
fnins-15-733546 August 13, 2021 Time: 17:21 # 1

REVIEW
published: 19 August 2021

doi: 10.3389/fnins.2021.733546

Edited by:
Yizhang Jiang,

Jiangnan University, China

Reviewed by:
Wenjuan Liao,

University of Colorado, United States
Zhen Shen,

Nanyang Institute of Technology,
China

*Correspondence:
Yilu Xu

xu_yilu@jxau.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 30 June 2021
Accepted: 30 July 2021

Published: 19 August 2021

Citation:
Huang X, Xu Y, Hua J, Yi W, Yin H,

Hu R and Wang S (2021) A Review on
Signal Processing Approaches

to Reduce Calibration Time
in EEG-Based Brain–Computer

Interface.
Front. Neurosci. 15:733546.

doi: 10.3389/fnins.2021.733546

A Review on Signal Processing
Approaches to Reduce Calibration
Time in EEG-Based Brain–Computer
Interface
Xin Huang1, Yilu Xu2* , Jing Hua2, Wenlong Yi2, Hua Yin2, Ronghua Hu3 and Shiyi Wang4

1 Software College, Jiangxi Normal University, Nanchang, China, 2 School of Software, Jiangxi Agricultural University,
Nanchang, China, 3 School of Mechatronics Engineering, Nanchang University, Nanchang, China, 4 Youth League
Committee, Jiangxi University of Traditional Chinese Medicine, Nanchang, China

In an electroencephalogram- (EEG-) based brain–computer interface (BCI), a subject
can directly communicate with an electronic device using his EEG signals in a safe
and convenient way. However, the sensitivity to noise/artifact and the non-stationarity of
EEG signals result in high inter-subject/session variability. Therefore, each subject usually
spends long and tedious calibration time in building a subject-specific classifier. To
solve this problem, we review existing signal processing approaches, including transfer
learning (TL), semi-supervised learning (SSL), and a combination of TL and SSL. Cross-
subject TL can transfer amounts of labeled samples from different source subjects for
the target subject. Moreover, Cross-session/task/device TL can reduce the calibration
time of the subject for the target session, task, or device by importing the labeled
samples from the source sessions, tasks, or devices. SSL simultaneously utilizes the
labeled and unlabeled samples from the target subject. The combination of TL and SSL
can take advantage of each other. For each kind of signal processing approaches, we
introduce their concepts and representative methods. The experimental results show
that TL, SSL, and their combination can obtain good classification performance by
effectively utilizing the samples available. In the end, we draw a conclusion and point
to research directions in the future.

Keywords: signal processing, transfer learning, semi-supervised learning, EEG, brain–computer interface,
calibration

INTRODUCTION

A brain–computer interface (BCI) can allow a subject to directly control an external electronic
device using his brain signals without the participation of his peripheral nerves and muscles (Vidal,
1977; Kübler et al., 2001; Wolpaw et al., 2002). BCI technology can not only help the patients
suffering from neuromuscular diseases, such as amyotrophic lateral sclerosis (ALS), recover or
live independently, but also provide the healthy subjects with a novel way to communicate with
the external environment (Chai et al., 2014; Horki et al., 2015). Therefore, BCI technology can
play an important role in rehabilitation engineering, military, and entertainment (Ma et al., 2015;
Soekadar et al., 2016).
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So far, there are three categories of BCIs divided by the extent
of invading the brain, including non-invasive BCIs, semi-invasive
BCIs, and invasive BCIs (Rao, 2010). Due to safety, non-invasive
BCIs have drawn increasing attention, which can collect non-
invasive brain signals, such as electroencephalograms (EEGs),
functional magnetic resonance imaging (fMRI), and functional
near-infrared spectroscopy (fNIRS). Particularly, due to low cost
and high temporal resolution, EEG signals are widely used in the
non-invasive BCIs and much suitable for real-time BCI control.

However, EEG signals are weak, sensitive to noise/artifact,
and non-stationary. It is challenging to classify EEG signals
accurately. Moreover, it is difficult for a subject to freely control
his brain activity to execute kinds of BCI tasks. On past decades,
three classic EEG paradigms have been widely studied as follows:

(1) Motor imagery (MI) (Pfurtscheller and Neuper, 2001),
which is a typical BCI paradigm, was firstly designed
for rehabilitation treatment. The individuals with
neuromuscular diseases are expected to recover their
damaged motor nerves by effectively implementing
MI tasks. Unfortunately, people are familiar with real
movement naturally instructed by their brain activity,
instead of movement imagination. Therefore, MI EEG
signals are quite unsteady, limiting the categories of MI.
The mostly used MI tasks include left hand, right hand,
foot, and tongue MI (Kumar and Inbarani, 2017; She et al.,
2020).

(2) Event-related potentials (ERP) (Blankertz et al., 2011;
Zhang et al., 2012), which are invoked by an attended
stimulus, have more obvious features than MI EEG signals.
For example, the P300 ERP can be detected after a rare
and relevant stimulus onset, with a latency around 300 ms.
Farwell and Donchin (1988) demonstrated a P300 speller
system with 36 commands and an information transfer rate
(ITR) of less than 30 bits/min.

(3) Steady-state visual evoked potentials (SSVEP), which are
evoked by a low-frequency flickering stimulus, oscillate
at a multiple of the stimulus frequency (Yin et al., 2015;
Adair et al., 2017; Chiang et al., 2019). SSVEP-based
BCI has advantages, such as multiple commands, high
classification performance, and high ITR. However, users
may suffer from visual fatigue after long-term gazing at the
flickering stimulus.

Besides these traditional paradigms, some meaningful
paradigms become emerging in EEG-based BCI. For instance,
emotion states (happy, neutral, and sad) can be detected in EEG-
based affective BCI (Muhl et al., 2014; Shen and Lin, 2019). Drive
drowsiness estimation from EEG signals can be used to avoid
traffic accidents (Wei et al., 2015; Wu et al., 2016; Chai et al.,
2017). Although EEG-based BCI has promising perspective, it
must deal with the weakness of EEG and uncontrollability of BCI
task. In this paper, we discuss the signal processing approaches to
tackle this problem. A whole process of a traditional EEG-based
BCI system is illustrated in Figure 1.

In Figure 1, the whole process is comprised of two consecutive
phases: calibration phase and testing phase. In the calibration
phase, labeled samples from each subject are successively

processed by different modules to train a subject-specific
classifier. Then, in the testing phase, an unlabeled sample is
identified by the tailored classifier and translated into a command
to control an external electronic device, e.g., a wheelchair or an
exoskeleton arm. Here, we briefly introduce main modules in
both phases as follows:

(1) Signal acquisition, which is used to acquire the EEG signals
using multiple dry/wet electrodes and then digitize these
electrical signals. It is a critical step for BCI systems. In
the calibration phase, the raw EEG signals are invoked
by assigned BCI tasks. A reliable classifier benefits from
amounts of labeled samples. In the testing phase, the raw
EEG signals are invoked by unknown human intentions
and then identified in the classification module.

(2) Signal preprocessing, which aims to improve signal
quality without losing important information. In this
step, the raw EEG signals, easily contaminated by
electrooculograms (EOGs), electromyograms (EMGs), and
DC drift, are cleaned and denoized to enhance their
relevant information. Principal component analysis (PCA)
and independent component analysis (ICA) are often used
to remove EMGs and EOGs from the raw EEG signals.

(3) Feature extraction, which aims at extracting a few relevant
features from the preprocessed EEG signals to alleviate the
computational burden of classification. The brain patterns
can be characterized by these features. The preprocessed
EEG signals are typically filtered in the time domain (band-
pass filter), frequency domain, time-frequency domain, or
spatial domain (spatial filter). The best filters optimized in
the calibration phase are used to extract valuable features
in the testing phase.

(4) Classification. In the calibration phase, a set of labeled
features are input to the classification module to build a
subject-specific classifier. In the testing phase, an unlabeled
feature is assigned to a class by this tailored classifier.
A class corresponds to one type of BCI tasks.

The neurophysiological processes often vary over time and
across subjects in most EEG-based BCIs. For each subject,
long calibration procedure is always needed to collect amounts
of labeled EEG signals to build a steady recognition model.
However, tedious calibration may cause user’s mental exhaustion
and degenerate the experimental effect. It is hard to get abundant
EEG signals for each subject. In Table 1, some publicly available
EEG-based datasets are listed.

As shown in Table 1, the number of total EEG trials is
limited for each subject in most datasets. Accordingly, labeled
samples are not enough to be exploited. Therefore, it is crucial
to make full use of the samples available and face up to the
differences among them. For each subject, the lack of labeled
samples motivates the approaches that go beyond traditional
supervised learning by importing labeled samples from other
sessions/subjects/tasks/devices, unlabeled samples from himself,
and even artificial samples (Lotte, 2015). These approaches
include transfer learning (TL), deep learning (DL), semi-
supervised learning (SSL), artificial data generation and so on.
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FIGURE 1 | The whole process of EEG-based BCI system.

TABLE 1 | Publicly available EEG-based datasets.

Dataset Subject Task Total trials (per subject) References

Dataset A/B 10/9 Left/right hand MI 300/90 Alamgir et al. (2010)

BCI III IVa 5 Right hand/foot MI 280 Blankertz et al. (2006)

BCI IV IIa 9 Left/right hand, foot, and tongue MI 288 Keng et al. (2012)

MI BCI 52 Left/right hand MI 200 or 240 Hohyun et al. (2017)

P300 speller 8 36 characters 35 Riccio et al. (2013)

SEED 15 Negative, neutral, and positive emotion states 15 Zheng and Lu (2015)

Transfer learning is a popular machine learning technique to
shorten calibration time because it transfers abundant labeled
samples from different sessions/subjects/tasks/devices, denoted
as source domains, to a new session/subject/task/device, denoted
as a target domain. The main hypothesis in TL is that
the target and source domains belong to the same feature
space. However, high inter-domain variability often makes the
hypothesis violated. It is key to effectively integrate the features
of the source domains with those of the target domain.

Deep learning is a promising subfield of machine learning,
which has successful applications in many fields, such as natural
language processing and computer vision, etc (Huang et al.,
2021). Recently, it has attracted more attention in BCIs (Dose
et al., 2018; Ming et al., 2018; Liu Y. et al., 2020; Zhang Y. et al.,
2020). It can build a unified end-to-end model directly applied
to raw EEG signals. However, its good performance strongly
relies on sufficient labeled samples and a huge computational
cost. Although DL cannot directly shorten the calibration time

for a new BCI subject, its pre-trained model trained from a
large scale of source domains can improve the performance
of the BCI system. In the Section of TL, we discuss a
combination of DL and TL.

Semi-supervised learning can simultaneously use the labeled
and unlabeled samples from the same subject to train a
classifier. For offline SSL, the inherent information embedded
in the relatively large unlabeled set can effectively make up the
insufficiency of the labeled set. For online SSL, the classifier can
be updated in real time using a small, labeled set and an increasing
unlabeled set with pseudo labels. To address with-in subject
variability, SSL works by making the following assumptions, e.g.,
the smoothness assumption, the cluster assumption, and the low-
density assumption. In general, with-in subject variability in SSL
should be less than the inter-domain variability in TL. Therefore,
it is valuable for SSL to reduce calibration time.

Recently, a combination of TL and SSL has been popular since
it can take advantage of TL and SSL simultaneously. On the one
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hand, it can make up the shortage of the labeled samples by using
TL. On the other hand, it can train a more subject-specific model
by importing the unlabeled samples from the target subject.

Artificial data generation is also a good choice to cope with the
shortage of the labeled samples. Lotte (2015) generated numerous
artificial labeled samples from the few original labeled samples
available for EEG-based BCI by means of segmentation and
recombination in the time domain or time-frequency domain.
In the dataset 1 of BCI competition IV, a challenging problem
was posed to discriminate between the artificial data and real data
(Keng et al., 2012). The performance of artificial data generation
strongly relies on the number and quality of original labeled data.

In this paper, we focus on commonly used approaches to
shorten calibration effort, such as TL and SSL. Generally, TL
and SSL are often used in feature extraction and classification,
respectively. To our best knowledge, there is no comprehensive
review on signal processing approaches to reduce calibration time
in EEG-based BCI. Lotte (2015) performed a short review on
the existing signal processing approaches to shorten or suppress
calibration time and paid more attention to the introduction
to their new methods. There are comprehensive reviews on the
application of TL in EEG-based BCI (Wang et al., 2015; Zhang K.
et al., 2020). However, few reviews on SSL are referred.

In this paper, we give an overview of signal approaches to
minimize calibration time in EEG-based BCI. Meanwhile, the
experimental results of representative approaches are analyzed.
BCI illiteracy means that the classification accuracy of subject
cannot reach 70%. To avoid BCI illiteracy, approximately 40
labeled samples per class are required for BCI subject, as
suggested in Blankertz et al. (2007). Therefore, it is crucial for
signal processing approaches to make full use of the data available
to help the subject obtain satisfied performance using his labeled
samples as few as possible.

The remainder of this paper is organized as follows. In
Sections “Transfer Learning” and “Semi-supervised Learning,”
TL and SSL approaches are reviewed, respectively. In Section
“A Combination of Transfer Learning and Semi-Supervised
Learning,” a combination of TL and SSL is introduced.
A discussion of different signal processing approaches is
presented in Section “Discussion.” Finally, a conclusion is drawn
in Section “Conclusion.”

TRANSFER LEARNING

Concepts
Transfer learning is usually designed to cope with the shortage
of the labeled data from the target domain by transferring the
labeled data from other source domains. As mentioned above,
a domain refers to a session, a subject, a task, or a device, etc.
However, high between-domain variability in EEG-based BCI
raises more problems: how to evaluate, minimize, and utilize such
differences? To address these problems, we introduce the formal
definition of TL and discuss state-of-the-art TL methods.

Definition 1. As in Pan and Yang (2010), a domain D consists
of a feature space X and its marginal probability distribution
P(X), where X ∈ X . A task T is defined as a label space Y and

a predictive function f (X). Although a source domain Ds do not
match a target domain DT , or a source task Ts is different from a
target task TT , i.e., Ds=/DT , or Ts=/TT , TL still aims to improve
the learning level of the target predictive function fT(X) by adding
the knowledge embedded in Ns source domains {Di

s}
Ns
i=1 and their

associated tasks {T i
s }

Ns
i=1.

In this paper, state-of-the-art TL approaches in EEG-based
BCI are categorized into three groups based on “What knowledge
should be transferred” as follows (Pan and Yang, 2010):

(1) Instance transfer learning (ITL), which directly transfers
the certain parts of the data (instance) in the source
domains by reweighting. It is crucial to evaluate the
similarity between the source and target domains and
convert the corresponding similarity metric into optimal
weights used in the source and target domains.

(2) Feature-representation transfer (FRT), which transfers the
stationary feature representation from the source domains
and adjusts the discriminative feature representation for
the target domain. Unlike ITL, FRT learns “good” feature
representations from the data in the source domains.

(3) Parameter transfer learning (PTL), which transfers the
parameters of the model learning from the source domains
based on the assumption that the source and target
domains share these parameters. Then, PTL updates the
parameters for the target domain.

In the following, we introduce some typical TL approaches
belonging to different groups for analysis.

Instance Transfer Learning
In EEG-based BCI, ITL is widely used since it is easy to
implement. In the phase of feature extraction, the samples
from the source and target domains are usually reweighted
based on the filters. Additionally, data alignment schemes have
promising perspectives to minimize the differences between
domains. Therefore, we introduce the filter-based ITL and data
alignment-based ITL, respectively.

Filter-Based Instance Transfer Learning
Kullback-Leibler (KL) divergence is always used to compute
similarities between two sets of EEG data. In weighted logistic
regression-based TL (wLRTL) algorithm, the common spatial
patterns (CSP) filtered EEG samples from each source subject
were weighted based on KL divergence between the source and
target subjects in a supervised way or an unsupervised way (Azab
et al., 2019). In the supervised case, the divergence of each source
subject is equal to the average of the KL divergences computed
for each class. In the unsupervised case, the divergence of each
source subject is calculated without using the class labels. Then,
the regularization parameter calculated using the divergences of
all source subjects is added to the objective function of logistic
regression classifier to make full use of the labeled samples
from the source subjects correctly. Cao et al. (2021) verified
the applicability of wLRTL approach for stroke patients and
intra/inter- subjective conditions.
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Bhattacharyya distance was used to measure similarities
between the source and target datasets based on their class
conditional distributions in a probabilistic TL approach (Khalaf
and Akcakaya, 2020). First, the CSP features of MI EEG
trials from the source datasets are converted into scalar
support vector machine (SVM) scores to obtain their class
conditional distributions. Then, the similarity metrics of different
source datasets are identified based on these class conditional
distributions using Bhattacharyya distance. Finally, the top
similar source datasets are combined with the target dataset to
train the classifier.

Regularized CSP (RCSP) approaches have been very
promising for cross-subject TL in the small-sample setting
(Wang and Li, 2016). Based on the framework of RCSP, weighted
covariance matrices of EEG data from the source and target
subjects are simultaneously utilized to obtain optimal CSP filters.
The distance metrics, including KL divergence, Frobenius norm,
cosine distance, are used to measure the similarity between the
source and target data (Kang et al., 2009; Cheng et al., 2017;
Xu et al., 2019b).

A RCSP based on dynamic time warping (DTW-RCSP)
approach was proposed to shorten temporal variations and non-
stationarities between the subjects by aligning the labeled samples
from all source subjects to the average of few target samples
from the same class using an optimal warping path (Azab
et al., 2020). This warping path is computed using dynamic
programming. Then, using different weights, the subject-specific
covariance matrix estimated using the labeled samples from
the target subject is combined with the DTW-based transferred
covariance matrix estimated using the aligned labeled samples
from all source subjects mentioned above to get best CSP filters
for the target subject.

The objective functions are often optimized to gain a
weighted/projecting matrix/vector which can minimize the
differences among domains (Dai et al., 2018; Zou et al., 2018; Jiao
et al., 2019).

Zou et al. (2018) proposed two data mapping methods to
diminish the inter-subject variation as much as possible.

In the first data mapping method, the transformation matrix
L is optimized to reduce the inter-subject variation caused by
dissimilarities in channel locations as follows:

argmin
L

(
‖W1 −W2LT

‖
2
F+ ‖ L− P ‖2

F

)
, st. LTL = I (1)

where W1 and W2 are the CSP filters calculated from the target
domain D1 and the source domain D2, respectively. A new form
D′2 which has similar channel locations with D1 is generated by
projecting L to original source domain D2, i.e., D′2 = LD2. P is
the constraint matrix with the element Pij = e−d(i,j), where d(i, j)
is the distance between the channel i and the channel j. I is the
identity matrix.

In the second data mapping method, the inter-subject
variation of intensity of event-related desynchronization/
synchronization (ERD/ERS) is minimized. CSP is designed
to find the variance of the EEG signals between different
subjects, instead of different classes. Therefore, the eigenvector
of the CSP filter matrix is used to generate a correction

matrix which can adjust the source data based on the
target data.

Jiao et al. (2019) proposed a sparse group representation
model (SGRM), which tried to seek the optimal representation
vector for an unlabeled testing sample from the target subject by
effectively using the labeled training samples from the target and
source subjects. Each subject is regarded as a group. SGRM can
realize not only the group-wise sparsity with the L2,1-norm but
also within-group sparsity with the L1-norm. The representation
vector u∗ is optimized as:

argmin
u∗

(
1
2
‖ G̃u∗ − ĝ ‖2

2 + λ1 ‖u∗ ‖1 +λ2(‖u0 ‖2 +

Ns∑
i=1

‖ui ‖ 2)

)
,

(2)
where ĝ denotes the CSP feature of the testing sample, G̃
concatenates the dictionary matrices from all subjects. The
regularization terms λ1 and λ2 aim to control the within-group
sparsity and the between-group sparsity, respectively. Ns denotes
the number of source subjects. u0 and ui correspond to the sparse
representation vectors of the target subject and the i-th source
subject, respectively.

Data Alignment-Based Instance Transfer Learning
Recently, Riemannian alignment-based ITL approaches have
drawn increasing attention in EEG-based BCI (Barachant et al.,
2013; Qi et al., 2018; Zanini et al., 2018; Singh et al., 2019; Zhang
and Wu, 2020). The reason is that the affine transformation
makes data from different domains similar.

Covariance matrix is symmetric and positive semi-
definite. It is positive definite when the sampling rate is
high enough (Barachant et al., 2013). It is shown that
symmetric positive definite (SPD) matrices belong to the
smooth Riemannian manifold (Moakher, 2006). Therefore,
as EEG features, covariance matrices are often used in the
Riemannian manifold.

In Figure 2, the covariance matrices C1 and C2 are the two
points of the Riemannian manifold. According to the congruence
invariance property, the Riemannian distance δ(C1, C2) between
C1 and C2 is invariant with respect to a change of reference matrix
M. In general, M is the Riemannian mean of a specific domain,
e.g., a class, a session, or a subject, etc.

After choosing M as the reference matrix, the original
covariance matrices {Cκ

i }
Nκ

i=1 from the κ-th domain with Nκ trials
are converted into aligned ones, i.e., {C̃κ

i = M−1/2Cκ
i M−1/2

}
Nκ

i=1
which center on the identity matrix. Each aligned covariance
matrix is approximately an identity matrix, which can shorten the
differences of each other.

A Riemannian geometry cross-session/subject TL
framework was built in MI-based and P300-based BCIs
(Zanini et al., 2018).

Firstly, some resting-state signals in each domain are collected
to calculate their Riemannian mean. The resulting Riemannian
mean is assigned as the reference matrix of corresponding
domain. In MI-based BCI, resting signals are extracted from
time windows of 1.5 s, where no BCI tasks are performed.
However, in P300-based BCI, since there is not a separated
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FIGURE 2 | A Riemannian manifold and its tangent space.

resting-state signal, reference matrix is calculated using the non-
target trials.

Then, after Riemannian alignment (RA), the original
covariance matrices from each domain are converted into
aligned ones using the reference matrix of corresponding
domain. All aligned labeled covariance matrices from source
domains are used to estimate the centers of different classes and
train a minimum distance to mean (MDM) classifier based on
Riemannian Gaussian distributions.

Finally, the aligned testing covariance matrix from the target
domain can be assigned to a class by the proposed classifier,
considering its Riemannian distance to the center of class and the
maximum likelihood estimator of the dispersion parameter of the
class simultaneously.

Zhang and Wu (2020) proposed a cross-subject manifold
embedded knowledge transfer (MEKT) approach. It is
challenging and meaningful for MEKT to transfer the labeled
source domains into the unlabeled target domain, which can
boost zero-training for a new subject. Three steps of MEKT are
briefly introduced as follows:

(1) Covariance matrix centroid alignment: MEKT separately
performs RA for the covariance matrices in the
source and target domains using their Riemannian
means as corresponding reference matrices, so that
the marginal probability distributions from different
domains are similar.

(2) Tangent space (TS) feature extraction: MEKT converts the
aligned covariance matrices from different domains into
the tangent space feature vectors. Then, MEKT assembles
the tangent feature vectors from the source domains.

(3) Mapping matrices identification: MEKT finds optimal
projection matrices A for the labeled source feature
vectors Xs and B for the unlabeled target feature vectors
XT to minimize the joint probability distribution shift
between domains.

Finally, a shrinkage linear discriminant analysis (shrinkage
LDA, sLDA) classifier is trained using the labeled source feature
vectors ATXs and applied to the unlabeled target feature vectors
BTXT to predict their classes. To further avoid negative transfer,

FIGURE 3 | The raw covariance matrix and different aligned matrices. (A) The
raw covariance matrix. (B) The aligned covariance matrix after RA. (C) The
aligned covariance matrix after EA.

Zhang and Wu (2020) put forward a domain transferability
estimation (DTE) approach based on MEKT, which selected most
similar source subjects before performing the second step above.
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The transferability of the i-th source subject Di
s is defined as

follows:

transferability
(
Di

s,DT
)
=
‖ SD

i
s

b ‖1

‖ SD
i
s,DT

b ‖1

, (3)

where SD
i
s

b denotes the between-class scatter matrix of Di
s, and

SD
i
s,DT

b denotes the scatter matrix between the i-th source subject
and the target subject DT . Then, the source subject with the
highest transferability is chosen to be transferred.

Likewise, to select suitable source subjects, after RA, the
aligned covariance matrices from a target subject are temporally
used as the testing data and classified by an MDM classifier, which
is trained using the aligned covariance matrices from a candidate
source subject (Yong and Yu, 2020). The source subjects with
higher classification performance are selected.

A Riemannian Procrustes analysis (RPA) approach was
proposed using three geometrical transformations (translation,
scaling, and rotation) in sequence (Rodrigues et al., 2019). During
transformations, the covariance matrices from different domains
have went through the steps of re-centering, stretching, and
rotation. RPA is a typical semi-supervised TL method, utilizing
the labeled data Csl from the source domain, the labeled data CTl
and the unlabeled data CTu from the target domain altogether.

In the translation phase, as in Zanini et al. (2018), the
source labeled data Csl and the target data CT = CTl ∪ CTu
are separately re-centered around the identity matrix using the
resting activity of each session to compute the Riemannian means
of different domains.

Then, in the scaling phase, the re-centered source labeled data
C(rct)

sl and target labeled data C(rct)
Tl are used to calculate the ratio

of their dispersions, namely the scaling factor r. The stretched
source labeled data C(str)

sl and target data are C(str)
T are formed

using the above scaling factor r, i.e., C(str)
sl = (C(rct)

sl )
r
, C(str)

T =

(C(rct)
T )

r
, where C(rct)

T = C(rct)
Tl ∪ C(rct)

Tu . It should be noted that the
re-centering and stretching transformations, without using the
trials’ labels, work in an unsupervised way.

Finally, in the rotation phase, the trials’ labels are needed
to compute an orthogonal rotation matrix U, which can be
optimized to minimize the distance between the class mean of the
source domain and that of the target domain. The rotated datasets
are transformed as follows:

C(rot)
Sl = UTC(str)

Sl U, C(rot)
T = UTC(str)

T U. (4)

After three geometrical transformations for the covariance
matrices from different domains, the MDM classifier is used to
infer the label of the unlabeled data from the target domain.

Since most classifiers are designed for the Euclidean space,
instead of the Riemannian space, Euclidean alignment (EA)
extends RA in the Euclidean space using the Euclidean mean
as the reference matrix (He and Wu, 2020b). For each subject,
the original covariance matrices are transformed into the aligned
ones using his resting activities to calculate his Euclidean mean.
The concatenated aligned training covariance matrices from

different source subjects are filtered by CSP and then trained
by LDA. The CSP features of the target subject are extracted
from their aligned covariance matrices by CSP and assigned
to a class by LDA.

Mathematically, the Euclidean mean is the arithmetic mean
of all covariance matrices. And the Riemannian mean can
be computed by iterating the following three steps until
convergence: converting all covariance matrices in the manifold
into the tangent space feature vectors, calculating the arithmetic
mean of such feature vectors, and converting the arithmetic mean
back into the covariance matrix in the manifold. Apparently, EA
is simpler and faster than RA.

Furthermore, both RA and EA can make the aligned
covariance matrices comparable since they are close to the
identity matrix. To testify this, in Figure 3, we depict a raw
covariance matrix and different aligned covariance matrices for
the first EEG trial of A07 in dataset BCI IV IIa (Keng et al., 2012).
As in Zhang and Wu (2020), this dataset contained 22-channel
EEG recordings from nine healthy subjects. All raw EEG signals
were band-pass filtered between 8 and 30 Hz using a causal 50-
order finite impulse response filter. Then, the filtered signals were
extracted from time segments ranging from 0.5 to 3.5 s. For each
subject, their raw covariance matrices can be transformed into the
aligned ones using Riemannian mean or Euclidean mean of their
corresponding session as the reference matrix.

In Figure 3A, the raw covariance matrix is not like the
identity matrix at all. However, as shown in Figures 3B,C, the
aligned matrices are approximately identity matrix after RA and
EA, respectively.

A label alignment (LA) was proposed to tackle cross-task
transfer when the source and target subjects had different label
spaces (He and Wu, 2020a). It is assumed that different subjects
have the same number of classes. LA first performs EA for the per-
class covariance matrices of each source subject. Then, LA builds
k-medoids clustering on the unlabeled target domain based on a
few labeled target trials and Riemannian distance. Then, LA labels
the k cluster centers and performs EA for the per-class covariance
matrices of the target subject. Next, LA matches each label in
the source domain with one label in the target domain regularly
or randomly, which depends on the similarity between label
spaces. Finally, LA seeks a transformation matrix for each class
of the source subject which can reduce the differences between
the source subject’s covariance matrices belonging to the specific
class and the target subject’s covariance matrices belonging to
the matched class.

Feature-Representation Transfer
The main idea of FRT is to transfer the stationary features across
different source domains and adjust the discriminative features
for the target domain (Sybeldon et al., 2017; Yin et al., 2017;
Hossain et al., 2018; Jin et al., 2018).

So far, there are many TL approaches using spatial filters to
generate feature representations for the raw EEG data (Nakanishi
et al., 2019; Zheng X. et al., 2020; Hehenberger et al., 2021).
Nakanishi et al. (2019) proposed a task-related component
analysis (TRCA) approach in a cross-device SSVEP-based BCI
speller system. TRCA consists of two steps: extracting task-related
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spatial filters for a source device and extracting task-unrelated
spatial filters for a target device.

Step 1:
Task-related spatial filters are designed to maximize their

reproducibility during the task periods. For each visual stimulus
in SSVEP-based BCI, a specific task-related filter ẁ is optimized
by maximizing the inter-trial correlation of its projections z(t) =
ẁtx(t), where x(t) ∈ RNc1 denotes the t-th sample point of an
observed EEG trial x collected from Nc1 channels in a source
device. Two devices have inconsistent electrode montages.

The covariance matrix Ch1,h2 between the projection z(h1) of
the h1-th trial x(h1) and the projection z(h2) of the h2-th trial x(h2)

is defined as follows:

Ch1,h2 = Cov(z(h1), z(h2)) =

Nc1∑
k1,k2=1

ὼk1ὼk2 Cov(x(h1)
k1

, x(h2)
k2

),

(5)
where ὼk1 , ὼk2 ∈ ẁ, z(h1), z(h2) ∈ RNsa and x(h1), x(h2) ∈

RNc1×Nsa , Nsa denotes the number of samples in each trial. Then,
for the specific visual stimulus, all covariance matrices between
different labeled training trials are summed as:

Ntr∑
h1,h2=1,h1 6=h2

Ch1,h2 =

Ntr∑
h1,h2=1,h1 6=h2

Nc1∑
k1,k2=1

ὼk1ὼk2 Cov(x(h1)
k1

, x(h2)
k2

)

= ẁTSẁ, (6)

where Ntr is the number of labeled training trials, the element
Sk1,k2(1≤k1, k2≤Nc1) of S is formulated as:

Sk1,k2 =

Ntr∑
h1,h2=1,h1 6=h2

Cov(x(h1)
k1

, x(h2)
k2

). (7)

The optimization problem is defined as:

̂̀w = argmax
ẁ

ẁTSẁ
ẁTQẁ

, (8)

under the following constraint:

Var(z(t)) =
Nc1∑

k1,k2=1

ὼk1ὼk2 Cov(xk1(t), xk2(t)) = ẁTQẁ = 1,

(9)
where Var (z (t)) is the variance of z (t). Then, for the n-th visual
stimulus, its optimal task-related filter ẁn is the eigenvector
corresponding to the largest eigenvalue of ̂̀w and its averaged
training trials are Xn. The Nf task-related filters are applied to
their corresponding averaged training trials, i.e., z = ẁTX, where
ẁ = [ẁ1, ẁ2, · · · ẁNf ] and X = [X1, X2, · · ·XNf ]. Nf denotes the
number of visual stimuli.

Step 2:
Task-unrelated spatial filters ŵ ∈ RNc2×Nf used for a target

device can be estimated as ŵ = (xxT)
−1xzT , where Nc2 and x ∈

RNc2×Nsa are the number of channels and a single trial in the
target device, respectively. Likewise, task-unrelated spatial filters

ŵ are applied to the single trial x, i.e., ẑ = ŵTx. Obviously,
z and ẑ are the stationary features and the discriminative
feature, respectively.

Zheng X. et al. (2020) proposed a cross-task TL approach in
MI-based system, which can add more MI tasks based on the
traditional ones. For example, the traditional single-limb task,
such as left hand (LH) MI, right hand (RH) MI, or foot (F)
MI, can be extended to be multiple-limb task, such as both left
hand and right hand (LH and RH) MI simultaneously, both
left/right hand MI and feet (LH/RH and F) MI simultaneously,
etc. To tackle cross-task TL, stationary spatial filters can be first
computed for the source domain using CSP. Then, the fishier
ratio is used to select discriminative spatial filters for the target
domain from stationary spatial filters.

Parameter Transfer Learning
The goal of PTL is to discover model’s shared parameters from
previous source domains (Sannelli et al., 2016).

Zheng M. et al. (2020) proposed a cross-session/subject model
using the shared parameters and the specific parameter jointly.
First, the source datasets which are most relevant to a new
target dataset are selected based on Euclidean distance. Then, the
shared parameters Ẃ = [ώ1, ώ2, · · · , ώs] are optimized using s
selected source datasets as follows:

argmin
Ẃ,µ́,6́

1
λ

∑
s
‖ Xsώs − Ys ‖

2
+

∑
s

1
2
[(ώs − µ́)T6−1(ώs − µ́)

+ logdet(6́)], (10)

where ώs denotes the model parameter for the specific source
dataset (Xs, Ys), µ́ and 6́ are, respectively, the mean and
variance of all model parameters, λ refers to a regularization
term. After iteratively updating µ́ and 6́ , the shared parameters
Ẃ converges. Finally, the shared parameters and the specific
parameter trained in the target dataset are jointly utilized.

Domain adaption is also commonly used in PTL. The model
parameter trained in the source domain can be reused and
adjusted for the target domain (Wang et al., 2015).

Dai et al. (2019) proposed a domain transfer multiple
kernels boosting (DTMKB) framework by applying the boosting
techniques for learning multiple kernel-based classifiers. First,
these kernel-based classifiers have already trained with the labeled
samples from different source subjects. Then, a series of boosting
labeled trials from the target subject are input to those classifiers
one by one. For each boosting labeled trial, the best kernel
classifier is selected and weighted based on the error rate. Finally,
all best classifiers and their weights are combined to become an
ensemble classifier.

Wei et al. (2018) proposed a cross-subject framework
for drowsiness estimation by ranking and fusing different
source models. First, for each source subject, an EEG-based
drowsiness estimation source model is constructed using PCA
and regression. Then, to rank different source models, the
following steps are performed:

(1) To estimate the similarity among the source subjects, five
distance metrics, including Euclidean distance, correlation

Frontiers in Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 733546

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-733546 August 13, 2021 Time: 17:21 # 9

Huang et al. Review on TL and SSL

distance, Chebyshev distance, cosine distance, and KL
divergence, are involved to calculate the distance between
subjects’ alert baseline power distributions and construct a
multiple distance measurement matrix M.

(2) To further evaluate the transferability among source
subjects, a transferability matrix XP can be obtained by
calculating the performance of one source model on
another source subject. Both M and XP are normalized
into z-scores vector by vector.

(3) A linear support vector regression (SVR) model is trained
using M and XP as the predictor and the response,
respectively. For a new target session, the transferability
of each source model is estimated based on the trained
SVR model using the baseline distances between the
corresponding source subject and the target subject. Then,
the different source models are ranked from high to low
based on the transferability.

Finally, the rankings of all source models are used to generate
their weights in a fused model.

Jin et al. (2020) proposed a cross-subject generic model
set in P300-based BCI. The P300 signals from 116 source
subjects are used to train this generic model set without the
participation of the target subject. The initial feature vectors
are extracted from these source subjects’ EEG signals. Then,
the dimensionality of these feature vectors is reduced using
PCA to alleviate computational burden. The resulting feature
vectors are grouped into ten clusters using a K-means clustering
algorithm. Ten weighted LDA (WLDA) classifiers are separately
built using the feature vectors from ten clusters. In each WLDA
classifier, its discriminant vector is initially trained by traditional
LDA classifier using the feature vectors from each cluster. The
vectors are then weighted based on their classification accuracies
computed in the initial WLDA classifier. Next, the discriminant
vector is updated by LDA using the weighted vectors. As a result,
a generic model set consists of these ten WLDA classifiers.

Currently, a combination of TL and DL has gained attention
in the BCI systems (Fahimi et al., 2019; Bird et al., 2020). TL
focuses on the transfer of knowledge between different domains.
DL aims to find the inherent knowledge among amounts of
labeled trials. If the pre-trained model trained by DL is reliable
and adjustable, it is meaningful to transfer the model from one
domain to the other one.

Fahimi et al. (2019) developed a cross-subject TL approach
based on an end-to-end deep convolutional neural network
(CNN) to decode the attentive mental state for EEG-based BCI.
The proposed method learns from raw EEG signals to avoid the
loss of information and builds a network with the combination
of convolutional, max-pooling, and dropout layers using a large
scale of EEG data from 120 healthy source subjects. To ensure
positive transfer, half of the target subject’s samples are re-trained
for adaption by CNN.

The summary of some representative TL approaches is shown
in Table 2. In the sixth column of Table 2, ‘Training’ denotes
the size of all labeled training sets. The first term of ‘Training’
refers to the size of labeled training set from the target domain,
the second term of ‘Training’ refers to the product of the size of

labeled training set from one source domain and the number of
source domains, whereas ‘Testing’ denotes the size of unlabeled
testing set from the target domain. CA denotes the classification
accuracy. BCA denotes the balanced classification accuracy.
Different from CA, BCA first calculates the classification accuracy
for each class and then averages all classification accuracies. CC
denotes the correlation coefficient between actual and predicted
drowsiness indices.

As shown in Table 2, MI-based BCIs have been widely
studied in the field of TL. The reason is that there are a lot
of publicly available MI datasets. Furthermore, MI EEG signals
are evoked by spontaneous movement imagination without
external stimulus. Therefore, compared with ERP and SSVEP,
MI is more uncontrollable and more eager to minimize the
calibration time by using TL methods. In addition, due to
effectiveness and convenience, cross-subject ITL approaches are
commonly researched. Note that PTL usually fulfills the feature
extraction and classification altogether when transferring the
model between domains. In terms of results, most TL algorithms
can achieve good classification performance (over 70%) using no
or few labeled training samples from the target domain.

SEMI-SUPERVISED LEARNING

Concepts
Transfer learning can remedy the shortage of the labeled samples
from the target domain by importing amounts of labeled data
from different source domains. However, it is challenging for
TL to cope with huge differences among data available. SSL can
make full use of the labeled training samples and unlabeled testing
samples from the target subject. Because of fewer data, SSL has
less pressure to deal with differences among data than TL.

Semi-supervised learning inherits the merits from supervised
learning and unsupervised learning. On the one hand, it is helpful
for supervised learning to generate a reliable classifier using
amounts of discriminative labeled training samples. Nevertheless,
the classification performance of supervised learning decreases
sharply with the reduction of labeled training samples. On the
other hand, it is of great importance for unsupervised learning
to explore the inherent information embedded in amounts
of unlabeled testing samples. However, it is difficult to apply
unsupervised learning to non-stationary EEG-based BCI. To
minimize the calibration procedure, it is crucial for SSL to
effectively utilize the labeled training set and unlabeled testing
set simultaneously.

In general, SSL methods make additional assumptions
on relationship between data distribution and decision
function. These include the cluster assumption, the low-
density assumption, and the smoothness assumption (Zhu and
Goldberg, 2009; Tang et al., 2019). The cluster assumption
holds that the samples in the same cluster should belong to
the same class. The low-density assumption thinks that the
decision boundary should go through the sparse low-density
feature space. Both the cluster assumption and the low-density
assumption focus on the whole data distribution by adjusting the
decision boundary (Fu et al., 2021). However, the smoothness
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TABLE 2 | Summary of representative TL approaches.

Pattern Type Domain TL method Classifier Result (training/testing) References

MI ITL Subject RCSP based on dynamic time
warping

SVM CA: over 75% (10+84 × 8/50) Azab et al. (2020)

MI ITL Subject A manifold embedded knowledge
approach

sLDA BCA: 68.73% (0+144 × 8/144) Zhang and Wu (2020)

MI ITL Subject Riemannian procrustes analysis MDM CA: 80% (50+200 × 49/150) Rodrigues et al. (2019)

MI ITL Subject Euclidean alignment TL framework CSP-LDA BCA: 73.53% (0+144 × 8/144) He and Wu (2020b)

MI ITL Task Label alignment TL framework TS-SVM CA: over 70% (20+1400 × 1/124) He and Wu (2020a)

SSVEP FRT Device A task-related component analysis
approach

Computing the highest
correlation coefficients

CA: over 70% (0+320 × 1/320) Nakanishi et al. (2019)

MI FRT Task Similar MI tasks transfer based on
Fisher ratio

SVM CA: 81.94% (10+120 × 1/110) Zheng X. et al. (2020)

Drowsiness PTL Subject A cross-subject framework by ranking and CC: 0.6448 (20+100 × 8/80) Wei et al. (2018)

fusing different source models

Attentive
mental state

PTL Subject An end-to-end deep CNN approach CA: 79.26% (20+40 × 119/20) Fahimi et al. (2019)

assumption pays more attention to the local data distribution.
It is considered that the samples close to each other are likely
from the same class (Engelen and Hoos, 2020). Based on such
assumptions, different SSL models utilize the training and testing
sets in different ways.

(1) Based on the low-density assumption, the transductive
SVM (TSVM) model seeks the optimal hyperplane which
can go through the low-density area and separate both
labeled training and unlabeled testing data with maximum
margin (Joachims, 1999).

(2) Based on the cluster assumption, the generative model
iteratively performs the expectation step and the
maximization step to learn the posterior distributions and
optimal parameters for the testing samples surrounding
the small training set (Tkachenko and Lauw, 2017).

(3) Based on the cluster assumption, the self-training model
usually adopts a specific supervised learning approach as
the base classifier to iteratively train the training samples
and the extended testing samples with high confidence
(Chen et al., 2016; Wang et al., 2017). The extended testing
samples come from the testing set. The rest of testing
set is usually used to estimate the model’s classification
performance. If the size of the extended testing set is 0, the
whole testing set is used to build and evaluate the classifier.
Likewise, the co-training model iteratively trains two base
supervised learning classifiers using each other’s previous
classification results (Ren et al., 2014).

(4) Based on the low-density assumption and the smoothness
assumption, the graph-based model constructs one or
more weighted graphs to analyze the similarity between the
training and testing samples and then predicts the classes of
the testing samples (Zhao et al., 2015; Gan et al., 2018).

Next, we discuss different SSL models in detail.

TSVM Model
Transductive SVM was firstly proposed for text classification
(Joachims, 1999). Recently, TSVM methods have been gradually

used in EEG-based BCI, since SVM is much suitable for EEG
signals (Liao et al., 2007; Bi et al., 2019; Xu et al., 2019a).

Liao et al. (2007) introduced a TSVM method for reducing
the training effort in EEG-based BCI. A non-linear TSVM based
Gaussian kernel approach was proposed to find a more complex
structure in the feature space. Particularly, the particle swarm
optimization method is used to tune the best parameters for
non-linear TSVM.

Bi et al. (2019) developed a prior information-based TSVM
(PI-TSVM) method in ERP-based driver-vehicle interfaces. The
prior information refers to the ratio of positive samples to
negative samples. Its value is set to one to two according to the
experimental paradigm. Based on the framework of TSVM, a
SVM classifier is trained using the initial labeled training set.
The unlabeled testing samples are sorted based on their decision
scores in a descending order. Then, using the prior information,
the first third and the rest of the sorted testing samples are initially
marked as positive labels and negative labels, respectively. To seek
optimal hyperplane which can go through the low-density area,
a pair of testing samples are repeatedly selected to switch their
pseudo labels according to a certain criterion.

Compared with SVM, TSVM approaches have better
generalization ability in the case of limited training set.
However, they are easily affected by outlier testing samples
(Li and Zhou, 2015).

Generative Model
To our knowledge, there are few literatures about generative
model used in EEG-based BCI.

Based on the cluster assumption, Fu et al. (2021) presented
a semi-supervised discriminative rectangle mixture approach
in MI-based BCI. It is assumed that the prior distribution
of decision boundaries is a Gaussian mixture model.
Meanwhile, all samples belonging to a specific cluster are
supposed within a corresponding decision rectangle. The
expectation maximization algorithm is performed to obtain
the optimal model by maximizing a posterior estimate for the
posterior distributions.
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Self-Training Model and Co-training
Model
Both the self-training and co-training models are popular because
they can take advantage of one or two supervised classifiers. The
self-training model iteratively trains a base supervised classifier
using the extended training set, whereas the co-training model
iteratively trains two base supervised classifiers marking the labels
of the extended testing samples for each other. The extended
training set is comprised of the extended testing samples from
the testing set and the initial training samples. The framework of
self-training model and that of co-training model are shown in
Figures 4A,B, respectively.

The self-training model can be effectively used for offline
and online SSL. In offline SSL, the extended testing samples
are obtained a priori, whereas in online SSL, they are
obtained sequentially and labeled on-the-fly. There are many
literatures related to offline SSL, such as TSVM methods,
generative methods, and graph-based methods. However, in
the online scenario, the self-training methods can expand
the training set with newly labeled testing samples and
update the classifier along with the adaption of the subject’s
mental state.

Based on spectral regression kernel discriminant analysis
(spectral regression KDA, SRKDA), Nicolas-Alonso et al. (2015)
presented an offline SSL version, namely semi-supervised
SRKDA (SS-SRKDA), and an online SSL version, namely
sequential updating SS-SRKDA (SUSS-SRKDA). As a base
classifier, SRKDA can find optimal projection casting KDA into
a regression framework and save the computational cost by
Cholesky decomposition. Based on the self-training framework,
SS-SRKDA iteratively trains the SRKDA classifier with the
training set and the testing set until convergence. SUSS-SRKDA
sequentially labels the arriving testing samples using the SS-
SRKDA classifier.

The total set can also be divided into the training, validation,
and testing sets. To better utilize the unlabeled testing samples,
a transductive learning with covariate shift-detection (TLCSD)
method was proposed in MI-based BCI (Raza et al., 2016). First,
an inductive SVM classifier is trained using the initial labeled
training set. The validation set is used to obtain the optimal
hyperparameters. Each testing sample is labeled by the trained
classifier. Then, for each unlabeled testing sample, TLCSD selects
its K nearest labeled neighbors and calculates the confidence ratio
to judge its usefulness. Finally, both the useful testing sample
and its estimated label are added to the existing training set to
update the SVM classifier. This process is repeated until all testing
samples are processed.

Active learning (AL) is an iterative SSL technique for
identifying maximally informative samples. Therefore, it is
much suitable for selecting testing samples with high confidence.
Marathe et al. (2016) presented an AL implementation in a
rapid serial visual presentation (RSVP) paradigm. The proposed
approach uses a Query-by-Committee (QBC) framework
with a heterogeneous ensemble of popular models, including
hierarchical discriminant component analysis (HDCA),
CSP+BLDA (CSP-BLDA), xDawn+Bayesian LDA (XD-BLDA).

First, the HDCA, CSP-BLDA, and XD-BLDA models are
separately trained using the training set. Then, the area-under-
curve (AUC) is calculated to measure model efficacy using
the validation set. The testing samples are labeled by different
models. For each testing sample, its aggregate confidence is
calculated based on the distance of each model’s score from the
discriminating boundary. The testing samples with the lowest
aggregate confidence are chosen to be informative trials and
sent to the oracle for labeling. The oracle is assumed to be
the user himself.

For co-training model, since the two base classifiers give
different separate planes, they are good complements to
each other.

Ren et al. (2014) proposed a co-training method based
on a biomimetic pattern recognition (BPR) classifier and a
sparse presentation (SP) classifier for MI-based BCI. As the
base classifiers, both BPR and SR are computationally simple
due to few parameters to be tuned. Moreover, they provide
reasonably different separate planes, which is important for
co-training model. BPR is based on “coverage.” It consists of
multiple neurons trained by training data. While SR is based
on the compressed sensing theory, which takes advantage of
the redundancy in many signals. For different base classifiers,
the distance to one class and the residuals of one class are
simultaneously considered to select high confident extended
testing samples.

Meng et al. (2014) presented a co-training approach
combining a LDA classifier with a BLDA classifier. The CSP
feature extraction and the co-training classifier are performed
jointly and iteratively (Meng et al., 2014). LDA can give
good classification performance and fast computational cost
simultaneously. While BLDA can give better generalization
ability as the Bayesian version of LDA. For different classifiers,
the extended testing samples with largest absolute values of
classification scores are selected for each other.

Although both the self-training and co-training models are
simple and effective, they are susceptible to the incorrect
labels of the extended testing samples with high confidence
during iterations.

Graph-Based Model
The graph-based model can construct one or more weighted
graphs to reveal the manifold structure behind the training set
or the total set. The graph Laplacian is always embedded in the
objective function of the SSL classifier.

A semi-supervised quantization approach based on the
cartesian K-means (SSCK) method was proposed for MI and
emotion EEG classification, where the graph Laplacian was
built based on the labeled training set and added in the
objective function as a manifold regularization term (Liu
M. et al., 2020). L = D−W is the Laplacian matrix. Based
on the cluster assumption, the entry Wij of the similarity
matrix W is assigned a large weight when the i-th and j-th
labeled training samples are in the same cluster, otherwise it
is assigned a small weight. D is a diagonal matrix with its
diagonal elements Dii =

∑
j Wij. To get more discriminative
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FIGURE 4 | Self-training and co-training models. (A) The framework of self-training model. (B) The framework of co-training model.

SSCK model, the following objective function is iteratively
optimized:

argmin
R, C, B,Y(l),µ

(‖ RTX(l)
µ − CY(l)

‖
2
F + η‖ RTX(u)

µ − CB ‖
2
F

+ λtr(Y(l)L(Y(l))
T
)), (11)

where the first and second terms are respectively employed to
reduce the squared distortion errors in the transformed training
features X(l)

µ ≡ X(l)
− µ (1(l))

T
and the transformed testing

features X(u)
µ ≡ X(u)

− µ (1(u))
T by the K-means clustering with

respect to the rotation matrix R and the cluster center C. X(l) and
X(u) are the original training and testing features, respectively. µ

is the mean value vector of input data after each iteration. The
third term is the supervised Laplacian regularization term. Y(l)

and B are separately the training label matrix and the testing label
matrix. tr(·) performs the trace computation. η and λ are the
trade-off parameters.

Based on the extreme learning machine (ELM) and deep
architecture, a hierarchical semi-supervised ELM (SS-ELM)
method was presented for MI task recognition, where the graph

Laplacian was calculated using all samples (She et al., 2019a).
Firstly, high-level features Gk̃, Tk̃, and Hk̃ are separately extracted
from l labeled training samples, u unlabeled testing samples, and
(l+ u) total samples by deep architecture, where k̃ is the number
of hidden layers. Then, these features are input to the SS-ELM
classifier to optimize the objective function as follows:

argmin
β

(‖ β ‖2
2 + C̃‖ Gk̃β− Ỹ ‖2

2 + λβTHk̃
T L̃Hk̃β), (12)

where the output weights β can be calculated by Moore-Penrose
principle, C̃ is a penalty coefficient on the training errors, Ỹ
denotes the labels of training data, λ is a trade-off parameter.
L̃ = D̃− W̃ is the graph Laplacian, D̃ denotes a diagonal matrix,
W̃ij is the element of the similarity matrix W̃ (1≤i, j≤l+ u).
Finally, Ỹpredict = βTk̃ is the labels of testing samples. The
proposed approach takes advantage of ELM, deep architecture,
and graph-based model.

A k-nearest neighbor graph is usually included in the
Laplacian matrix to define the relationship among the nearby
data points (She et al., 2019b; Peng et al., 2020).

Based on the graph label propagation algorithm and the broad
learning system (BLS), a graph-based semi-supervised BLS was
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proposed in MI-based BCI system (She et al., 2019b). On the one
hand, the label information can be smoothed over the graph by
the graph label propagation algorithm. On the other hand, BLS
has a simpler structure, fewer layers, and a shorter training time
than DL. First, the proposed algorithm constructs a k-nearest
weight matrix Ŵ as follows:

Ŵij =

 e−‖xi−xj‖
2/σ2

if
{

xi ∈ N(xj)

xj ∈ N(xi)

0 otherwise
, (13)

where N(·) is the set of k nearest neighbors, σ is a scaling
parameter of Gaussian function, xi and xj belong to the total set.
To obtain the optimal soft label matrix F, the objective function
is optimized as below:

argmin
F

∑
i,j

‖ Fi − Fj ‖
2Ŵij + µ̂

∑
i,j

‖ xi − xj ‖
2Ŵij

 , (14)

where the first and second terms constrain that the similar
trials have similar labels and features, respectively. µ̂ is used
to balance the roles of label space F and feature space x. After
optimization, the testing samples are labeled. Then, all features
with their labels are successively fed into the feature layer, the
enhancement layer, and the output layer of BLS to obtain their
prediction labels.

As mentioned above, more than one graphs can be exploited
to represent the relationship among all samples.

Combining a label-consistency graph (LCG) and a sample-
similarity graph (SSG), a balanced graph-based regularized SS-
ELM for MI EEG classification was presented (She et al., 2021).
The SSG is the traditional graph Laplacian which reveals the
similarity between the training and extended testing data without
using the label information (She et al., 2019a). Moreover, to
develop the class similarity among the training and extended

testing data, the LCG defines a new adjacent graph matrix as
follows:

W′ij =

{
1/Nt−th if both hi and hj belong to the t − th class

0 otherwise
,

(15)
where hi and hj are separately the mapping vectors of xi and
xj represented by the hidden layer of ELM, Nt−th denotes
the number of the t-th class samples. The pseudo labels of
all extended testing samples are obtained by traditional ELM
classifier. Then, like the traditional graph Laplacian, the LCG
is the new Laplacian matrix L′ = D′ −W′, where D′ is a
diagonal matrix with its diagonal elements D′ii =

∑
j W′ij. The

balanced graph is the linear combination of LCG and SSG with
different weights. Finally, such balanced graph is embedded in
the objective function of the SS-ELM classifier.

The summary of some representative SSL approaches is
shown in Table 3.

As shown in Table 3, most SSL algorithms are applied in the
MI-based BCI. Both the self-training and graph-based models
are popular. The reason is that the former can take advantage
of different base supervised classifiers and then can be easily
realized. The latter can directly reveal the sample-similarity or
label-similarity among data available. In terms of result, most
SSL classifiers can obtain good classification accuracies for two-
class problem with the help of a few training samples, the
extended testing set or validation set. For multi-class BCI tasks,
SSL classifiers can get good kappa values, too.

A COMBINATION OF TRANSFER
LEARNING AND SEMI-SUPERVISED
LEARNING

Concepts
As mentioned above, TL often performs in the feature extraction
stage and aims to extract more distinctive target features by

TABLE 3 | Summary of representative SSL approaches.

Pattern Type Feature extraction Classifier Result [training/validation
(extended testing)/testing]

References

ERP TSVM Variational autoencoder A prior information based TSVM method CA: 85% (30/0/240) Bi et al. (2019)

MI Self-training CSP Online spectral regression kernel discriminant
analysis

CA: 77% (144/0/144) Nicolas-Alonso et al. (2015)

MI Self-training CSP Transductive learning with covariate
shift-detection

CA: 69.72% (240/160/320) Raza et al. (2016)

RSVP Self-training Active learning with an ensemble of models, AUC: over 0.9 (50%/10%/40%) Marathe et al. (2016)

including HDCA, CSP-BLDA, and XD-BLDA

MI Co-training CSP Both BRP and sparse presentation are
assigned as base classifiers

CA: over 70% (14/126/140) Ren et al. (2014)

MI Graph CNN A semi-supervised quantization approach
based on the cartesian K-means method

CA: 76.86% (28/0/260) Liu M. et al. (2020)

MI Graph CSP A graph-based semi-supervised broad learning
system

Kappa value: 0.525 (288/0/288) She et al. (2019b)

MI Graph CSP A balanced graph-based regularized
semi-supervised ELM

Kappa value: 0.660
(144/144/288)

She et al. (2021)
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transferring the labeled samples from the source domains,
whereas SSL often performs in the classification stage and aims to
utilize the labeled and unlabeled samples from the target domain.
Recently, a combination of TL and SSL has gained an increasing
attention (Jiang et al., 2017; Wu, 2017a,b; Zhao et al., 2019; Zhou
et al., 2021). To our best knowledge, it occurs in two ways:

(1) A combination of cross-session TL and SSL. For cross-
session TL, the samples from the source and target
sessions are usually labeled and unlabeled, respectively.
They come from the same subject. Therefore, the samples
used in cross-session TL are the same to those used in
SSL. However, cross-session TL focuses on reducing the
discrepancy in data distribution between different sessions,
SSL focuses on utilizing the useful information contained
in the unlabeled testing data.

(2) A combination of cross-subject TL and SSL. For cross-
subject TL, it is a great challenge to deal with high inter-
subject variability. For SSL, it is hard to collect amounts of
labeled training samples and unlabeled testing samples due
to high inter-session variability. After combination, cross-
subject TL can relieve the pressure of limited samples for
SSL, and SSL can reduce the variability for cross-subject TL
since the inter-session variability is generally smaller than
inter-subject variability.

Next, we present different kinds of approaches related to the
combination of TL and SSL.

A Combination of Cross-Session TL and
SSL
To achieve epileptic seizure classification, Jiang et al. (2017)
integrated TL, SSL, and a Takagi-Sugeno-Kang (TSK) fuzzy
system. As the base classifier, the TSK fuzzy system can increase
the model interpretability for medical diagnostics. Cross-session
TL can minimize the differences between the source and target
sessions. Based on the cluster assumption, SSL is designed for
label clustering. The integrated model aims to seek optimal
projection Pg used in the decision function. The objective
function of the proposed model consists of three parts:

Part 1:
To utilize the labeled training samples from the source session,

the objective function used for the TSK fuzzy model is defined as
follows:

argmin
Pg

(
1
2

tr((Pg
Txg,s − ys)(Pg

Txg,s − ys)
T
)+

λ1

2
tr(Pg

TPg)),

(16)

where (xg,s, ys) denotes the new labeled set constructed by Fuzzy
C-means (FCM) clustering, λ1 denotes a trade-off parameter
balancing the complexity of the model and the tolerance of error.
The two terms are used to regularize the TSK fuzzy model.

Part 2:
To reduce the differences between the source session (labeled

set) and the target session (unlabeled set), the objective function
used for cross-session TL is optimized as below:

argmin
Pg

(λ2tr(Pg
T�Pg)), (17)

where

� =
1

NT
2 xg,T[1]NT×NT xT

g,T +
1

NS
2 xg,s[1]NS×NS xT

g,s

−
1

NSNT
(xg,T[1]NT×NS xT

g,s + xg,s[1]NS×NT xT
g,T). (18)

λ2 is a regularization parameter. NS is the size of source
session. NT is the size of target session. xg,T denotes the new
unlabeled testing set from target session constructed by FCM.
The term in Equation (17) is used to minimize the projected
squared maximum mean discrepancy (MMD) distance between
different sessions.

Part 3:
To label the unlabeled testing samples from the target session,

the objective function used for SSL is computed as follows:

argmin
Pg

λ3

Ĉ∑
j=1

NT∑
i=1

µ̂

i,j

‖ Pg
Txgi,T − θj ‖

2

 , (19)

where λ3 is a regularization term, Ĉ is the number of clusters, µ̂i,j
denotes the label membership of the i-th unlabeled sample xgi,T
belonging to the j-th cluster, and θj = [0, · · · , 0, 1jth, 0, · · · , 0]T

denotes a label vector of the j-th cluster. The term is used to assign
the data close to each other to the same class. Because the optimal
Pg is calculated using the labeled samples from the source session
and the unlabeled samples from the target session according
to the three parts mentioned above, the objective function is
optimized in a semi-supervised way.

The objective function in Equations (16–19) is iteratively
optimized to obtain the optimal projection Pg . The proposed
model increases the classification performance by integrating the
supervised TSK fuzzy system, cross-session TL, and SSL.

TABLE 4 | Summary of representative TL+SSL approaches.

Pattern Type Feature extraction Classifier Result (training/testing) References

Epileptic Cross-session
TL+SSL

Wavelet packet decomposition/Short
time Fourier transform/Kernel PCA

An integrated model combing TL, SSL
and the TSK fuzzy system

CA: over 95%
(0+150 × 1/50)

Jiang et al. (2017)

MI Cross-subject
TL+SSL

EEGLAB A weighted adaptation regularization
with source domain selection

BCA: about 70%
(80+270 × 13/190)

Wu (2017b)

MI Cross-subject
TL+SSL

CSP filters selection based on a
clustering method

Semi-supervised SVM CA: about 70%
(40+280 × 4/240)

Zhao et al. (2019)
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A Combination of Cross-Subject TL and
SSL
Compared with the traditional TL methods, the combination of
cross-subject TL and SSL adds the unlabeled testing samples from
the target subject to build a more subject-specific model.

Originating from a weighted adaptation regularization (wAR)
method (Wu et al., 2016), an offline wAR with source domain
selection (wARSDS) approach was proposed (Wu, 2017b).

First, the pseudo labels of testing samples from the target
subject are initially estimated by the wAR classifier trained using
the training samples from the source and target subjects.

Then, the labeled training samples and pseudo-labeled testing
samples from the target subject are used to calculate the class
centroids of the target subject. To save the computational time,
based on k-means clustering, most suitable source subjects are
selected, whose class distances to the class centroids of the target
subject are comparably smaller.

Finally, using all samples from the target subject and
selected source subjects, the loss function minimization, the
marginal probability distribution adaptation, and the conditional
probability distribution adaptation are iteratively performed to
update the wARSDS classifier.

Zhao et al. (2019) transferred common spatial filters with
SSL for MI BCI. First, for each subject, 30 groups of filters are
calculated by CSP after randomly selecting 60 samples per class
for 30 times. The representative CSP filters are selected from all
filters available based on the clustering method.

Then, all new CSP features from the source and target subjects
are generated by projecting these representative CSP filters into
the original pre-processed samples.

Finally, the semi-supervised SVM classifier makes full use
of the labeled training features from the source subjects
and all features from the target subject by optimizing the
expectation risk, Tikhonov regularization term, and the manifold
regularization. A graph Laplacian with Gaussian kernel function
is embedded in the objective function using all features available.

In Table 4, some representative TL+SSL models
are briefly listed.

In the fifth column of Table 4, like Table 2, ‘Training’ refers to
the size of all training sets from the target and source domains.
Like Table 3, ‘Testing’ refers to the size of testing set from
the target domain. As shown in Table 4, a combination of TL
and SSL is effective since their classification performance can
also reach 70% on average using few training samples from the
target domain. Therefore, the combination of TL and SSL will be
promising in future.

DISCUSSION

Based on many papers surveyed herein, we briefly summarize
various signal processing approaches to reduce calibration effort
in EEG-based BCI.

(1) In terms of EEG-based BCI
Compared with the traditional EEGs, such as SSVEP and
P300, MI EEG is more widely studied in the small training

set scenario. The reason is that there are numerous MI
datasets available. Moreover, MI is harder to control for
both healthy and unhealthy subjects. It is more urgent for
MI to minimize calibration time. Thus, many base feature
learning and classifier learning methods applied to MI
are always referred, such as CSP, LDA, SVM, MDM and
so on. Additionally, drive drowsiness and emotion state
estimations also need to shorten calibration effort for their
complex BCI tasks. Similar methods can be used to solve
this problem, such as ensemble models, CNN, etc.

(2) In terms of TL
Compared with SSL, TL is more popular regardless of high
inter-domain variability. The reason is that TL provides
more sufficient samples from the source domains than SSL
and promotes the development of generic model.
As shown in Table 2, Most TL approaches can reach
satisfied classification performance (over 70%) even if the
calibration time is reduced or suppressed. For a calibration-
free TL model, unlabeled samples from the target domain
can also build a subject-specific model.
Currently, most TL approaches aim to adapt the
source domains to the small target domain. However,
if the distribution of the small target domain is not
discriminable, the classification performance might
decrease sharply after such adaptation. To our best
knowledge, few literatures cope with this problem. In our
opinion, flexible measures should be taken according to
the discriminability of the small target domain. Moreover,
most TL approaches are not suitable for online BCI since
they are designed offline.
Data alignment-based instance transfer is very
promising since it can make aligned covariance matrices
from different domains comparable. However, high
dimensionality of covariance matrix may lead to curse
of dimensionality. Therefore, channel selection is a basic
problem for data alignment-based TL. Unsupervised PCA
and supervised CSP can be used to cope with this problem.
Deep learning is highly effective using the big training set.
However, it cannot be directly used in the small training
set scenario. Thus, in the PTL, DL can build a pre-trained
model using amounts of samples from source subjects and
then adapt the model for the new target subject. CNN is
widely used in EEG-based BCI.

(3) In terms of SSL
Although few SSL literatures are proposed to shorten
the calibration procedure. SSL classifiers still outstand
themselves by discovering the useful information
embedded in the labeled and unlabeled samples. In
EEG-based BCI, the self-training model can be easily
achieved by using the well-known supervised model as
the base classifier. Additionally, the graph-based model is
popular by providing the overall view based on the total
samples.
As shown in Table 3, compared with TL approaches,
most SSL approaches use more training samples from the
target domain to obtain good classification performance.
Therefore, it is further testified that the number of samples
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available is extremely important to reduce calibration time
and achieve good performance.
Most SSL classifiers surveyed in this paper are designed
offline. However, the EEG-based BCI is fundamentally
online. Self-training SSL model is suitable for the online
scenario. It should be combined with other SSL models to
adjust their classifiers in real time.

(4) In terms of the combination of TL and SSL
The combination of TL and SSL is emerging and promising
since it not only relieves the pressure of limited sample,
but also brings more subject-specific samples. It should be
further explored to increase its effectiveness.
As shown in Table 3, although few approaches relate to
such combination, they still achieve good performance
(over 70%) with few samples from target domain by taking
advantage of TL and SSL.

(5) In terms of all signal processing approaches
To reduce the calibration time, we focus on the signal
processing approaches in this paper. Nevertheless, the BCI
performance also relies on the subject, the BCI paradigm,
and so on. So far, fewer literatures discuss them altogether.
In our opinion, different subjects have extremely different
performance in EEG-based BCI. Therefore, different signal
processing approaches should be designed for different
subjects. In addition, more friendly BCI paradigm should
be used for better experimental experience.

CONCLUSION

In this study, we have surveyed the signal processing approaches
to minimize the calibration procedure in EEG-based BCI. The
numerous approaches in this paper can be divided into three
main categories: TL, SSL, and a combination of TL and SSL.

We can draw the following conclusions, which may inspire
future research directions:

(1) It is more difficult to decode MI EEG than SSVEP, P300,
etc. MI EEG-based BCI should be further studied to speed
up its application.

(2) TL is instrumental to reduce the calibration time. Data
alignment-based TL is a good choice to relieve the
differences between domains. TL can be combined with
SSL or DL to achieve a calibration-free model.

(3) SSL can build a more subject-specific model than TL.
Currently, offline SSL classifiers have been paid more
attention than online SSL classifiers. In terms of online BCI
control, online SSL classifiers should be further researched.

(4) The performance of EEG-based BCI is closely related to
the signal processing approaches, the BCI subject, the
paradigm, and so on. Most signal processing approaches
in this paper are evaluated offline based on the publicly
available BCI datasets. Future signal processing approaches
should further adapt to the mental state change of
the BCI subject in real time and work using a more
friendly paradigm.
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