or negative correlations with heterosis of
the two traits (Figure 2B; Supplemental Table S3).
Furthermore, positive and negative correlations were
detected among the five reproductive traits, and consistent
or opposite relationships were found between the metabo-
lite levels of overlapping heterosis-associated analytes and
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Figure 1 Identification of heterosis-associated analytes for six agronomic traits. A, Heterosis of six agronomic traits at the population and individ-
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heterosis (Figure 2C; Supplemental Figure S5 and
Supplemental Table S3), indicating that the overlapping ana-
lytes underlie the association patterns for the traits.

We then performed stepwise regression analysis on the
heterosis of yield and the four components and found an
equation that explained the variance in yield heterosis
(r = 0.81; Supplemental Figure S6). Because the degree of
heterosis for the four components was predicted with corre-
sponding heterosis-associated analytes (Supplemental Figure
S4), we used the predicted values in the equation and calcu-
lated new values for yield heterosis. A significant correlation
was observed between the observed and predicted values
(r = 0.52; Supplemental Figure S6). Furthermore, the per-
centage of explained variance for yield heterosis slightly in-
creased with the addition of PH to the regression equation
(r = 0.82; Figure 2D), and the correlation coefficient in-
creased to 0.53, based on the heterosis-associated analytes
of the five traits (Figure 2E). Heterosis of PH was positively
correlated with almost all investigated reproductive traits,
except seed setting rate (Figure 2A), and the overlapping
heterosis-associated analytes were found among these traits
with the same correlations as those shown in Figure 2, B
and C (Supplemental Figure S7 and Supplemental Table S3).
These results indicated that the heterosis-associated analytes

of the yield component and yield-related traits collectively
contributed to the yield heterosis.

Metabolic pathways involved in heterosis
The metabolic pathways involved in heterosis need to be
elucidated. Of the 3,746 analytes in our study, only 114 had
been annotated, making it difficult to perform pathway en-
richment analysis based on limited metabolite information.
To identify enriched pathways for heterosis of each trait, we
first divided the diallel cross population into two distinct
regions of high- and low-BPH based on the quartiles (25th
and 75th percentiles) at which most of the differential analy-
tes from the empirical Bayesian analysis overlapped with the
corresponding heterosis-associated analytes (Figure 3A). We
then performed dysregulated network analysis on the two
groups with Metabolite identification and Dysregulated
Network Analysis software (MetDNA; Shen et al., 2019),
which annotates metabolites with a recursive algorithm and
identifies dysregulated metabolic pathways based on differ-
ential metabolic peaks. The results showed that only two
pathways were simultaneously enriched for the five repro-
ductive traits (Figure 3B). The enriched pathways for hetero-
sis of the seed setting rate and tiller number had higher
percentages of overlapping pathways with yield heterosis

Figure 2 Connections of heterosis-associated analytes among traits. A, Correlations among heterosis of five reproductive traits and PH. Partial cor-
relations were performed to investigate the contribution of four yield components and PH to yield heterosis. Pearson correlations were conducted
to analyze the relationship among the four yield components and PH. Correlation coefficients of the partial and Pearson correlations are indicated
with R and r, respectively. *, **, statistically significant at 0.05 and 0.01 levels, respectively; ns, no statistically significant correlation. B, Correlations
between metabolite levels of M853T560_NEG and heterosis of seed setting rate and yield. C, Correlations between metabolite levels of
M131T16_NEG and heterosis of seed setting rate and tiller number. D, Correlation between the observed and predicted values of yield heterosis
based on heterosis of the four yield components and PH. An equation was obtained through stepwise regression analysis: BPH-YPP = BPH-
SSR*1.674 + BPH-TPP*0.949 + BPH-TGW*0.571 + BPH-GNP*0.533 + BPH-PH*0.504 + 0.299. E, Correlation between the observed and predicted
values of yield heterosis based on heterosis-associated analytes of the four yield components and PH with the equation in Figure 2D. In (A–E),
N = 287.
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than those of grain number and grain weight (Figure 3B),
which was consistent with the results shown in Figures 1, H
and 2, A. With respect to quantitative information on the
enriched pathways (the average levels of all metabolites per
pathway), 77.3% of the pathways for yield heterosis showed
significant differences between the high- and low-BPH
hybrids (17 pathways; Figure 3C; Supplemental Tables S4
and S5), and 81.8% of those were significantly correlated
with yield heterosis (Figure 3D; Supplemental Table S6). This
result confirmed previously reported metabolites that have
positive or negative correlations with grain yield or biomass
at the pathway level and indicated that the metabolite levels
of the enriched pathways were closely related to yield heter-
osis (Table 1).

We then investigated the correlations of the 17 significantly
enriched pathways for yield heterosis, which were mainly from
amino acid and carbohydrate metabolism. Two distinct cluster-
ing trends were found among the metabolic pathways (Figure
3E), and they were close to the correlation pattern of the 100
yield heterosis-associated analytes (Supplemental Figure S8).
Because 114 of the analytes had already been successfully anno-
tated, we converted the compound names of these metabolites
into Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs
and mapped them to the KEGG metabolic pathways. A total
of 18 metabolites were mapped to the pathways listed in
Figure 3E, and six metabolites in the cyanoamino acid metabo-
lism (L-phenylalanine, L-aspartate, and L-tyrosine) and propa-
noate metabolism (dihydroxyacetone phosphate, alpha-
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Table 1 The enriched metabolic pathways for yield heterosis

Pathway name P-value of
enrichment analysis

P-value of
t test

Metabolite level Previously known metabolites Species

Tyrosine Metabolism 0.046378 3.47E-10 Low Succinic acid, tyrosine, maleic
acid, dopamine, fumarate

Arabidopsis (Meyer et al.,
2007; Sulpice et al., 2013),
maize (Riedelsheimer et al.,
2012b; Obata et al., 2015)

Pantothenate and
CoA Biosynthesis

0.001271 3.54E-04 Low Aspartate, valine Arabidopsis (Meyer et al.,
2007; Sulpice et al., 2010),
tomato (Schauer et al.,
2006), maize (Obata et al.,
2015; de Abreu et al., 2017)

Propanoate
Metabolism

0.001338 1.81E-04 Low Succinic acid Arabidopsis (Meyer et al.,
2007), tomato (Schauer et
al., 2006)

Nicotinate and
Nicotinamide
Metabolism

0.014907 2.60E-04 Low Succinic acid, aspartate, fuma-
rate, nicotinate, gamma-ami-
nobutyric acid

Arabidopsis (Sulpice et al.,
2013), tomato (Schauer et
al., 2006), maize (Obata et
al., 2015; de Abreu et al.,
2017)

C5-Branched Dibasic
Acid Metabolism

0.017663 1.31E-05 Low Glutamate, 2-oxoglutarate,
itaconate

Arabidopsis (Sulpice et al.,
2010), tomato (Schauer et
al., 2006), maize (Obata et
al., 2015)

Citrate Cycle 0.00471 2.95E-08 Low Succinic acid, citric acid, fuma-
rate, malate

Arabidopsis (Meyer et al.,
2007; Sulpice et al., 2013),
tomato (Schauer et al.,
2006), maize (Obata et al.,
2015)

Glyoxylate and
Dicarboxylate
Metabolism

0.021109 1.72E-03 Low Succinic acid, glutamine, citric
acid, serine, glycine, 2-oxoglu-
tarate, malate, glyceric acid,
glutamate

Arabidopsis (Meyer et al.,
2007; Sulpice et al., 2009,
2010, 2013), tomato
(Schauer et al., 2006), maize
(Obata et al., 2015)

Butanoate
Metabolism

0.00072 0.17 Low Succinic acid, maleic acid, gluta-
mate, 2-oxoglutarate, fuma-
rate, gamma-aminobutyric
acid

Arabidopsis (Meyer et al.,
2007; Sulpice et al., 2010,
2013), tomato (Schauer et
al., 2006), maize (Obata et
al., 2015)

Galactose
Metabolism

0.008015 5.09E-05 High Glycerol, raffinose, galactinol,
glucose

Maize (Obata et al., 2015),
Miscanthus (Maddison et
al., 2017)

Pentose and
Glucuronate
Interconversions

0.014907 5.06E-04 High Glycerol, xylose, xylitol Maize (Obata et al., 2015)

Sulfur Metabolism 0.017663 4.67E-04 High Succinic acid Maize (Obata et al., 2015)
Cysteine and

Methionine
Metabolism

0.022276 2.28E-05 High Aspartate Maize (Obata et al., 2015)

Pentose Phosphate
Pathway

0.022462 1.16E-06 High Glycerate, glucose Maize (Obata et al., 2015),
Miscanthus (Maddison et
al., 2017)

Monobactam
Biosynthesis

0.029861 2.33E-03 High Aspartate, threonine Maize (Obata et al., 2015)

Tropane, Piperidine
and Pyridine alka-
loid Biosynthesis

0.030102 5.58E-04 High Putrescine, nicotinate,
nicotinate

Arabidopsis (Meyer et al.,
2007), maize (de Abreu et
al., 2017; Obata et al., 2015)

Lysine Degradation 0.001925 9.41E-03 High Succinic acid Maize (Obata et al., 2015)
Valine, Leucine and

Isoleucine
Biosynthesis

0.00705 2.89E-03 High Valine, threonine Maize (Obata et al., 2015)

Cyanoamino acid
Metabolism

0.043081 2.85E-02 High Glycine, tyrosine, asparagine Arabidopsis (Gärtner et al.,
2009; Sulpice et al., 2013)

0.022462 0.08 High – –

(continued)
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hydroxybutyric acid, and pyruvaldehyde) pathways were se-
lected for further correlation analysis. Metabolites in the same
pathways had significant positive correlations, and metabolites
in different pathways had significant negative or no correlations
(Supplemental Table S7). As shown in Figure 3E, the average
levels of the six metabolites in the two pathways were signifi-
cantly negatively correlated (Supplemental Figure S9). After the
metabolite levels of the enriched pathways were compared be-
tween the high- and low-BPH hybrids, we found that all path-
ways involved in amino acid metabolism, except for tyrosine
metabolism, had high metabolite levels in high-BPH hybrids,
and 57.1% of the pathways from carbohydrate metabolism had
low metabolite levels in high-BPH hybrids (Supplemental Table
S5). Because negative correlations existed between the metabo-
lite levels of amino acid and carbohydrate metabolism (Figure
3F; Supplemental Table S6), we speculated that higher metabo-
lite levels of amino acid metabolism and lower metabolite lev-
els of carbohydrate metabolism were closely related to a higher
degree of yield heterosis.

With respect to the four yield components, the signifi-
cantly enriched pathways showed different correlation man-
ners across traits, and most of the manners were similar to
those of corresponding heterosis-associated analytes
(Supplemental Figures S10–S12). Accordingly, we con-
structed a metabolomic landscape for heterosis of both re-
productive and vegetative traits through overlapping
pathways (Figure 4). In concordance with the yield hetero-
sis—as shown in Figure 3E—most of the significantly
enriched pathways from amino acid metabolism demon-
strated positive correlations with heterosis of grain weight
(100%) and seed setting rate (66.7%), and the pathways
from carbohydrate metabolism were negatively correlated
(100% and 25%, respectively). In contrast to the reproduc-
tive traits, 83.3% of the enriched pathways from amino acid
metabolism were negatively correlated with PH heterosis,
and 75% of those from carbohydrate metabolism were posi-
tively correlated. Thus, the metabolite levels of the

significantly enriched pathways (especially those in amino
acid and carbohydrate metabolism) for the four yield com-
ponents always had consistent correlation patterns with the
degree of yield heterosis, whereas those for vegetative trait
(PH) manifested opposite relationships with the five repro-
ductive traits (yield and yield components).

The enriched pathways are predictive of yield
heterosis
Based on the metabolite levels of the significantly enriched
pathways for yield heterosis, we performed biomarker analy-
sis by calculating the ratios of all pathway pairs, which can
increase the chance of identifying individual biomarkers
(Chong et al., 2019). The univariate receiver operating char-
acteristic (ROC) curve analysis showed that a cutoff of 0.551
for ratios of tyrosine metabolism and sulfur metabolism
could distinguish between the high- and low-BPH hybrids,
with an area under the curve (AUC) equal to 0.836 (Figure
5, A and B; Supplemental Table S8). When multivariate ROC
curve analysis was performed to identify biomarkers, the
AUC increased to 0.907, and the predictive accuracy was
0.827 (Figure 5, C and D). The best model contained only 10
features; tyrosine metabolism was highly important and was
frequently selected (Figure 5E; Supplemental Figure S13 and
Supplemental Table S9), demonstrating the critical role of
tyrosine metabolism in yield heterosis.

We investigated the relationship between the metabolite
levels of L-tyrosine and yield heterosis in the whole hybrid
population and found no significant correlation (Figure 5F).
However, the average levels of the five annotated metabo-
lites that participate in tyrosine metabolism (some of which
had significant negative correlations with yield heterosis;
Supplemental Table S10), namely, L-tyrosine, maleic acid,
atrolactic acid, 4-hydroxycinnamic acid, and 1,4-dihydroxy-
benzene, were significantly negatively correlated with yield
heterosis (r = –0.23; Figure 5G). Furthermore, we evaluated
the impact of changes in pathway information on

Table 1 Continued

Pathway name P-value of
enrichment analysis

P-value of
t test

Metabolite level Previously known metabolites Species

Phenylalanine,
Tyrosine and
Tryptophan
Biosynthesis

Glycine, Serine and
Threonine
Metabolism

0.01074 0.33 High Glycerate, threonine, aspartate, Maize (Obata et al., 2015)

Pyruvate Metabolism 0.001879 0.32 High Succinic acid, fumarate Maize (Obata et al., 2015)
Phenylalanine

Metabolism
0.036123 0.67 High Benzoic acid, succinic acid,

fumarate
Arabidopsis (Sulpice et al.,

2013), maize (Obata et al.,
2015)

Synthesis and
Degradation of
Ketone Bodies

0.004325 – – – –

The pathway name, P-value, metabolite level, previously known metabolites, and corresponding species are provided. Since two pathways have no reported metabolites and
one pathway’s quantitative information is not available, corresponding areas are marked with horizontal lines.
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predictions by adding new metabolites to tyrosine metabo-
lism, given that KEGG or other databases are dynamic and
more metabolites can be identified and added to a meta-
bolic pathway. We first included two putatively annotated
metabolites (succinate and acetoacetate) when calculating
the metabolite levels of tyrosine metabolism. The correlation

coefficient increased to 0.28 when succinate was added
(P = 1.0e-6), and it further changed to 0.34 after the two
metabolites were used (P = 2.0e-9; Supplemental Figure S14).
However, the correlation coefficients decreased when using
other metabolites (uracil and L-phenylalanine) that are not
involved in tyrosine metabolism (Supplemental Figure S14).
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Figure 4 Metabolomic landscape of heterosis for six agronomic traits. The landscape of heterosis was created by the overlapping metabolic path-
ways between traits. All the significantly enriched pathways from amino acid metabolism were positively correlated with heterosis of grain weight,
and all the pathways from carbohydrate metabolism were negatively correlated. Similarly, four of six significantly enriched pathways from amino
acid metabolism displayed positive correlations with heterosis of seed setting rate, and one out of four pathways from carbohydrate metabolism
displayed a negative correlation. Eight significantly enriched pathways for grain number (namely, zeatin biosynthesis, two pathways in amino acid
metabolism, and five in carbohydrate metabolism) showed negative relationships, and the pentose phosphate pathway showed a positive correla-
tion. Only one pathway was significantly enriched for tiller heterosis, and the metabolite levels of pentose and glucuronate interconversions were
positively correlated with tiller heterosis. In contrast to the above-mentioned correlation patterns, five out of six significantly enriched pathways
in amino acid metabolism showed negative correlations with heterosis of PH, and three out of four pathways in carbohydrate metabolism showed
positive correlations. Pearson correlation analysis was performed based on the metabolite levels of the significantly enriched pathways, and a cor-
relation was significant when the P 50.05. Positive and negative correlations are indicated in different colors. The metabolic pathways from differ-
ent types are marked correspondingly. Purple and green arrows indicate high-BPH hybrids with high or low metabolite levels, respectively.
Numbers in brackets represent percentages of regulated pathways from amino acid and carbohydrate metabolism.
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Thus, the metabolite levels of tyrosine metabolism, rather
than those of L-tyrosine alone, were predictive of yield heter-
osis, and the performance of pathway biomarkers was deter-
mined by the completeness and accuracy of the pathway
information.

To validate the contribution of quantitative changes in ty-
rosine metabolism in predicting yield heterosis, both univari-
ate and multivariate ROC curve analyses were performed on
the metabolite levels of 34 hybrids with different

performances across growth conditions (Figure 5H). Tyrosine
metabolism functioned as a critical feature in both analyses
(Supplemental Figures S15 and 16; Supplemental Tables S11
and 12), and a significant negative correlation was found be-
tween tyrosine metabolism and yield heterosis (Figure 5I).
Subsequently, we obtained the metabolite levels of tyrosine
metabolism from another testcross population containing
107 hybrids (Supplemental Table S13). As shown in Figure
3E, the metabolite levels of tyrosine metabolism in the high-
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computed 95% confidence band. B, Box plot of ratios of tyrosine metabolism to sulfur metabolism. The red line indicates the optimal cutoff value.
N = 72. C, AUC for the top 10 features based on the multivariate ROC curve analysis. D, Predictive accuracies with different numbers of features.
E, Average importance of the top 10 features. Met = metabolism. F, Correlation between the metabolite levels of L-tyrosine and yield heterosis.
N = 287. G, Correlation between the average metabolite levels of the five annotated metabolites in tyrosine metabolism and yield heterosis.
N = 287. H, Comparison of yield heterosis for 34 hybrids across growth conditions. Paired samples t test, two-tailed. N = 33. I, Correlation between
the metabolite levels of tyrosine metabolism and yield heterosis of the 34 hybrids grown under different conditions. N = 34. J, Comparison of the
metabolite levels of tyrosine metabolism between the high- and low-BPH-YPP hybrids (N = 53 and 54, respectively) from a testcross population.
K, Correlation between the metabolite levels of tyrosine metabolism and yield heterosis of the testcross population (N = 107). The center line of
each boxplot represents the 50th percentile. The bottom and top of each boxplot represent the 25th and 75th percentiles, respectively. The
whiskers represent the minimum and maximum values. The circles represent outliers.

Metabolomic landscape of rice heterosis PLANT PHYSIOLOGY 2021: 187; 1011–1025 | 1019

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab273#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab273#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab273#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab273#supplementary-data


BPH group were significantly lower than those in the low-
BPH group (Figure 5J). Furthermore, the metabolite levels of
tyrosine metabolism showed a significant negative correla-
tion with yield heterosis (Figure 5K). Thus, the metabolite
levels of the significantly enriched pathways were predictive
of yield heterosis across environments and populations.

Discussion
With the rapid developments in systems biology, the eluci-
dation of molecular mechanisms and exploration of bio-
markers based on metabolic pathways for complex
phenotypes can accelerate the establishment of precision
design programs, such as precision breeding or precision
medicine. In this study, untargeted metabolite profiles and
computational analyses were combined to explore the
metabolomic mechanisms underlying heterosis of six agro-
nomic traits in rice. Consistent with previous findings (Dan
et al., 2019, 2020), we found that the average parental me-
tabolite levels, which are additive metabolite profiles, are ap-
propriate predictors for diverse over-dominant phenotypes
(better parent heterosis). The changes from metabolomic
additive effects to phenotypic over-dominance effects may
be partially explained by the combination of hierarchical
structure and multiplicative interactions of complex traits
(Dan et al., 2015). Additional systematic analyses—incorpo-
rating both hybrid individuals and populations—can be per-
formed in the near future. We determined the optimal
number of heterosis-associated analytes for each trait by
performing the PLS regression multiple times. This strategy
makes possible the optimal selection of features for diverse
phenotypes (Sprenger et al., 2018; Dan et al., 2019; Hu et al.,
2019). In evaluating the performance of PLS or random for-
est models, changes in the number of predictive variables
(top 50–3,746 predictive analytes in Figure 1C and top 5–
100 predictive features in Figure 5D) yielded slight variations
in predictive models, which are similar to the finding of pre-
dicting potato drought tolerance using the random forest
method (Sprenger et al., 2018). We speculate that this phe-
nomenon may arise from the inclusion of the most contrib-
uted predictive variables, namely, the top 50 analytes in
Figure 1C and top 5 features in Figure 5D, in predictive
models. We also analyzed the connections between metabo-
lite levels of specific analytes and heterosis of multiple traits,
which are rarely reported in previous studies (Dan et al.,
2016; Xu et al., 2016; Wilmanski et al., 2019). The overlap-
ping heterosis-associated analytes were found to underlie
the association patterns among traits. The metabolic path-
ways involved in heterosis were finally identified through
dysregulated network analysis of the high- and low-BPH
hybrids, among which the high-performance hybrids are
usually selected by plant breeders, and the correlation pat-
terns of the significantly enriched pathways were similar to
those of the corresponding heterosis-associated analytes.
However, we were unable to pair the analytes and metabolic
pathways because the number of annotated metabolites
was rather low (3% of all detected analytes), and the

functions of the lipids (which account for about 50% of the
annotated metabolites) were mostly unknown. The annota-
tion of new metabolites and functional analyses are urgently
required to obtain more details about the connections be-
tween predictive analytes and enriched metabolic pathways.

Pathway biomarkers were developed for yield heterosis
based on quantitative information on significantly enriched
metabolic pathways, and the performance of these bio-
markers was validated with hybrids across environments
and populations. Because all metabolites per pathway, rather
than a single metabolite, were used for the calculation of
metabolite levels, the pathway biomarkers may overcome
the negative effects of molecular heterogeneity in predicting
individuals with the same performance (Menche et al., 2017;
Guo et al., 2019). In addition, the changes in molecular levels
that are triggered by environmental discrepancies can also
be “buffered” by the pathway biomarkers with the inclusion
of both significant and “insignificant” variables in predictive
models, which may contribute to the breeding of adaptive
varieties (Varshney et al., 2018; Hickey et al., 2019). The ro-
bust predictive power of the pathway biomarkers was unex-
pected, given that the predictability of grain weight and
yield heterosis with sets of metabolites was 50.8 in previous
studies (Dan et al., 2019, 2020). The metabolite levels of ty-
rosine metabolism were stable biomarkers for both the
training and validation sets, and the average levels of the
five metabolites involved in tyrosine metabolism also dis-
played a significant negative correlation with yield heterosis.
However, the metabolite levels of L-tyrosine showed no sig-
nificant correlation with yield heterosis. We believe that the
metabolomic biomarkers identified in this study emphasize
quantitative changes in enriched metabolic pathways rather
than differences between metabolites. The metabolite levels
of L-tyrosine may have significant negative correlations with
yield heterosis, and the remaining metabolites involved in
tyrosine metabolism (which had significant negative correla-
tions with yield heterosis) in this study can have no correla-
tion with yield heterosis in other hybrid populations. This
contradiction can be understood as metabolomic heteroge-
neity among populations, similar to the expressional hetero-
geneity of complex diseases among patients (Menche et al.,
2017; Guo et al., 2019). Furthermore, the latest findings dem-
onstrate that changes in metabolite levels of steroid hor-
mone biosynthesis are precisely timed to gestation in
pregnant women (Liang et al., 2020). Thus, we anticipate
that refined pathway biomarkers based on omics analyses,
including genomics (Riedelsheimer et al., 2012a; Millet et al.,
2019), transcriptomics (Sprenger et al., 2018; Azodi et al.,
2020), proteomics (Zhang et al., 2016; Dou et al., 2020), and
lipidomics (Aviram et al., 2016; de Abreu et al., 2018), may
provide better predictions than the traditional sets of pre-
dictive variables.

The prevailing negative correlations between metabolite
levels of amino acid metabolism and carbohydrate metabo-
lism suggest that focusing on the regulation of specific met-
abolic pathways may facilitate the conformation of yield
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heterosis. With respect to the metabolomic connections of
heterosis among traits, the significantly enriched pathways
for the yield components always had similar correlation pat-
terns with yield heterosis, whereas that for PH showed an
opposite relationship with yield heterosis. Thus, we speculate
that there is a rough balance between amino acid metabo-
lism and carbohydrate metabolism in yield heterosis (Dan et
al., 2015, 2020), and this balance may originate from metab-
olomic connections of the remaining reproductive traits
(yield components) and vegetative traits (yield-related traits)
with different degrees of contribution. The strategy of inves-
tigating metabolomic connections between the component
and complex traits through overlapping pathways may be
used to analyze molecular connections among different
complex human diseases—with the knowledge that patients
with different diseases share sets of disease-associated genes
(Barabasi et al., 2011; Menche et al., 2015, 2017).

Our results provide a metabolomic landscape of heterosis
in rice, as well as an evaluation of the application potential
of biomarkers based on enriched pathways for yield hetero-
sis. Optimal balances among specific metabolic pathways
and reproductive and vegetative traits are critical for yield
heterosis. Quantitative changes in pathway biomarkers pre-
dict yield heterosis without considering discrepancies in
growth conditions and hybrid populations, indicating the
wide application potential of pathway biomarkers for pre-
dicting complex phenotypes and thus achieving precision
design programs.

Materials and methods

Plant materials and phenotyping
Eighteen traditional rice (O. sativa) cultivars that include
both indica and japonica were parents of one hybrid popu-
lation, with a complete diallel cross design (Dan et al., 2020).
Phenotypic data of five reproductive traits, namely, seed set-
ting rate, thousand-grain weight (Dan et al., 2019), grain
number per panicle, tiller number per plant, and yield per
plant (YPP, Dan et al., 2020), were collected at the matura-
tion stage. Plant height was also measured at the matura-
tion stage. Trait values of the 18 parents and 287 hybrids
were collected and used for the analyses. Another testcross
population consisted of a Honglian-type cytoplasmic male-
sterile line (Yuetai A) and recombinant inbred lines (F5).
The YPP of the maintainer line (Yuetai B), 107 pairs of par-
ent hybrids, was measured at the maturation stage. A total
of 34 hybrids that were reciprocals from the diallel cross
population were replanted with the testcross population,
and their yield performance was recorded for analysis.
Details such as locations, planting time, and plant densities
of the two hybrid populations were described in a previous
study (Dan et al., 2019).

Metabolomics
Metabolite profiling analysis of the parental seedlings was
performed as described previously (Dan et al., 2020). Briefly,
untargeted metabolite profiles of 15-d-old seedlings were

collected with a 1290 Infinity liquid chromatography system
(Agilent Technologies, Santa Clara, CA, USA), Agilent quad-
rupole time-of-flight mass spectrometer (Agilent 6550
iFunnel QTOF; Agilent Technologies, Santa Clara, CA, USA),
and Triple TOF 6600 mass spectrometer (AB SCIEX, Foster
City, CA, USA). The metabolites were annotated using an
in-house standard spectral library, and the lipids were anno-
tated through matching with an in-house tandem mass
spectrometry (MS/MS) spectral library. Data reliability was
checked using a quality control sample, and the metabolite
levels of a total of 3,746 detected analytes, among which
114 metabolites were annotated using the in-house spectral
libraries, were normalized (sum, log, and none) for the statis-
tical analyses.

Identification of heterosis-associated analytes
To identify analytes that were closely associated with hetero-
sis of each trait, we used the PLS regression method (Wold,
1975). PLS is an iterative algorithm with the involvement of
latent factors and is suitable for conducting multivariate
analysis when the number of predictor variables (X variables)
significantly exceeds that of response variables (Y variables).
The latent factors or latent variables, which can be numeri-
cally assessed and provide consistent information for further
development of predictive models (Wold, 1975), are formed
to not only maximize the explained variance of predictive
variables, but also to maximize the covariance of observa-
tions (Bijlsma et al., 2006). Values of BPH and the means of
parental metabolite levels were X and Y variables, respec-
tively. The number of latent factors was first set to 50, and
the largest number of extracted latent factors was 17. The
number of latent factors was then set to three or four, at
which the r value was the highest among predictive models
with different numbers of latent factors, to perform the sec-
ond regression. To evaluate the performance of the PLS-
based models, both cross-validation and permutation test
were performed to check whether the models were overfit-
ted. Hybrids from the diallel cross population were divided
into high- and low-BPH groups according to the 75th and
25th percentiles of heterosis of each trait. The PLS-discrimi-
nant analysis was then performed with the module
“Statistical Analysis” on MetaboAnalyst (www.metaboana
lyst.ca; Xia and Wishart, 2011). The 10-fold cross-validation
method was used, and three parameters were provided to
describe the model performance: prediction accuracy, sum
of squares of the model (R2), and cross-validated R2 (i.e. Q2;
Wold et al., 2001). The separation distance (B/W), which is
the ratio of the between-group sum of squares (B) and the
within-group sum of squares (W; Bijlsma et al., 2006), was
selected for the permutation test (2,000 permutations). The
relationship of the B/W distribution between the original
and permutated data is indicated by the observed statistical
P-value. Subsequently, the values of variable importance in
the projection, which are the weighted sums of squares of
the model’s weights (Wold et al., 2001), of the three or four
latent factors were averaged to evaluate the importance of
each analyte. To remove redundant feature information, the
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top 2,000, 1,500, 1,000, 500, 300, 200, 100, 50, 25, 10, and 5
analytes from the 3,746 predictive analytes were selected for
multiple PLS regressions. The optimal number of predictive
analytes for each trait was determined when r plateaued.
The predictive analytes chosen for multiple traits were
treated as overlapping heterosis-associated analytes. The
parameters for heterosis-associated analytes and constants
were used to describe the connections between metabolite
levels and heterosis.

Dysregulated network analysis
To identify the metabolic pathways involved in heterosis of
the six traits, pathway enrichment analysis was performed
on the diallel cross population. Because of the fact that only
114 metabolites (3% of all detected analytes) had been an-
notated using the in-house standard spectral libraries, it was
difficult to conduct pathway enrichment analysis using tradi-
tional strategies. Thus, we utilized the metabolic reaction
network-based recursive algorithm (MetDNA; Shen et al.,
2019), which can achieve large-scale metabolite annotations
for untargeted metabolomics without the dependence of
comprehensive standard spectral libraries. The principle of
MetDNA is that metabolites in a reaction pair with similar
structures tend to have similar MS2 spectra. With the avail-
ability of a small library of MS2 spectra, MetDNA signifi-
cantly and progressively expanded the number of annotated
metabolites through the recursive algorithm. The dysregu-
lated metabolic peaks were first discovered using a univari-
ate test (Student’s t test or Mann–Whitney–Wilcoxon test),
and the dysregulated peaks with annotations were then
mapped to the KEGG metabolic pathways. The metabolite
level of one dysregulated pathway was the average level of
all annotated metabolites in the pathway. To ensure the
sensitivity and specificity of the pathway biomarkers, the di-
allel cross population was divided into high and low parts
based on the 75th and 25th percentiles of the heterosis of
each trait. When performing dysregulated network analysis
with the MetDNA web server (http://metdna.zhulab.cn), the
high- and low-BPH hybrids (hybrids with heterosis 575th
and 425th percentiles, respectively) were the control and
case groups, respectively. Analytes with m/z, retention time,
and average parental metabolite levels constituted the MS1
peak table, and the raw MS/MS files (mgf format) of a qual-
ity control sample (two injections) were the MS2 data files.
The corresponding parameters were as follows: ionization
polarity, negative; liquid chromatograph, RP; MS instrument,
Sciex TripleTOF; collision energy, 35± 15; univariate statistics,
Student’s t test; species: Arabidopsis thaliana (Thale Cress);
cutoff P-value, 0.05; P-value adjustment, yes. For the
testcross population, the hybrids were divided into two
parts (54 hybrids and 53 hybrids) in the dysregulated net-
work analysis, according to the values of yield heterosis.
Metabolic pathways were grouped according to the KEGG
pathway database (https://www.genome.jp/kegg/pathway.
html; Kanehisa et al., 2014).

ROC curve analysis
Quantitative information on the significantly enriched path-
ways for yield heterosis was used for the ROC curve analysis
with the module “Biomarker Analysis” on MetaboAnalyst
(Xia and Wishart, 2011). In the normalization procedures for
both univariate and multivariate ROC curve analyses, none
was performed for sample normalization and data scaling.
The top 100 metabolite ratios (viz. pathway ratios) were
computed and included to facilitate the identification of in-
dividual biomarkers (Chong et al., 2019). The top 20 metab-
olite ratios were computed and included in the ROC curve
analyses of the 34 hybrids. Random forest (Breiman, 2001)
was selected as the classification and the feature ranking
method in the multivariate ROC curve analysis. To ensure
the performance of random forest models, the “Biomarker
Analysis” module performs Monte Carlo cross-validation
through balanced subsampling. In each cross-validation,
two-thirds of the hybrids were used to evaluate feature
rankings, and the top 2, 3, 5, 10, etc., important analytes
were selected to build classification models, which were
then validated with one-third of the hybrids. The cross-
validation procedures were repeated 500 times to calculate
the performance and 95% confidence interval (95% confi-
dence band) for each model.

Statistical analyses
Pearson correlations between heterosis and transformed pa-
rental metabolite levels, among heterosis of the investigated
traits (pairwise) and among heterosis-associated analytes
(pairwise), were performed using the analysis path of
“Correlation Heatmaps” in the module “Statistical Analysis”
on MetaboAnalyst (Xia and Wishart, 2011). Correlations
with P 50.05, were considered significant. Empirical
Bayesian analysis of differential analytes for the high- and
low-BPH groups was performed with the analysis path of
“Empirical Bayesian Analysis of Metabolites.” An equal group
variance was assumed, and 0.9 was set as the fudge factor
(a0) and posterior delta. Unpaired t tests (adjusted P-value
cutoff: 0.05) with equal group variance were performed be-
tween the high- and low-BPH groups with the analysis path
of “T tests.” Compound names of the annotated metabolites
were converted into KEGG IDs with the analysis path of
“Compound ID Conversion” in the module “Other Utilities.”
PLS regressions of BPH and metabolite levels were per-
formed using SPSS (IBM SPSS Statistics for Windows,
Version 20.0. Armonk, NY: IBM Corp.). Partial correlations
(two-tailed) between the four yield components/PH and
yield were performed to investigate the contribution of the
four yield components and PH to yield heterosis using SPSS.
The two analyzed traits were variables, and the remaining
four traits were treated as control variables in partial correla-
tions. Pearson correlations (two-tailed) between the ob-
served and predicted BPH, or between metabolite levels and
BPH, were implemented using SPSS, with the correlation co-
efficient as predictability. Stepwise regression was used to
describe yield heterosis (dependent variable) with the four
components and PH (independent variables) using SPSS.
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Independent samples t test (two-tailed) and paired samples
t test (two-tailed) were used to compare the differences in
pathway levels between the high- and low-BPH hybrids and
phenotypic differences in the 34 hybrids across growth con-
ditions using SPSS. Venn diagrams were drawn using a webt-
ool from http://bioinformatics.psb.ugent.be/webtools/Venn.

Accession numbers
All phenotypic data were provided in supporting informa-
tion and the raw metabolite profiles were deposited in the
metabolomic database: MetaboLights (MTBLS742; Dan et al.,
2020).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Heatmap for correlations be-
tween heterosis and transformed parental metabolite levels.

Supplemental Figure S2. Determining the number of la-
tent factors for heterosis of each trait.

Supplemental Figure S3. Cross-validation and permuta-
tion test of the PLS-based models.

Supplemental Figure S4. Scatter plots for observed and
metabolome-predicted heterosis of the four yield
components.

Supplemental Figure S5. Correlations between the me-
tabolite levels of overlapping heterosis-associated analytes
and heterosis of yield and yield components.

Supplemental Figure S6. Scatter plots for observed and
yield components-predicted yield heterosis.

Supplemental Figure S7. Correlations between the me-
tabolite levels of overlapping heterosis-associated analytes
and heterosis of PH and yield and yield components.

Supplemental Figure S8. Heatmap for correlations among
the 100 yield heterosis-associated analytes.

Supplemental Figure S9. Correlation between average
levels of metabolites in cyanoamino acid metabolism and
propanoate metabolism.

Supplemental Figure S10. Heatmaps for correlations
among the screened heterosis-associated analytes and
enriched metabolic pathways for SSR.

Supplemental Figure S11. Heatmaps for correlations
among the screened heterosis-associated analytes and
enriched metabolic pathways for TGW.

Supplemental Figure S12. Heatmaps for correlations
among the screened heterosis-associated analytes and
enriched metabolic pathways for grain number per plant.

Supplemental Figure S13. Multivariate ROC curve analy-
sis of high- and low-BPH hybrids from the diallel cross
population.

Supplemental Figure S14. Correlations between the aver-
age levels of metabolites and yield heterosis.

Supplemental Figure S15. AUC for tyrosine metabolism
based on the univariate ROC curve analysis of 34 hybrids.

Supplemental Figure S16. Multivariate ROC curve analy-
sis of the 34 hybrids.

Supplemental Table S1. Phenotypic data of parents and
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Supplemental Table S2. Overlapping heterosis-associated
analytes among traits.

Supplemental Table S3. Correlations between metabolite
levels of overlapping heterosis-associated analytes and BPH.

Supplemental Table S4. Metabolite levels of the enriched
pathways for yield heterosis of the high- and low-BPH
hybrids from the diallel cross population.

Supplemental Table S5. T test of metabolite levels of the
enriched pathways for yield heterosis.

Supplemental Table S6. Correlations between metabolite
levels of the enriched pathways and yield heterosis.

Supplemental Table S7. Correlations of six metabolites in
cyanoamino acid metabolism and propanoate metabolism.

Supplemental Table S8. Univariate ROC curve analysis of
the 17 significantly enriched pathways for yield heterosis.

Supplemental Table S9. Multivariate ROC curve analysis
of the 17 significantly enriched pathways for yield heterosis.

Supplemental Table S10. Correlations between yield het-
erosis and the five annotated metabolites in tyrosine
metabolism.

Supplemental Table S11. Univariate ROC curve analysis
of the significantly enriched pathways for yield heterosis of
the 34 hybrids.

Supplemental Table S12. Multivariate ROC curve analysis
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