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Abstract: Reliable and quantitative assessments of bone quality and fracture healing prompt well-
optimised patient healthcare management and earlier surgical intervention prior to complications
of nonunion and malunion. This study presents a clinical investigation on modal frequencies
associations with musculoskeletal components of human legs by using a prototype device based on
a vibration analysis method. The findings indicated that the first out-of-plane and coupled modes
in the frequency range from 60 to 110 Hz are associated with the femur length, suggesting these
modes are suitable quantitative measures for bone evaluation. Furthermore, higher-order modes
are shown to be associated with the muscle and fat mass of the leg. In addition, mathematical
models are formulated via a stepwise regression approach to determine the modal frequencies using
the measured leg components as variables. The optimal models of the first modes consist of only
femur length as the independent variable and explain approximately 43% of the variation of the
modal frequencies. The subsequent findings provide insights for further development on utilising
vibration-based methods for practical bone and fracture healing monitoring.

Keywords: vibration analysis; fracture healing; bone assessment; human health monitoring; biome-
chanics; medical device; modal frequency

1. Introduction

Bone fracture healing is a complex multifactorial process of restoring its biological
function and mechanical properties [1–3]. Normally, the bone healing process is divided
into three overlapping stages: inflammatory, bone reparative and bone remodelling [3].
The first stage immediately occurs with an inflammatory response in releasing cytokines,
growth factors and prostaglandins and the formation of haematoma (blood clot) due to
blood vessel rupture inside and surrounding the fracture site. The fracture haematoma
becomes organised then forms a matrix for bone formation and primary callus. In the
bone reparative stage, the soft callus holds the ends of the fractured bone, although cannot
support sufficient weight-bearing, and converts into hard callus. Once the fracture ends are
bridged by a hard callus (bony bridge), the callus size decreases, and the bone then remodels
and restore the bone structure near to normal functionality which can take several years.

There is supporting evidence that well-regulated mechanical stimuli can strongly
mediate the quality of healing at different fracture healing stages [3–5]. Initially, a fractured
bone must be well supported to allow callus formation; however, prolonged inactivity
or insufficient stress suppresses bone formation, hence delaying healing. Throughout
the decades, radiographic techniques still remain as the conventional clinical diagnostic
method, which involves visually interpreting planar radiographic images for features
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associated with fracture healing. Despite the existence of numerous different clinical and
radiologic criteria used to assess healing, previous literature has reported that radiographic
assessments are qualitative with a high level of uncertainty in recovery time; in the order
of months, and radiographic features have poor correlations with bone strength and
stiffness [6–10]. Furthermore, there is a lack of consensus among orthopaedic surgeons on
the assessment and definition of fracture healing [11–14]. Thereby, there is a need for a
reliable evaluation of fracture healing in both medical and research communities to improve
orthopaedic diagnostics with the possibility to minimise radiation exposure and prompt
early intervention. The ability to quantify healing based on the bone intrinsic properties
allows real-time monitoring and prognostic capability, enabling data-rich comparative
studies and, therefore, transforming our current practices towards a smarter trauma patient
healthcare system.

Recent literature reviews [11,12,15,16] explored both qualitative and quantitative tech-
niques to monitor fracture healing, which includes direct and indirect static measurements,
ultrasound, acoustic and vibration measurements; refer to Table 1 for comparison. The
methods that are implemented in clinical practices are primarily radiographic imaging
techniques. Computed tomography scan (CT) is a superior radiographic imaging method
for assessing fracture healing that provides quantitative measures of callus volume and
bone mineral density earlier than conventional techniques. However, CT scan can be costly,
has high radiation dosage, is not as widely available and the presence of fixations hinders
its accuracy. In addition, bone scintigraphy has a very high sensitivity for the detection of
bone inflammation and infection, although this qualitative technique requires the internal
administration of radioactive substances a few hours before imaging.

There is significant research interest in employing mechanical properties assessment
for fracture healing as an alternative non-radiative and quantitative approach with the
capability of earlier detection and portability. In particular, bone stiffness is recognised as an
essential parameter to evaluate the stage of healing as biological and physical regenerations
of the bone changes its elasticity, which strongly correlates with the bone strength during
callus formation. There are significant elastic modulus changes in the fracture site of at
least five orders of magnitude to approximately 20 GPa for a fully healed bone [17–19]. The
change in stiffness is most apparent during the early stages of healing as it has been reported
that the stiffness increases exponentially during the consolidation phase. Some studies
proposed a conservative estimate of a 25% bending stiffness recovery to be considered
sufficiently healed [20,21]. Although direct measurements of deflection are the most
accurate method in assessing stiffness, in some cases, it is considered destructive and not
appropriate in the early weeks of fracture healing as newly formed calluses are susceptible
to loading. Indirect biomechanical methods consist of attaching strain gauge onto the
fixation columns and have shown early detection of fracture healing [20], although the
method measures the change in stress in the fixation as the fracture heals and relies on
the use of the same fixation system. Currently, both direct and indirect biomechanical
techniques have mainly been validated for external fixations in the laboratory and in vitro
settings. Recently, quantitative ultrasound and guided wave propagation were proposed
as potential methodologies that utilise wave signal measurements on assessing healing
fracture [22,23]. These methods rely on the appearance of wave modes and the change in
wave velocity, which is caused by the difference in material properties of callus and cortices
bone. However, the wave energy significantly dissipates into and damped by surrounding
soft tissues and bone marrow, producing inaccurate results.
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Table 1. Comparison of different assessment methods of fracture healing.

Conventional
Radiography

Computed
Tomography Bone Scintigraphy Direct Biomechanical

Testing
Indirect Biomechanical

Testing
Vibration Analysis

Method

Quantitative
Ultrasound/Guided

Wave

Strategy Imaging Measures Imaging Measures Imaging Measures Mechanical Properties
Testing

Mechanical Properties
Testing

Mechanical Properties
Testing

Mechanical Properties
Testing

Clinical practice Y Y Y N N N N
Non-destructive/

Non-invasive Y Y Y N Y Y Y

Non-radiative N N N Y Y Y Y

Qualitative/Quantitative Qualitative/
Relative quantitative Quantitative Qualitative Quantitative Quantitative Quantitative Quantitative

Principle of Evaluation Relative bone mineral
density

Callus volume and bone
mineral density Radioactivity in tissues Deflection under certain

load Strain Resonant
frequency

Wave velocity and
modes

Earliest Stage of
Healing Detection Reparative Inflammatory Inflammatory Reparative Inflammatory Inflammatory Inflammatory

Other Limitations

- Lower resolution
contrast in
comparison to
other
radiographic
techniques.

- Costly and not
widely available.

- Challenging with
the presence of
fixations.

- High radiation
dosage for
regular usage.

- Images are
acquired a few
hours after
injection.

- Unreliable with
the presence of
internal fixations

- May not be
acceptable during
the early stages of
healing due to
loading.

- Not validated in
internal fixation
devices.

- Suitable for only
patients with
external fixation.

- Different results
for different
fixation systems.

Surrounding soft tissue
and joints significantly
obscure the readings.

Surrounding soft tissue
and joints significantly
obscure the readings.
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Vibration analysis methods, such as resonant frequency analysis (RFA), are non-
invasive, non-radiative, painless alternative fracture healing assessments. These methods
are based on engineering principles that the bone resonant frequencies have a direct
correlation with its structure and stiffness, which are often detected by using accelerom-
eters [24–28]. Early in-vivo studies [24,25] demonstrated the first resonant frequency;
primarily a bending mode, as a measurand for monitoring fracture healing due to its
sensitivity to callus formation. Benirschke et al. [26] has shown a strong correlation be-
tween bone healing and its stiffness when the elastic modulus has reached at least 5%
of the intact bone. Furthermore, there are appearances of higher frequency waveforms
in the response of a fully healed bone than of a fractured bone [29]. However, studies
have shown significant variability in using RFA to evaluate healing due to mode coupling
effects [25,30–32]. Many previous studies relied on instrumented impactors to facilitate the
estimation of modal parameters in the bone frequency responses, which have been reported
in some cases to be challenging to reliably measure [25,26,33]. A well-known challenge for
vibration-based bone assessment is the damping effects of soft tissue. Tsuchikane et al. [34]
has reported that surrounding soft tissue and joints increase the apparent weight of the
long bones, resulting in a dampened frequency response. The presence of soft tissue is
shown to dampen the magnitude of the vibrational response as well as greatly masks higher
frequency modes [31,35–38]. Therefore, in formulating a vibration-based assessment tool,
a significant amount of research and data is essential to examine and, feasibly, dissociate
the adverse effects arising from soft tissue and other body parts.

Recently, there is a re-emergence of interest in utilising vibration analysis methods for
quantitative bone assessment [31,33,35,39–49]. Previous works by Chiu et.al [35,40] have
employed a two-sensor strategy to identify different modes without the input response of
instrumented impactors and have shown that the torsional mode is more sensitive to the
recovery of the osteotomised region with minimal influence by the stiffness of the fixation
system and mass-damping effect of soft tissue. Chiu et al. [41] also indicated that there
is no significant difference between transverse or oblique fracture orientations after 1%
recovery of the healed bone stiffness. Studies have proposed indices based on the frequency
response of a healing bone to quantify the stages of healing of which its temporal profile
resembles that of a recovering bone stiffness [13,20,44]. Recent works [44,49] have indicated
that vibration analysis methods are most applicable in the early stages of healing (i.e., from
zero to seven weeks).

Extensive and highly significant works by Mattei et al. [44–47] demonstrated the
validity of vibration analysis methods for assessing the healing of fracture treated with
an external fixator. Their recent clinical case study [44] has shown a significant sensitivity
in a low resonant frequency in the vicinity of 60–100 Hz, with an equivalent stiffness
change of approximately 50% relative to a baseline taken at the end of the limb lengthening
procedure. Furthermore, Mattei et al. also observed different rates of change in resonant
frequencies which are ascribed to the complex healing processes including those other
physiological factors, such as muscle tone, than that of the callus stiffening. Their findings
correspond well with previous studies, which have shown that the healing rate in areas
corresponding to tissue, cartilage and callus formations are different, and as well as has a
positive correlation with strains [3–5].

Nevertheless, vibration analysis methods employed for fracture bone healing assess-
ment are rare as clinical studies are [24,44–47] scarce and, thereby, currently are not widely
accepted by clinicians. Furthermore, the lack of large-scale validation, dataset and clinical
reports investigating the reliability of vibration analysis methods presents a major impedi-
ment to progress into clinical and research practices as well as advances in human health
monitoring.

The aim of this study is to experimentally determine the modes and their associations
with human bone and measured body (a majority of leg components) components of
healthy participants via a clinical trial in facilitating the development of quantitative
healing assessment using vibration-based methods. A prototype design based on the
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patented method and system by Chiu, Russ and Fitzgerald [50] is employed to demonstrate
and evaluate the application of the vibration-based method. Lastly, mathematical models
are formulated to relate the modal frequencies and their associated body components.
Furthermore, the proposed strategy, including the effectiveness of the prototype device, is
also discussed.

2. Materials and Methods
2.1. Prototype Design

The patented prototype device (shown in Figure 1) is a radiation-free, non-invasive
and painless monitoring apparatus that utilises vibration-based methods to quantitatively
assess bone stiffness, thereby fracture healing. The benefits of the device include a portable
rapid assessment of fracture healing without exposure to radiation, an objective approach
based on the intrinsic properties of the bone and suitability for various patient sizes.
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Figure 1. (a) Labelled prototype device and (b) installed prototype device on participant’s knee.

A reusable blood pressure cuff is modified with two slots located at the centre of the
cuff, allowing adjustments of accelerometers locations for different leg sizes. The cuff is
connected to a port fitting aneroid sphygmomanometers and with a manual inflation bulb
and control valve. Two Brüel and Kjær Miniature Constant Current Line Drive (CCLD)
Accelerometers Type 4507 were used with side-mounted attached to mounting clip (upper
limiting frequency of 3000 Hz), which were bonded to a flexible rectangular plastic strip.

The participants were in the supine position (lying horizontally and facing up) to
minimise the effects of muscle, as muscle contraction and relaxation can significantly change
its elastic modulus at least an order of magnitude [51], and maintain the same boundary
conditions for repeatability. The prototype device was installed on the participant’s distal
femur (slightly above the knee) and the accelerometers were aligned and secured at the
medial and lateral epicondyles, where the femur bone has the least coverage of muscle, to
maximise the modal response of bone whilst minimise the damping effects arising from soft
tissues. The accelerometers measure in the direction tangential to the femur; the anterior-
posterior direction (positive z-direction), as indicated in Figure 1b. The pressure cuff was
gradually inflated to 180 mmHg to ensure sufficient stability throughout the procedure and
the pressure cuff bled on average to 170.9 mmHg with a standard deviation of 3.5 mmHg.
In the preliminary investigation on the pressure cuff, the frequency responses with pressure
greater than 120 mmHg were sufficiently stable. An extension rod was also included and
lightly tapped using an impact hammer strike to induce a torsional response. Although
this two-sensor strategy requires no knowledge of the input signal, for consistency, Brüel
and Kjær Impact Hammer type 8206 with an aluminium tip, which has a well-sufficient
frequency spectrum of impact force (approximately cut-off 10 kHz), was used for this study.

Data was acquired through a Two-channel Brüel and Kjær Photon+ and the signal
responses were processed using RT Pro Photon software. The software analysis parameters
were sampled at 4096 Hz (time step of 244.1 µs) with a frequency resolution of 1 Hz. A test
consists of 10-spectrum linear averaging to minimise random noise and randomly excited
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non-linearity from the cross-spectrum of the signal pair. To ensure reliable signals, the
trigger is automatically armed with a trigger threshold of 0.1 V with a bi-polar slope of 1%
level. Once the test was completed, the pressure cuff was then deflated and the device was
removed. The duration of the test took 30 s. This process was repeated 10 times (10 tests)
on each leg per participant. Prior investigation on the prototype device indicated that at
least 3 tests are required to reveal almost all (>80%) modes.

The least-squares rational function estimation-based approach via MATLAB’s System
Identification Toolbox™ [52] was used as a curving fitting approach to estimate experimen-
tal modal parameters from the cross-spectra. The estimated modes satisfy the stabilisation
criteria with a tolerance of 1% for the modal frequency and 5% for the damping coefficient.
Coherence value exceeding 0.9 is considered high-quality measurements and phase values
of [0, 1

4π), [ 1
4π, 3

4π] and ( 3
4π, π] are considered in-phase, coupled and out-of-phase (OOP)

modes, respectively.

2.2. Clinical Trial

The clinical trial, ‘Pre-market pilot study of a non-invasive and painless device to
measure fracture healing stage’, was conducted in Human Laboratory in Department of
Physiology, Monash University Clayton and approved by Monash University Human
Research Ethics Committee (MUHREC); MUHREC Approval Project Number 2020-23688-
50577. A total of 20 (12 males and 8 females) healthy participants, aged between 22–59 years
old (mean age of 27.2 years old and standard deviation of 7.96) with no current leg fracture
and able to walk unassisted, volunteered in this clinical study and a total of 40 legs (400 tests)
were investigated. Upon completion of the trial, the participants were given a personalised
body composition measurement scan result and a Woolworth/Coles $20 gift card.

The clinical trial procedure begins with a preliminary acquisition of body variable
measurements followed by installation and testing of the prototype device, which is sum-
marised in Table 2.

Table 2. Description of clinical trial procedure in each stage.

Preliminary Stage Device Testing Stage
InBody Scan Manual Measurements Installation of Device Testing of Device

Participant maintains
test posture on InBody

Body Scan to obtain
body parameters.

Participant stands
upright to acquire

thigh circumferences.

Participant lays (supine
position) on medical
examination bed to

measure leg lengths.

Whilst the participant
is in supine position,
the device is installed
on participant’s knee

and inflated to
180 mmHg.

Extension rod is struck
to obtain 10-spectrum

averaging. The
pressure cuff is then

deflated and removed.
This process is repeated

10 times for each leg.

The InBody 770 Scan body composition analyser was used to non-invasively mea-
sure the participant’s body compositions, including segmental analysis of individual legs,
which were comparable to those acquired via dual-energy X-ray absorptiometry (DEXA)
scan [53,54]. In contrast to the conventional bioelectrical impedance analysis, the InBody
fat-free mass measurements have shown a 98.4% of correlation with those measured using
DEXA. Succinctly, InBody device is an 8-point tactile electrodes system that uses direct
segmental multi-frequency bioelectrical impedance analysis for each body segment (4 limbs
and trunk) by applying alternating low-level electrical currents through the water in the
body. The InBody device utilises 30 impedance measurements by using different 6 frequen-
cies between 1 kHz–1 MHz to extract over 50 parameters relating to body compositions
within minutes [55]. The participants were on an empty stomach and bladder, wore loose
comfortable clothing without any metal, removed their socks and cleaned their hands and
feet prior to the body scan. During the body scan analysis, the participant maintains an
upright test posture (arms not touching the side of the body and thighs are not touching)
while standing on the foot electrodes and holding the hand electrodes and avoiding contact
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and talking. The height of the participants was measured using the Height Measuring
system SECA 264. Additional manual measurements include lower and upper thigh girth
measurements at 5 and 15 cm, respectively, proximal to the superior pole of the patella
(knee cap) and true leg length measurement (from the anterior superior iliac spine to medial
malleolus) [56]. Previous works indicated strong correlations between height and femur
length [57] as well as strong relationships between tibia and femur length with a tibia-femur
ratio of 0.8 and a standard deviation of 0.03 [58]. Thereby, in this study, any correlation with
leg length is considered as so with the femur length and in formulating a mathematical
method, femur length is assumed to be proportional to leg length.

2.3. Data Preprocessing
2.3.1. Descriptive Statistics of Participants

The InBody scan and manual measurements resulted in over 60 variables and were
pre-processed to retain relevant body components. First, components not associated with
the leg or considered irrelevant (i.e., trunk, arms, etc.) were disregarded. A dimensional
reduction technique using Spearman’s rank correlation coefficient was then employed to
determine monotonic nonlinear associations between variables, which includes those that
were not necessarily a linear relationship. Specifically, pairwise correlations between each
pair were analysed and those with strong correlation coefficients beyond 0.9 and very high
statistical significance (p < 0.001) were removed. This reduced the body components to
height (h), lower and upper thigh girths (tL and tU , respectively), leg length (l), weight (w),
segmental lean (sL) and fat leg (sF) masses; refer to Table 3.

Table 3. Descriptive statistics of the relevant body components.

Height Lower Thigh
Girth

Upper Thigh
Girth Leg Length Weight Segmental

Lean Leg Mass
Segmental

Fat Leg Mass

Units cm cm cm cm kg kg kg
Mean 173.32 42.36 50.30 93.48 71.62 8.49 2.69

Minimum 163.50 33.70 43.20 87.00 51.70 5.94 1.20
Maximum 189.20 53.00 64.00 104.00 117.20 11.89 6.10

During the preliminary statistical analysis, there were significant differences between
male and female body components; specifically, height, lower thigh girth, weight and
segmental lean and fat leg masses. Upon visual inspection, the data suggested identical
normal-like distributions in both groups and thereby, an assumption was made that the
analysis was treated as a family of normal distributions. Firstly, we suspected the presence
of outliers in the dataset may cause the test to reject normality and so the outlier test using
the interquartile range method was performed to identify and remove extremities. Next,
two-sample F-tests were conducted to validate the assumption of the null hypothesis of
equal variations in both gender groups and suggested unanimously failed to reject the
hypothesis with a significance level of α = 0.05. Therefore, the data from both groups were
pooled and then tested for normality using the Lilliefors (modified Kolmogorov–Smirnov)
test. For all components, the test statistics did not exceed the critical value, indicating
that the components can be interpreted as normally distributed. The above preliminary
analysis supported the assumption of the normal distribution type of the investigated
body components and so the study proceeded in analysing the associations among body
components and modal parameters with both gender data pooled. In this study, p < 0.05
is considered statistically significant and those of high significance (p < 0.01) as well as of
slightly moderate significance (0.05 ≤ p < 0.10) are also discussed.

2.3.2. Clustering of Modal Parameters

The modal and system parameters extracted were modal frequency, damping ratio,
relative power, magnitude and phase of the cross-spectrum and coherence. The challenge
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was to accurately categorise and distinguish modes as some modes may vary in frequency
due to their dependences on body components. In order to determine the associations
among the modal parameters and the body components, a clustering algorithm using
Density-based spatial clustering of applications with noise (DBSCAN) was performed to
discover distinct groups and as well as noise in multi-dimensional data [59]; refer to Figure 2.
The DSCAN algorithm works on the assumption that clusters are dense regions separated
by regions of lower density and uses the principle of searching for neighbourhoods of
data points that exceed a certain density threshold. The DBSCAN algorithm initiates with
an arbitrary point and retrieves all points directly density-reachable (within the radius,
ε, of a neighbourhood) and satisfies the minimum of points (MinPts) required to be a
neighbourhood. A density-based cluster is formed by merging overlapping neighbours,
where points in the cluster are density-reachable from their surrounding points. If the
arbitrary point is on the border of a cluster, thereby no points are density-reachable from
the arbitrary point and then the algorithm proceeds to the next point of the dataset and the
procedure is repeated until all points are visited. Points that are not reachable with respect
to ε and MinPts are considered not part of a cluster and hence are identified as outliers. In
this study, a DBSCAN with Euclidean distance metric was performed on the 10 tests for
each leg with a MinPts of 3 and the average threshold of ε of 3 and 16 for modal frequencies
in the range of 0–40 and 40–1000 Hz, respectively. It should be noted, ε values were first
estimated using k-nearest neighbour search and adjusted, though, significantly for noisy
cross-spectra. Afterwards, the average values of the modal parameters for each cluster
were calculated and assigned into 12 distinct mode groups, where modes ‘1, 2, . . . , N’ are
denoted as Ω1,2,...,N and the corresponding average modal frequencies as f1,2,...,N . It should
be noted that not all leg frequency responses have 12 distinct modes.
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In addition, the appearance of each of the 12 modes was also investigated to deter-
mine any dependency of body components. The modal frequencies were converted to a
nominal scale to observation (O) and no observation (N) of the modal frequency, and then
Wilcoxon rank sum test was performed to test against the two nominal groups for each
body component. The effectiveness of the proposed strategy, inclusive of the prototype
device, was then evaluated and discussed.
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2.4. Model Formulation Using Stepwise Regression

In vibration theory, the modal frequency response depends on the geometry and
composition of the structure. For a linear elastic, uniform and cantilever beam, the natural
transverse and torsional frequency [28] is:

ftransverse =
α

2π

√
EI

pAL4 , ftorsional =
α

2

√
GK

pJL2 (1)

where E is Young’s Modulus of elasticity, G is the shear modulus, I is the area moment
of inertia, J is the polar moment of inertia about the axis of rotation, p is density L is the
total length of the beam, A is the cross-sectional area, K is the geometric function of the
cross-sectional area and α is the constant (equivalent to modal eigenvalue) depending on
the type and order of the vibrational mode and boundary conditions. An approach is
to construct a simplified model (Equation (1)) of which the system behaves (i.e., imple-
mentations of spring and damping systems in modelling human leg as a uniform beam
vibration) [27,30,32]. This predetermined equation approach may not be accurate as it re-
quires significant simplification and assumption of the variables, such as uniform thickness
and cross-section and boundary conditions, since some variables (i.e., J, I, K and A) are
difficult to directly measure or estimate. Furthermore, it is also known that body compo-
nents are also dependent on each other (i.e., cortical cross-sectional bone area increases
with increasing femur length) [57,60].

An alternative approach is that the frequency formula is viewed as a multivariable
power-law relationship which can be formulated using the measured variables (body
components), instead of the prescribed independent variables in the previous approach.

f = α0

√√√√ N

∏
i=1

Variablesni
i (2)

The measured and dependent variables are transformed using logarithmic transfor-
mation, thereby linearising the expression to a linear form.

log( f ) = n0 +
N

∑
i=1

ni log(Variablesi) (3)

We proceed with further simplifications and so,

F(V1, V2, . . . , VN) = n0 +
N

∑
i=1

niVi (4)

where Vi = log(Variablei), F = log( f ) and the square root is absorbed in ni and for
mathematical consistency, the logarithm of the coefficient α0 is expressed as n0. In this form,
the strongly associated variables have a coefficient |ni| � 0.

For the development of a baseline model, for all modal frequencies, all measured body
components; height, leg length, lower and upper thigh girth, segmental lean and fat leg
masses were considered as the measured variables. However, leg length was replaced by
femur length, lF, (equating to 5/9 of leg length) instead. The transformed (logarithmised)
measured variables are denoted with uppercase (i.e., Tu = log(tu), L f = log (l f ), etc.).
Therefore, the logarithmised version of the above equation is simply expressed as,

Fj

(
Ṽ
)
= ñ.Ṽ

where
Ṽ = [1 H LF TL TU SL SF]

T

ñ =
[
n0 nH nLF nTL nTU nSL nSF

] (5)
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However, it is anticipated that some of these measured variables are dependent on
each other. A stepwise multiple linear regression model (stepwiselm in-built MATLAB
function) was implemented to sequentially process for terms to be added or removed
in determining the optimal model. With a level of significance α < 0.05, the criteria are
based on the p-value of the F-statistic for each coefficient of the terms in the linear model
and of the F-test of the regression model on whether the model fits than a degenerate
model consisting of only a constant term. At each step, the stepwiselm function checks for
linear dependencies among the terms in the model and if a term is linearly dependent, the
function removes the redundant term. The regression models were discussed and assessed
based on their standardised residuals, adjusted coefficient of determination (R2

adj), standard
error (SE) of the coefficients and coefficient of variation (CV).

3. Results
3.1. Modal Parameters

The 12 modes from 0–800 Hz were identified, which were primarily OOP and coupled
modes and their associated coherence suggested high-quality measurements; refer to
Table 4. The dominant modes are Ω5–7 depicted by their associated relative power and
amplitude and in the vicinity of 50–110 Hz. Higher modal frequencies beyond 250 Hz,
Ω10–12, are significantly weaker modes (<−14 dB). OOP modes are Ω1,3–6 whereas the
remaining modes are identified as coupled modes. The variations (difference between
the maximum and minimum frequency) of the modes are mostly larger for higher modal
frequencies. The modes with high damping coefficients of approximately 0.2 are Ω1,5–7
and the low damping coefficients are of high modal frequency Ω9–12. On average, eight
modes were identified in leg frequency response, where Ω1–3 were recorded the most with
approximately 87%, Ω4 was recorded the least with 18%, Ω6,7 were recorded approximately
47% and Ω8–12 were recorded approximately 63% of 40 tests.

3.2. Association Analysis

The next investigation proceeded in discovering associations among the 12 modes
and body components, and those with high significance are indicated with their associated
correlation coefficients in Figure 3.

Most body components have a moderate to strong (0.4~0.9 coefficients) correlation
with high significances, in particular the correlation between weight and segmental lean
leg mass, between height and segmental lean leg mass and between lower thigh and upper
thigh girths. Weight has a weak positive correlation with leg length. There is no correlation
with statistical significance between segmental fat leg mass and the other body components
and upon further investigation, there is a weak correlation (coefficient of 0.31) between
weight and segmental fat leg mass with a significance of p ∼= 0.05.



Sensors 2022, 22, 670 11 of 18

Table 4. Twelve modes and their associated modal and system parameters.

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12

Average f (Hz) 4.28 7.61 13.15 21.98 56.70 71.59 92.71 133.73 208.79 322.24 494.74 664.02
Minimum f

(Hz) 3.00 4.70 10.00 18.75 51.18 62.90 82.40 113.67 158.44 263.10 411.67 604.17

Maximum f
(Hz) 5.08 11.00 16.70 26.50 66.70 84.00 103.50 168.50 270.67 404.63 536.25 741.00

Standard deviation f
(Hz) 0.42 0.34 0.71 0.71 1.69 1.91 4.66 4.34 6.40 8.99 11.94 16.08

Relative power
(dB) −12.5 −13.8 −12.4 −11.7 −0.3 −0.8 −1.4 −5.3 −10.1 −14.9 −17.8 −18.8

Amplitude
cross-spectrum
((m/s2)2/Hz)

3.71 × 10−3 2.88 × 10−3 3.48 × 10−3 1.92 × 10−3 3.44 × 10−2 2.53 × 10−2 1.85 × 10−2 1.04 × 10−2 4.11 × 10−3 1.23 × 10−3 7.31 × 10−4 5.31 × 10−4

Phase
(Radian) 0.87π 0.65π 0.75π 0.92π 0.87π 0.82π 0.73π 0.69π 0.59π 0.64π 0.60π 0.53π

Mode OOP Coupled OOP OOP OOP OOP Coupled Coupled Coupled Coupled Coupled Coupled
Coherence 0.93 0.90 0.89 0.94 0.99 0.99 0.98 0.99 0.97 0.96 0.95 0.95

Damping ratio 0.22 0.17 0.17 0.14 0.19 0.21 0.18 0.14 0.13 0.12 0.11 0.09
Number of samples 33 35 36 7 32 21 16 21 22 26 26 30
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3.3. Modal Frequency Association with Body Components

Referring to Figure 3, the modal frequencies and their correlations of statistical signifi-
cance with the body components are stated below.

• Ω1 has a weak negative (coefficient of −0.37) correlation with the lower thigh girth.
• Ω2–5 have no correlation with the body components. There is a weak (coefficient of

0.38) correlation between Ω2 and Ω3.
• Ω6 has a moderate negative correlation (very high statistical significance of p ∼ 0.001)

with height and leg length. Furthermore, Ω6 also have fair negative correlations with
weight and segmental lean leg mass, which is likely due to their correlation with leg
length. Thereby, Ω6 is considered the first OOP mode associated with the femur length.

• Ω7 also has moderate negative correlations with height and leg length. Ω7 is consid-
ered the first coupled mode associated with the femur length.

• Ω8 has a moderate negative correlation with segmental lean leg mass. Ω8 also has
negative and positive correlations with Ω11 and Ω12, respectively.

• Ω9 and Ω10 have a moderate negative correlation with segmental fat leg mass.
• Ω11 has a moderate negative correlation with leg length.
• Though there is no correlation with statistical significance between Ω12 and the body

components, a further investigation found that Ω12 has a weak negative correlation
(coefficient of −0.33) with segmental fat leg mass with significance p ∼= 0.07.

Due to Ω1–5 having weak and no correlations with the body components, these
low-frequency modes are anticipated to be associated with the prototype device and its
components. It is possible that there are associations with other not-measured and/or low-
variation body components, such as skin [31]. The particular interest of this investigation is
the modal frequencies within the range of 60–400 Hz, largely due to their association with
the musculoskeletal components of the leg. Ω6,7 have strong correlations with leg length
and, thereby, with femur length, which suggest these modes serve as primary measurands
for bone healing assessment. Furthermore, Ω8–10, as well as the higher-order, coupled
modes Ω11,12, are quantities that describe the lean and fat masses of the leg and despite
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their relatively weaker magnitude, these modes are potential supplementary for healing
evaluation.

3.4. Dependency of Modes Appearances

The Wilcoxon rank sum test suggested statistically significant differences between the
O and N groups for Ω7,8,10, refer to Table 5, thereby suggesting the appearance of these
modes are dependent on body components. The appearance of Ω8 occurs when the body
components are higher in value, in particular weight and segmental lean leg mass with
high significance (p < 0.003). The appearance of Ω10 occurs when weight and segmental
lean leg mass are lower in value. Similarly, the appearance of Ω7 occurs when weight and
segmental lean leg mass are lower in value; however, with slightly moderate significance.
This indicates that Ω7,10 are masked (damped) by increasing muscle mass and weight.

Table 5. Median values of the body components for observation and no observation groups of Ω7,
Ω8, and Ω10 with significance p < 0.05 (unless indicated otherwise) based on the Wilcoxon rank
sum test.

GROUP h tL tU l w sL sF

Ω7
O - - - - 66.3 * 7.975 ** -
N - - - - 72.4 * 8.77 ** -

Ω8
O 173.6 43.5 51.1 95 75.2 8.92 2.8 ˆ
N 169.9 42 49.1 92 61.8 7.2 1.8 ˆ

Ω10
O - - - - 64 7.975 -
N - - - - 73.85 8.875 -

(bold) p < 0.01; * p ∼ 0.06 for weight and ** p ∼ 0.08 for segmental lean leg mass for groups of Ω7; ˆ p ∼ 0.06
for segmental fat leg mass for groups of Ω8.

3.5. Model of Modal Frequencies Associated with Leg Components

The stepwise regressions procedure showed only Ω6–11 models satisfy the criteria,
refer to Table 6. Each optimal model has only one independent measured variable; the
independent measured variable for Ω6,7,11 models is lF, for Ω8 model is sL and for Ω9,10
models is sF. An additional investigation was conducted to investigate all combinations of
measured variables and found that only these optimal models satisfied the criteria. Among
the models, Ω6 and Ω7 models have high statistical significance and CV of nLF and n0 of
approximately 27% and 14.5%, respectively. Ω8–10 models have a relatively low CV of n0 of
less than 6%; however, a relatively high CV of their variable coefficient of approximately
40% compared to those of Ω6,7 models. Ω11 model has a CV of n0 of approximately 12.2%
and the largest CV of nLF of 42.2%.

Table 6. Models for modes 6–11 and their coefficients of variables and constants.

Modes Equation
Constant n0 Coefficient

Value SE p Value SE p

nLF

F6
n0 + nL f ·L f

9.12 1.30 ∼ 10−6 −1.23 0.33 0.001
F7 10.08 1.49 ∼ 10−5 −1.41 0.38 0.002
F11 8.72 1.06 ∼ 10−8 −0.64 0.27 0.026

nSL

F8 n0 + nSL ·SL 5.70 0.32 ∼ 10−13 −0.37 0.14 0.019

nSF

F9 n0 + nSF ·SF
5.48 0.07 ∼ 10−26 −0.17 0.07 0.024

F10 5.86 0.04 ∼ 10−36 −0.10 0.04 0.030
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Referring to Figure 4, the variations in f6 and f7 are considerably explained (on average
43%) by their models with lF as the independent variable, whereas approximately 15–20%
variations of f8–11 are explained by their associated model with one independent variable
(sL, sF and lF, respectively).

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18 
 

 

3.5. Model of Modal Frequencies Associated with Leg Components 
The stepwise regressions procedure showed only Ω଺ିଵଵ models satisfy the criteria, 

refer to Table 6. Each optimal model has only one independent measured variable; the 
independent measured variable for Ω଺,଻,ଵଵ  models is 𝑙ி , for Ω଼  model is 𝑠௅  and for Ωଽ,ଵ଴ models is 𝑠ி. An additional investigation was conducted to investigate all combi-
nations of measured variables and found that only these optimal models satisfied the cri-
teria. Among the models, Ω଺ and Ω଻ models have high statistical significance and CV of 𝑛௅ಷ and 𝑛଴ of approximately 27% and 14.5%, respectively. Ω଼ିଵ଴ models have a rela-
tively low CV of 𝑛଴ of less than 6%; however, a relatively high CV of their variable coef-
ficient of approximately 40% compared to those of Ω଺,଻ models. Ωଵଵ model has a CV of 𝑛଴ of approximately 12.2% and the largest CV of 𝑛௅ಷ of 42.2%. 

Table 6. Models for modes 6–11 and their coefficients of variables and constants. 

Modes Equation 
Constant 𝒏𝟎 Coefficient 

Value SE 𝒑 Value SE 𝒑 
     𝒏𝑳𝑭 𝑭𝟔 𝑛଴ + 𝑛௅೑ ∙ 𝐿௙ 

9.12 1.30 ~10ି଺ −1.23 0.33 0.001 𝑭𝟕 10.08 1.49 ~10ିହ −1.41 0.38 0.002 𝑭𝟏𝟏 8.72 1.06 ~10ି଼ −0.64 0.27 0.026 
     𝒏𝑺𝑳 𝑭𝟖 𝑛଴ + 𝑛ௌಽ ∙ 𝑆௅ 5.70 0.32 ~10ିଵଷ −0.37 0.14 0.019 
     𝒏𝑺𝑭 𝑭𝟗 𝑛଴ + 𝑛ௌಷ ∙ 𝑆ி 5.48 0.07 ~10ିଶ଺ −0.17 0.07 0.024 𝑭𝟏𝟎 5.86 0.04 ~10ିଷ଺ −0.10 0.04 0.030 
Referring to Figure 4, the variations in 𝑓଺ and 𝑓଻ are considerably explained (on av-

erage 43%) by their models with 𝑙ி as the independent variable, whereas approximately 
15–20% variations of 𝑓 ିଵଵ are explained by their associated model with one independent 
variable (𝑠௅, 𝑠ி and 𝑙ி, respectively). 

 
(a) (b) 

Figure 4. (a) Graph of predicted and true modal frequencies and (b) graph of standardised residuals 
against predicted frequency. 

There is no observation with a standardised residual outside of ±3, which indicates a 
region where the fitted model is considered a poor approximation. Furthermore, there is 
no clear indication of bias nor heteroscedasticity, hence the errors are considered nor-
mally, independently and identically distributed. Therefore, the models can be considered 
appropriate approximations for the modal frequencies. 

  

Figure 4. (a) Graph of predicted and true modal frequencies and (b) graph of standardised residuals
against predicted frequency.

There is no observation with a standardised residual outside of ±3, which indicates
a region where the fitted model is considered a poor approximation. Furthermore, there
is no clear indication of bias nor heteroscedasticity, hence the errors are considered nor-
mally, independently and identically distributed. Therefore, the models can be considered
appropriate approximations for the modal frequencies.

4. Discussion

The results indicate Ω6,7 modal frequencies of 71.59 and 92.71 Hz, respectively, are
associated with the femur length, as it is correlated with leg length [58], as mentioned
previously. These modes are in the same vicinity of modal frequencies associated with
fracture healing reported in previous clinical studies where long bones (tibia and femur)
were treated with an external fixation [44,46]. It should be noted that the previous studies
reported first bending modes, whereas in this study, Ω6,7 are the first OOP and coupled
modes, respectively. Nevertheless, these first-order modes can be primarily utilised to
construct assessment models for fracture healing. In a fixated fractured bone frequency
response, there exist modes associated with the internal/external fixation, which may
couple and mask modes associated with healing due to its rigidity [25]. Though, our
prior investigations [35,40] demonstrated that OOP and torsional modes are minimally
influenced by fixations. Further validations are necessary for future investigations in
employing the extracorporeal device which should include measurable information on
bone properties and different scenarios of fractured bones.

Modal frequencies (Ω8–10) associated with the segmental lean and fat mass of the leg
are very similar to those identified as the frequencies of the patient’s thigh, which are 122,
191, and 321 Hz [46]. Among those modal frequencies, Ω8 is the most damped (average
damping coefficient of 14%), which is in agreement with previous related works [45,46].
The association of lean and fat leg masses with Ω8 and Ω10, respectively, are also evident
due to their likelihood of appearance with muscle leg mass. Furthermore, the vibration
responses also indicate stronger peaks amplitude at low frequencies and weaker peaks
amplitude at high frequencies with higher variations, which are similar observations to the
studies reported by Mattei et al. [44–46].

Despite the strong dependences among body components in the study findings and
previous literature [57,60], the simplicity of the optimal models (describes with one variable)
suggests these OOP and coupled modes, in particular Ω6,7, are minimally influenced by
other musculoskeletal components of the leg. This is in accordance with our previous
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findings [35,39,40] that torsional modes associated with fracture healing are not sensitive to
the mass-damping effect of soft tissue. In the view of utilising these models, we postulate
the parameter n0 can be used for bone quality and healing assessment as it essentially
relates to bone properties (i.e., stiffness, density, etc.). However, there are some variations
of n0 in the models which are anticipated due to variation of quality of femur bone among
the participants. In this current work, the models are only presumably limited to healthy
bone, specifically, of ‘young adults’ as the majority of participants are in the 20–30 years old
age range. Through visual inspection, the Ω6,7 modal frequencies for age ≥ 30 years old
(three participants) are in the lower bound of the models, which imply lower bone stiffness.
Nonetheless, the number of samples in the dataset is insufficient to statistically validate
any observation or correlation against age and bone properties. Prior investigations [44,49]
have indicated that vibration analysis methods are most sensitive from the inflammatory
stage to the bone reparative stage due to the significant change in rigidity (blood clot to
hard callus) of the fracture site. However, the limitation of this current study also includes
the frequency responses of unhealthy participants (with fractured bones) as they were not
considered in this study. Thereby, the modes associated with fractured bones as well as the
applicability of this strategy is currently not experimentally validated in the early stages
of healing. The current findings, as well as the models, can be further refined with more
samples, including those in different age groups since bone mechanical properties change
with increasing age [60], and to investigate n0 sensitivity for healing assessment inclusive
of participants with fractured bone.

The current vibration-based strategy was able to moderately (on average 55%) acquire
modal frequencies associated with the femur, lean and fat leg mass. The Ω7 appears for
lower values of weight and segmental lean mass, and this is in correspondence with the
clinical trial observations where participants with muscular thighs have more soft-tissue
coverage over the medial and lateral epicondyles, resulting in some difficulty for sensor
placement and adverse masking of the femur response. Improvements on the strategy
should include reducing the number of tests for reliable modal frequency acquisition and
other considerations for the prototype device (i.e., sensor placement to further accentu-
ate the femur and other leg components responses). Furthermore, the current procedure
requires a well-versed operator to perform the analysis and identify the modal frequen-
cies using signal pre-processing techniques for vibration signals, as well as to locate the
epicondyles for sensor placement. Nevertheless, the research project will include not
only further validations on the practical use of the vibration-based method, but also a
much-needed simplification for clinical use.

5. Conclusions

This study demonstrates a patented prototype device using a vibration analysis
method to measure modes associated with musculoskeletal components of the leg. The
work aimed to provide insight in formulating indicators to assess fracture healing and
broaden the knowledge for vibration-based healing assessment. A clinical trial was con-
ducted to experimentally extract, by using the prototype device, and analyse the leg
vibrational response of healthy participants against measured body components. On aver-
age, 55% of the modal frequencies associated with the femur, lean and fat leg masses were
acquired via the proposed strategy. The first OOP and coupled modal frequencies of 71.59
and 92.71 Hz, respectively, are associated with the femur length. In particular, the first OOP
mode has a high significance of p < 0.003 and thereby, are potential bone healing and/or
quality measurands. The findings have shown higher-frequency and higher-order modes
associated with muscle and fat mass of the leg, with average damping coefficients between
0.12 and 0.14. In addition, higher modal frequencies beyond 250 Hz are significantly weaker
modes, which are lower than −14 dB in relative power. Furthermore, Ω6–11 models were
formulated using the stepwise regression method in approximating the modal frequencies
with their associated body variables for healthy subjects. The variations in the frequency of
the first OOP and coupled modes are explained on average 43% by their optimal models,
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with femur length as the only independent variable. Future work is currently underway to
further validate the employment of vibration analysis approaches in facilitating smarter
human health monitoring and medical devices for fracture healing assessment.

6. Patents

Chiu, W.K., M. Russ, and M. Fitzgerald, Australian Patent No. 2019900018. Method
and system for assessing the state of healing of a fractured long bone. 2019: Australia,
IP Australia.
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