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Following ischemic stroke, polymorphonuclear neutrophils (PMNs) are rapidly recruited to
the ischemic brain tissue and exacerbate stroke injury by release of reactive oxygen
species (ROS), proteases and proinflammatory cytokines. PMNs may aggravate post-
ischemic microvascular injury by obstruction of brain capillaries, contributing to
reperfusion deficits in the stroke recovery phase. Thus, experimental studies which
specifically depleted PMNs by delivery of anti-Ly6G antibodies or inhibited PMN brain
entry, e.g., by CXC chemokine receptor 2 (CXCR2) or very late antigen-4 (VLA-4)
blockade in the acute stroke phase consistently reduced neurological deficits and
infarct volume. Although elevated PMN responses in peripheral blood are similarly
predictive for large infarcts and poor stroke outcome in human stroke patients,
randomized controlled clinical studies targeting PMN brain infiltration did not improve
stroke outcome or even worsened outcome due to serious complications. More recent
studies showed that PMNs have decisive roles in post-ischemic angiogenesis and brain
remodeling, most likely by promoting extracellular matrix degradation, thereby amplifying
recovery processes in the ischemic brain. In this minireview, recent findings regarding the
roles of PMNs in ischemic brain injury and post-ischemic brain remodeling
are summarized.
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BRAIN-INVADING POLYMORPHONUCLEAR NEUTROPHILS
(PMNs) AS FIRST LINE IMMUNE RESPONSE CONTRIBUTING
TO ISCHEMIC DAMAGE

PMNs are first line immune invaders in the ischemic brain. PMN recruitment after experimental
ischemic stroke is highly coordinated in a spatio-temporal way. PMNs accumulate within capillaries
and venules of the ischemic brain territory within the first hour after ischemic stroke (1), followed
by their extravasation into the perivascular space and tissue parenchyma, which gets significant in
the first two days post-stroke (2–4). Depending on the severity of the ischemic episode, brain PMN
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peak numbers are reached between day 1 and day 3 (5).
Transendothelial migration of PMN is mediated by adhesion
molecules, e.g., of intercellular adhesion molecule 1 (ICAM-1)
and platelet endothelial cell adhesion molecule-1 (PECAM-1),
which exhibit an increased expression after induction of
experimental ischemic stroke (6, 7). Infiltrating PMNs contribute
to ischemic brain injury development, as revealed by studies, in
which PMNs were depleted by delivery of anti-Ly6G antibodies or
in which PMN accumulation was inhibited by anti-very late
antigen-4 (VLA4) or anti-CXC chemokine receptor-2 (CXCR2)
antibody delivery or mesenchymal stromal cell (MSC)-derived
small extracellular vesicle (EV) administration (2, 3, 8). In each of
these studies, the prevention of brainPMNbrain entrywas found to
reduce ischemic brain injury and neurological deficits. These
studies very clearly defined an injury-exacerbating role of PMNs
in the acute stroke phase (9).
PMN HYPERACTIVATION IN PERIPHERAL
BLOOD IS ASSOCIATED WITH
SECONDARY BRAIN INJURY AND
NEUROLOGICAL DETERIORATION

Evidence in humans supports the idea that PMNs have
detrimental consequences on stroke outcome. Hence, PMNs of
ischemic stroke patients produce and release significant amounts
of reactive oxygen species (ROS) and proteases, such as
neutrophil elastase, as shown in peripheral blood within the
first 6 hours post-stroke (10). Under ischemic conditions,
peripheral blood PMNs are defined by a decreased surface
abundance of L-selectin and increased expression of b2-
integrins (10). This PMN hyperactivation facilitates PMN
brain entry and was found to be associated with ischemic
stroke progression in human patients (10, 11). The loss of
microvascular integrity is an important component in this type
of secondary brain injury. Thus, increased PMN responses,
reflected by increased PMN numbers or, more specifically, a
high neutrophil-to-lymphocyte ratio (NLR) in peripheral blood,
are associated with an increased likelihood of intracerebral
hemorrhage, death and poor neurological outcome at 3
months post-stroke, as assessed by the modified Rankin Scale
(mRS) score in patients receiving tissue plasminogen activator
(tPA)-induced thrombolysis (12).
MICROVASCULAR OCCLUSION BY
PMN STALLS EXACERBATES
SECONDARY BRAIN DAMAGE

A possible mechanism, via which PMNs in peripheral blood
aggravate secondary ischemic brain damage are PMN stalls
resulting in microvascular occlusions even under conditions of
successful arterial reopening (13–15). In amurine thromboembolic
stroke model, intravenous thrombolysis initiated 30 minutes after
embolization achieved the successful resolution of blood clots in the
M2 segment of the middle cerebral artery (14). Yet, as many as
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~35% of capillaries in the evolving infarct core and ~15% of
capillaries in the surrounding infarct periphery exhibited
microvascular occlusions compromising brain tissue recovery
(14). Strikingly, PMNs made up as many as 67% of capillary stalls
in the infarct core and 54% of the capillary stalls in the infarct
periphery (14). Delivery of anti-Ly6G antibody prior to stroke
significantly reduced capillary obstructions and hemorrhagic
transformation, and improved tissue perfusion and sensorimotor
function after stroke (14).
RANDOMIZED CONTROLLED
CLINICAL TRIALS FAILED TO SHOW
A BENEFICIAL EFFECT OF PMN
INHIBITION STRATEGIES

Despite numerous studies describing a deleterious role of PMNs
post-stroke, randomized controlled clinical trials aiming at
reducing PMN brain accumulation did not aid stroke recovery
in ischemic stroke patients. Thus, the delivery of a murine
monoclonal antibody directed against intercellular adhesion
molecule-1 (ICAM1) within 6 hours of symptom onset
aggravated neurological recovery assessed by the mRS score,
increased stroke mortality and increased infection susceptibility
(16). Besides, the administration of the glycoprotein UK279,276,
a CD11/CD18 integrin antagonist, within 6 hours of symptom
onset did not improve stroke outcome in stroke patients
receiving recombinant tPA-induced thrombolysis, as compared
to patients receiving tPA alone (17). Functional deficits were also
not alleviated after treatment with natalizumab, which is a
monoclonal antibody targeting VLA-4 (18, 19). Similarly, the
delivery of a humanized monoclonal antibody against CD11/
CD18 did not beneficially influence stroke outcome (20). These
clinical findings necessitate a more differentiated assessment of
the role of PMNs in the ischemic brain. In fact, previous studies
largely neglected the post-acute stroke phase in which PMNs
have diverse roles.
NEUTROPHIL EXTRACELLULAR
TRAPS (NETS) COMPROMISE
POST-ISCHEMIC REPERFUSION
AND MICROVASCULAR INTEGRITY

Upon injury, PMNs release NETs, which are composed of PMN
DNA, histones and granule components such as elastase and
cathepsin G (21). These NETs have recently been reported to
impair microvascular integrity after stroke induction in mice by
electrocoagulation of the middle cerebral artery (MCA) (22). In this
study, NETs were identified based on citrullinated histone H3
(H3Cit) abundance, enrichment of Sytox green-labeled DNA fibers
and the presence of the PMNmarker Ly6G (22). Disruption of NET
formation by means of DNase-1 injection increased blood-brain
barrier integrity and increased microvascular survival in the peri-
infarct cortex (22). The aggravation ofmicrovascular injury byNETs
may at least partly be attributed to the impaired lysis of blood clots,
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which abundantly contain citrullinated histones (23). Ex vivo, the
treatment of blood clots obtained from ischemic stroke patients with
DNAse-1 significantly increased tPA-induced thrombolysis in
comparison to tPA alone (23).

N2 POLARIZATION MIGHT CONFER
A NEUROPROTECTIVE AND
RESTORATIVE PHENOTYPE

PMNs are a heterogeneous group of leukocytes, which might
obtain proinflammatory or anti-inflammatory properties
depending on the tissue microenvironment (24). The former
PMNs, which are widely referred to as N1 phenotype, contain
high levels of proinflammatory cytokines, ROS, Fas (CD95) and
ICAM-1 (24–26) (Table 1). These PMNs vigorously recruit and
activate CD8+ T cells in tissues (24). On the other hand, so-called
N2 PMNs are characterized by their high content of arginase,
vascular endothelial growth factor (VEGF), CC-chemokine-
ligand-2 (CCL2) and CC-chemokine-ligand-5 (CCL5) (24, 27,
29) (Table 1). These PMNs may promote tissue survival and
remodeling in the ischemic brain (Figure 1). Indeed, treatment
with rosiglitazone, an activator of peroxisome proliferator-
activated receptor-g (PPARg), increased the number of brain-
infiltrating PMNs with N2 phenotype at 24 hours after
permanent middle cerebral artery occlusion (MCAO) in mice
(31). Infarct volume was reduced by rosiglitazone; this
neuroprotection was abrogated after PMN depletion induced
by anti–PMN antibody delivery (31). In another study, increased
numbers of brain-infiltrating PMNs with N2 phenotype were
noted in ischemic brains of toll-like receptor-4 deficient
compared to wildtype mice after MCAO (32). In this study,
PMN accumulation was inversely correlated with infarct volume
(32), suggestive of a neuroprotective role of N2 PMNs.

PMNs ARE INDISPENSABLE FOR BRAIN
REMODELING IN THE POST-ACUTE
STROKE PHASE

MSC-derived EVs potently promote angiogenesis in the ischemic
brain (33), specifically when these EVs are obtained from MSCs
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cultured under hypoxic conditions (33, 34). This effect depends
on the presence of PMNs, as recently shown by us. Thus, PMN
depletion by anti-Ly6G antibody delivery at 24 hours after
MCAO abolished the angiogenic effects of MSC-EVs (34). As
an important source of VEGF, PMNs directly stimulate
angiogenesis (27). Endothelial cells in turn release growth
factors which protect the brain, promote neuroplasticity and
induce neurogenesis (35). Newly formed blood vessels support
the migration of neuronal progenitor cells from the
subventricular zone to the ischemic brain region (36).
Inhibition of vascular endothelial growth factor receptor-2
(VEGFR2) impairs the production of growth factors, namely of
brain-derived neurotrophic factor (BDNF) (37). Besides, PMNs
have important roles in extracellular matrix (ECM) remodeling
by production and secretion of matrix metalloproteinase-9
(MMP9) (28). In rats exposed to MCAO, MMP9 formation
was markedly reduced in response to neutropenia induced by the
chemotherapeutic vinblastine (38). MMP9 has diverse effects on
ischemic injury and brain tissue remodeling, depending on the
time-point post-ischemic injury. Post mortem studies in
humans revealed robust MMP9 expression in the perivascular
space of demarcating brain infarcts (39). PMN-derived MMP9
was localized in proximity to leaky microvessels exhibiting
basal lamina disruption (40). Hence, MMP9 expression was
found to predispose to hemorrhagic transformation in the acute
stroke phase (41). In the post-acute stroke phase, the risk of
brain hemorrhage formation has already vanished, and ECM
remodeling appears to be a prerequisite for infarct removal and
microvascular sprouting (42). In rats exposed to MCAO,
delayed MMP inhibition 7 days after MCAO reduced the
expression of the neuroplasticity marker early growth
response protein-1 (Egr1), decreased the number of RECA-1+

endothelial cells, increased sensorimotor deficits and increased
ischemic injury, while acute MMP inhibition on day 1 reduced
infarct volume (43). In mice, lentiviral MMP9 overexpression
initiated on day 7 after MCAO facilitated glial scar resolution,
increased microvessel numbers and endogenous neurogenesis
and increased the expression of synaptic plasticity markers in
the peri-infarct brain (44). The delivery of a vascular
endothelial growth factor receptor-2 (VEGFR2) inhibitor or a
MMP9 inhibitor reversed these effects (44). Taken together,
these results emphasize the close interdependence of post-
ischemic angiogenesis, neurogenesis and synaptic plasticity.
All three processes rely on the coordinated reshaping of
the ECM.
CONCLUSIONS

There is robust evidence that PMNs aggravate ischemic brain
injury, neurological deficits and hemorrhagic transformation in
the acute stroke phase. However, it also becomes clear that
PMNs and PMN-derived extracellular matrix proteases are
indispensable for successful brain remodel ing and
neurological recovery in the post-acute stroke phase, perhaps
mediated by a restorative N2 phenotype. Future studies will
TABLE 1 | Neutrophil polarization.

Phenotype Effector molecule

N1 neutrophils ROS (25)
TNF-a (25)
ICAM-1 (26)
Fas (24)

N2 neutrophils MMP9 (27, 28)
VEGF (27)
Arginase (24)
CCL2, CCL5 (29)
Depending on themicroenvironment, neutrophils adapt anN1 or N2phenotypewhich differ in
their effector molecules. Currently, N1 and N2 neutrophils are not distinguishable by distinct
surface markers (30). Yet, their biological actions greatly differ from each other, as this table
shows. Morphologically, N1 neutrophils are characterized by hypersegmented nuclei (24).
January 2022 | Volume 12 | Article 825572

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mohamud Yusuf et al. Roles of PMNs in Stroke
have to dissect the diverse roles of PMNs, including
proinflammatory N1 and restorative N2 phenotypes, define
their temporospatial significance and their consequences for
ischemic injury and stroke recovery. Only by a thorough
understanding of these partly opposing actions, we will be able to
define pathophysiological processes via which PMNs can
therapeutically be targeted.
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