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Special Reference to COVID-19 Spread

by Dhungana, H. N., and Ghimire, S. Front. Public Health. (2021) 9:735857.
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With reference to the quoted commentary (1) above, commentators observed, “In sections ‘SI and

SIS Models’ and . . . . chance or probability.” We would like to state that the commentators have
misunderstood and misinterpreted the concept and definition of β . From the mentioned models,
it may be seen that, β is the per capita per unit time infection rate. It is a disease transmission
coefficient or a transmission rate as described by Kirkeby et al. (2). Bailey (3), at page no. 20, and
Bailey (4), at page no. 33, have defined β as the infection rate. Chalub and Souza (5) have defined
that, β may be interpreted as a rate or as a probability among many other possible choices. Jagan
et al. (6) have defined β as the transmission rate; it is the number of infections per unit time per
susceptible per infected. Further, Citron et al. (7) have defined as β the transmission rate, published
in “PNAS” and others (8–20).

Further, we have mentioned that β estimates the spread rate, which shows the chance of
transmission of the disease from an infectious individual to a susceptible one. Ucakan et al. (17)
have explicitly expressed that the transmission coefficient, β estimates the probability of getting the
disease from an infectious individual to the susceptible and stated it as a probability that ranges
from 0 to 1 (0< β <1). On the other hand, Brauer and Castillo-Chavez (21) have defined β

as the product of the probability of the transmission per contact and the per capita contact rate.
In addition, Chen (22) has also defined β as the infection coefficient, the product of the average
number of contacts within a given time period and the probability of infection for the contact
between susceptible and infectious individuals. Thus, β may take a value >1 and, therefore, in
general, it may not be considered as a probability. Furthermore, one should be very careful about
the choice of β while defining diagrams for different epidemiological models. Moreover, Hethcote
and Driessche (10) mentioned that the number of new cases per unit time shall be λSI/N, which
is called the standard incidence (23–27) with λ as a contact rate. Another common incidence is
the simple mass action incidence, βSI, where β was defined as the transmission coefficient (4, 9).
Additionally, Okabe and Shudo (16) have defined that βSI represents the number of susceptible
individuals that get infected per day. For more details, further references can be consulted (28, 29).
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In their next comment, they have wrongly pointed out
“In section, “The Distribution Fitting,” the . . . . biological

interpretations.” In the section “The Distribution Fitting” of our
review on page no. 04, we have clearly mentioned that “it is the
growth rate of infection which determines the total number of
infections which depends on the numerous factors (30),” and
in the context of distribution fitting, we have mentioned that
the infectious disease mainly depends on two factors, namely,
the number of carriers and the time of infection as reported by
Datta et al. (31). They have further mentioned, “In the section

of “The Basic Reproduction Number”. . . . . . not the model.” In
the section “The Basic ReproductionNumber,” the commentators
have wrongly stated the concept here. From the formula, it may
be observed that, R0 does not depend on time. Further, we have
not mentioned R0 as a rate anywhere in the review article. It is
solely their imaginary creation.We havementioned in the section
that, R0 is measured through the effective reproductive rate,
denoted by R. Thus, we have mentioned, “effective reproductive
number” R as “effective reproductive rate” since it depends
on time (32–38). Although for minimizing the ambiguity,
the use of consistent terminology throughout the literature
is required, and, therefore, we appreciate the commentators.
Further, commentators have wrongly mentioned that we have
stated ξ as a model in the sub-section SIRS on page no. 9,
however, ξ is defined in subsection SEIRS on page no. 20. In
our opinion, the sentence should be started with the word “In,”
which may be a typographical error, however, we have clearly
mentioned that ξ is the rate by which the recovered individuals
become susceptible because of the loss of immunity, and ξ is not
a model. For more details, further references can be referred to
(15, 39, 40).

In their last comment, they have pointed out, “In the

section, “Further Suggestions and Future Prospectives”, . . . ..

recommendations.” Hajian-Tilaki (41) clearly observed that in
designing epidemiologic studies, sample size calculation has
an important role to detect an effect and achieve the desired
precision in estimates of parameters of the interest (41–45).
Therefore, it is a key factor that must be considered while

designing the study protocol (45). Small sample size will fail
to provide a precise estimate and reliable answers to the policy
makers (46). On the other hand, a large sample size than
required will cause wastage of useful resources earmarked to
the study (45). Malhorta and Indrayan (47) have recorded that,
an adequate estimation of the correct required sample size
is a must, especially in the case of such infectious diseases,
for which the newly invented diagnostic tests are expensive
to carry out. For any epidemiological study, the investigators
must present the principles of sample size calculation to justify
these numbers (44). Further, Hajian-Tilaki (48) also mentioned
that, unfortunately, sample size calculations are rarely reported
by clinical investigators for diagnostic studies (49, 50). The
sample size calculation may be ignored wherever required,
for instance, assumptions in household epidemic models for
determining the transmissibility (R0). This can sometimes be
seen based on who infected whom however, it is only applicable
to the infections with a long incubation period, such as AIDS
and tuberculosis. Although, for the infections with a shorter
incubation period, such as Influenza and COVID-19, we must
meet the sample size conditions in order to estimate the growth
rate. The commentators mentioned that in the section “Further
Suggestions and Future Prospective,” the compulsion of sample
size determination can be avoided, however, we opined that,
if certain researchers have not mentioned the assumptions
regarding the sample size calculation, it does not mean that
there is no need of it. Many a time, the determination of sample
size is ignored, where strict ethical issues are not concerned,
but it will harm in some sense or another, as mentioned by
the more pragmatic scholars earlier (45, 46). Thus, it is highly
recommended for an epidemiological study that the appropriate
sample size calculation should be followed (41, 48, 51–58).
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