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ABSTRACT Background: Artificial intelligence techniques are widely used in solving medical problems.
Recently, researchers have used various deep learning techniques for the severity classification of Chikun-
gunya disease. But these techniques suffer from overfitting and hyper-parameters tuning problems. Methods:
In this paper, an artificial intelligence-based cyber-physical system (CPS) is proposed for the severity classi-
fication of Chikungunya disease. In CPS system, the physical components are integrated with computational
algorithms to provide better results. Random forest (RF) is used to design the severity classification model for
Chikungunya disease. However, RF suffers from overfitting and poor computational speed problems due to
complex architectures and large amounts of connection weights. Therefore, an evolving RFmodel is proposed
using the adaptive crossover-based genetic algorithm (ACGA). Results: ACGA can efficiently optimize the
architecture of RF to achieve better results with better computational speed. Extensive experiments are
performed by utilizing the Chikungunya disease dataset. Conclusion: Performance analysis demonstrates
that ACGA-RF achieves higher performance as compared to the competitive models in terms of F-measure,
accuracy, sensitivity, and specificity. The proposed CPS system can prevent users from visiting hospitals and
can render services to patients living far away from hospitals.

INDEX TERMS Artificial intelligence, cyber-physical system, automated diagnosis, Chikungunya disease,
random forest, adaptive crossover, genetic algorithm, severity classification.

Clinical translation statement: The proposed model can be utilized for the severity classification of
Chikungunya disease. The research findings are impactful as the proposed model can prevent users from
visiting hospitals and can render services to patients living far away from hospitals.

I. INTRODUCTION
The Healthcare system plays a vital role in the development
of any nation. Government is responsible to design proper
healthcare policies to protect their citizens from any outbreak
of diseases [1]. Hence, the outbreak of any new disease
such as coronavirus is a major challenge for the healthcare
system. Several viruses exist that can affect both animals and
human beings. Chikungunya is one of the viruses that can
be spread very rapidly and may create a big problem for
the health system. Two basic types of infected mosquitoes

i.e., Aedes albopictis and Aedes agypti transmit this virus
in the human body [2]. The symptoms of Chikungunya
are joint pain, sudden high fever, and rash. Some infected
persons have headaches, fatigue, digestive complaints, and
conjunctivitis [3]. The symptoms of Chikungunya are very
similar to dengue because the same mosquito carries both
viruses [4]. But in Chikungunya, joint pain is more severe
as well as redness of the eyes. The symptoms of sore throat
are different from dengue infection. Chikungunya may not
cause death. As per literature, it is found that the patient
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recovers within a week of this disease [5]. But, the joint pain
may last for a few months. The doctors start the treatment
by perceiving the symptoms of patients. However, the exact
measurement of these symptoms is not possible. Therefore,
the treatment of patients may not be effective.

Instead of symptoms found in the patients, reverse
transcription-polymerase chain reaction (RT-PCR) and sero-
logical tests are used to diagnose Chikungunya. Both tests
require blood samples of patients [6]. However, these tests
are unable to provide reliable performance for this disease.
Supervised learning techniques such as machine learning and
deep learning can be used to evaluate the severity of this dis-
ease by considering the symptoms of patients and laboratory
tests [7]. The severity classification of Chikungunya infected
persons is still an ill-posed problem.

In [8], a fog-based framework for Chikungunya dis-
ease diagnosis was designed. J48 was utilized to classify
Chikungunya infected patients. In [9], wearable internet of
things (IoT) and fog-based framework for classification and
controlling the Chikungunya disease was proposed. Fuzzy-
C means (FCM) classifier was utilized for Chikungunya
classification. But J48 [8] and FCM [9] suffer from over-
fitting and hyper-parameters tuning problems. In [10], a par-
ticle swarm optimization-based ANFIS (PANFIS) model was
implemented for the diagnosis of Chikungunya disease. Ini-
tially, an adaptive neuro-fuzzy inference system (ANFIS)
classifier was used to classify the infected patients. There-
after, particle swarm optimization (PSO) was utilized to over-
come the parameter tuning problem with ANFIS. It achieved
remarkable results compared to artificial neural networks
(ANN). But, PANFIS [10], [11] suffers from the over-fitting
problem. Also, sometimes PSO may be stuck in local optima
and suffers from premature convergence problems [12], [13].

Therefore, to overcome the over-fitting and hyper-
parameters tuning problems, an efficient evolving Random
forest (RF) model is proposed for the severity classification
of Chikungunya disease. The main contributions of this paper
are as follows:

1) A cyber-physical system (CPS) based severity classi-
fication model is proposed for Chikungunya disease.
In CPS system, the physical components are inte-
grated with computational algorithms to attain better
results.

2) Evolving RF model is proposed for severity classifica-
tion of Chikungunya disease. An adaptive crossover-
based genetic algorithm (ACGA) is utilized to evolve
RF model.

3) Deep learning model is also implemented and com-
pared with ACGA-RF for severity classification of
Chikungunya disease.

The remainder of this paper is organized as follows.
Section II presents the related work. The proposed ACGA-
RF model is described in Section III. Performance analyses
are presented in Section IV. The concluding remarks are
discussed in Section V.

II. RELATED WORK
Artificial intelligence techniques are widely used in solv-
ing medical problems. Recently, researchers used machine
learning techniques for the classification of Chikungunya
disease. Hossain et al. [5] utilized the different symptoms of
patients for the accurate assessment of Chikungunya dis-
ease. Their proposed framework collected the data from the
interviews of patients. They used a belief-based rule sys-
tem for predicting the level of Chikungunya. Their model
attained an accuracy of 92%. Yang [14] developed a deci-
sion system for the diagnosis of Chikungunya disease. The
neural network was used for classification by consider-
ing the uncertainty of the disease’s symptoms. However,
the uncertainty of some symptoms is not considered in
this approach. Ganesan et al. [15] presented three different
models to diagnose the Chikungunya disease. However,
these models require human intervention for the assess-
ment of this disease. Caicedo-Torres et al. [16] proposed
a machine learning-based classifier for differentiating the
dengue and Chikungunya patients. Their classifier was tested
on 447 patients. The logistic regression model outperformed
the other models. The accuracy obtained from logistic regres-
sion was 87%.

Ibrahim et al. [17] presented the backpropagation method
for predicting the epidemic disease. They used epidemic
disease factors for prediction. Thereafter, these factors were
applied to the clustering technique. Their method is capable
to identify the epidemic disease using feature classification.
Coelho et al. [18] used a transfer learning model for predict-
ingmosquito-borne diseases. They used time-series data from
two Brazilian cities. Both the long short-term memory neural
network model and random quantile forest model provided
the same prediction performance. Caicedo-Torres et al. [19]
utilized the machine learning techniques for envisaging the
morbidity of Chikungunya in Colombia. Kernel ridge regres-
sion was used for forecasting the Chikungunya cases. Cross-
validation and mean absolute error were used.

Sippy et al. [20] developed two prediction models on the
Machala dataset. The first model namely the severity index
for suspected arbovirus model (SISA) that utilized demo-
graphic data. Another model namely the severity index for
suspected arbovirus (SISA1) with laboratory utilized the lab-
oratory data. The accuracies obtained from SISA and SISAl
were 91% and 95%, respectively. Both models are capable to
envisage arbovirus hospitalization.

Shimpi et al. [21] used a backpropagation algorithm to
predict the Chikungunya disease. Five gradient-based opti-
mization techniques were used. The pre-processed features
were applied to the backpropagation algorithm for classifi-
cation. The accuracy obtained from this model was 95%.
However, a small dataset was used for validation purposes.
Eng et al. [22] used machine learning techniques for predict-
ing the binding affinity of T-cell epitopes of Chikungunya.
They built prediction models for identifying binders and non-
binder. This model will be helpful for vaccine development.

3700109 VOLUME 10, 2022



D. Singh et al.: Artificial Intelligence-Based CPS for Severity Classification of Chikungunya Disease

FIGURE 1. Proposed ACGA-RF model based Chikungunya severity
classification model.

From the existing literature, it is found that the majority
of the existing models suffer from hyper-parameters tuning,
(i.e., optimization of initial control parameters), over-fitting
and data insensitivity problems [23], [24]. Hence, there is a
need to develop an efficient model for severity classification
for Chikungunya disease.

III. PROPOSED FRAMEWORK
Motivated from [8], [10], an efficient model is pro-
posed in this paper for diagnosis of Chikungunya disease.
Figure 1 shows the proposed artificial intelligence-
based cyber-physical system (CPS) for the diagnosis of
Chikungunya disease. There are two main components in
the proposed model, i.e., physical space and cyberspace.
In physical space. the data related to users’ health is collected
and forwarded to cyberspace for predicting the severity of the
Chikungunya virus [25], [26]. In cyberspace, there are two
sub-layers, i.e., the cloud subsystem layer and data classifica-
tion layer [27], [28]. In the cloud subsystem layer, data and the
proposed trained model are stored. At the data classification
layer, the severity prediction of the Chikungunya virus is done
in real-time by applying the proposed ACGA-RF model after
extracting the potential features. Finally, doctors are involved
for further assessment of the results.

A. PHYSICAL SPACE
In physical space, there is a data acquisition layer that collects
users’ personal data, symptoms related to Chikungunya, and
records of initial screening with the help of sensors.

The Chikungunya dataset is obtained from [8] and [9].
Sood and Mahajan [8] and [9] built the dataset by taking
the symptoms-based dataset from [29] that contains eleven
health features, i.e., abdominal pain, muscle pain, bleeding
disorder, fatigue, eyes pain, itching, nausea, sore throat, joint
pain, skin rash, and fever, of 2367 patients. Dataset with
5032 cases comprising environmental variables was taken
from [30] and [31]. Monthly climate variables, i.e., rainfall,
temperature, and humidity, were taken from [32]–[34]. The
symptoms-based data was combined with climate and envi-
ronmental features to validate ACGA-RF (for further details
refer to [8] and [9]).

TABLE 1. Data attributes related to Chikungunya virus.

Table 1 shows the common features of Chikungunya virus.
It contains several sensing devices to observe the health of
patients. The observed information is then transferred to the
data classification layer to classify the health of a particular
client. The description of the dataset is mentioned in Table 1
(refer [8], [10]).

1) User Personal Data: This comprises the user’s personal
data. GPS sensors are used to collect data such as UID,
name, age, address, and mobile number.

2) Health-related Data: This set consists of vital signs.
It provides information related to rashes on the skin,
muscle pain, appetite loss, joint pain, fever, redness
in the eyes, headache, nausea, sore throat, fatigue,
and vomiting. Biosensors are used to collect this
information.

3) Environmental and location Information: It provides
the position of patients, susceptible users, uninfected
users, and positions of mosquito dense areas, water
quality, humidity, and mosquito breeding sites. These
positions are evaluated by Global Positioning Sys-
tem (GPS) sensors to obtain the travel history of every
patient. Radio Frequency Identification (RFID) tags
and mosquito sensors are also utilized to store the prox-
imity interactions between infected/uninfected/ suscep-
tible users, mosquito densities, and breeding sites.

Table 2 depicts the personal-parameters of registered users.
It presents a brief description of the user’s personal parame-
ters such as name, age, gender, address, mobile number, and
contact details of guardians (refer [8], [10]). Table 3 shows
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TABLE 2. Chikungunya’s user personal-parameters.

TABLE 3. Chikungunya symptoms related-dataset.

Chikungunya symptoms such as headache, exposure to the
risky area, nausea, fever, rash, vomiting, etc.

B. CYBER SPACE
Cyberspace is comprised of two sub-layers, i.e., the cloud
subsystem layer and the data classification layer. The detail
of registered users and the proposed trained model is stored
in cloud subsystem layers. Whereas, at the data classifi-
cation layer, diagnosis of the Chikungunya virus is done
by applying ACGA-RF to the potential features. Also,
RF-based model is used as it has the abilities of gener-
alization, learning, fault tolerance, and adoption. However,
RF model is sensitive to its control parameters. An efficient
tuning of these control parameters can improve the perfor-
mance of RF. Therefore, to automatically optimize control
parameters of RF, an ACGA-RF model is proposed. Finally,
the predicted severity report of a patient is transmitted to
doctors for further treatment.

IV. PROPOSED EVOLVING RANDOM FOREST MODEL
This section discusses the proposed evolving random forest
model. Initially, RF model is briefly discussed to under-
stand its basic notations and hyper-parameters. Random for-
est (RF) is an ensemble of classification/regression trees [35],
where every tree shows a mapping from feature space to the
response. Trees can be obtained either using a subsampled
data set of actual data or bootstrapped. Every tree is con-
ditionally independent of one another. However, RF model
is sensitive to its architecture and hyper-parameters. Thus,
an adaptive crossover genetic algorithm (ACGA) is uti-
lized to obtain the optimized architecture and hyper-
parameters of RF.

In literature, genetic algorithm is widely accepted to
optimize various classifiers such as deep learning models
[23], [36]. Genetic algorithms utilize crossover and mutation
operators during evolution phases to obtain the final solution.
It has been found that the selection of efficient crossover
and mutation operators is a challenging problem. To effi-
ciently select crossover operator(s), Xue et al. [37] proposed
an adaptive crossover genetic algorithm (ACGA). A group of
crossover operators was utilized during the evolution process.
Based on the performance of crossover operators, roulette
wheel selection was utilized to select a specific crossover.
In this paper, ACGA [37] is utilized to form evolv-
ing RF model. Three different crossover operators are
used. The working of the proposed ACGA-RF is depicted
in Algorithm 1.

init_P(): Population P is created using normal distribution
by creatingM vectors. Each vector represents the architecture
and hyper-parameters-related values of RF.

init_A(): Adaptive crossover selector (AS ) is utilized by
assigning probabilities to each crossover as 1/C . C shows a
number of utilized crossovers.

init_R(): Given crossover is selected according to roulette
wheel selection and probabilities obtained from AS .
init_C():Apply selected crossover on parents’ offspring to

form child offsprings.
init_M(): Mutation operator is utilized to obtain child

offspring. Compute child offsprings are saved in the offspring
population(Pδ).

init_CA(): Dominated offsprings are then evaluated by
using the actual and child offsprings. The respective out-
comes are saved in rW and pL. Pδ is computed during
M/2th step.

init_S(): Crowded distance [38] and Non-dominated sort-
ing [39] are used to obtain M solutions from R (P ∪ Pδ).
init_D(): To allocate reward/ penalty to selected off-

springs, dominance comparison is utilized.
Penalty and reward of offsprings is saved in nPIT×C and

nRIT×C , respectively. After IT number of phases, AS is
updated by considering nPIT×C and nRIT×C . All steps are
repeated until the termination criterion (i.e., FE) is satisfied.

The succeeding subsections discuss the steps of ACGA.

A. FITNESS FUNCTION
Fitness function is designed to optimize RF by using sensi-
tivity and specificity. It is defined as:

maxF(X ) = {f1(X ) and f2(X )} (1)

Here, X is an offspring. f1 and f2 represent the sensitivity
and specificity parameters, respectively.

B. CROSSOVER OPERATORS
Three different crossover operators, i.e., single-point [38],
chaotic crossover [40], and reduced surrogate [41], [42] are
utilized. Single-point [38] has significant results to solve
many computationally hard problems. It has shown better
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Algorithm 1 ACGA Based RF
Input: Max population (M ), AS , iterative threshold (IT ), No.

of crossovers (C), and No. of fitness evaluations (FE)
Output: Optimized values for RF
1: P← init_P(M)
2: Initialize rW , pL, nRIT×C , and nPIT×C .
3: P̂ = p1, p2, . . . , pC ← init_A(C)
4: nFE ← 0 and k ← 0
5: Pδ ← φ

6: while nFE < FE do
7: for i = 1 to M/2 do
8: av← init_R (̂P)
9: Two offsprings are selected as parents: Op
10: Oc← init_C(Op, av)
11: Oc← init_M(Oc )
12: nFE ← nFE + 2
13: [rW , pL]← init_CA(Op, Oc)
14: Add Oc to Pδ
15: end for
16: k← k + 1
17: Update rW to k th row of nRIT×C
18: Update pL to k th row of nPIT×C
19: if k = IT then
20: P̂← init_A( nRIT×C , nPIT×C )
21: k = 0
22: end if
23: R← P ∪ Pδ
24: P← init_S(R)
25: Assign non-dominated offsprings in P to TP
26: Optimized values← TP
27: end while
28: return Optimized values

computational speed compared to the existing crossover oper-
ators [37].

Reduced surrogate [41], [42] can avoid unnecessary
crossover operations when parents have similar offspring.
Initially, it evaluates parents and forms a group of crossover
points where both parents have different genes. In the absence
of such a crossover point, no crossover operator is imple-
mented. Chaotic crossover [40] can obtain a better converged
and distributed group of Pareto-optimal offspring.

C. PENALTY AND REWARD
Penalties and rewards are allocated to offsprings by utilizing
two matrices namely pL and rW as:

rW = [0 . . .0]1×C (2)

pL = [0 . . .0]1×C (3)

Pareto optima among the offsprings is used to modify
rW and pL.

Algorithm 2 Credit Allocation (init_CA ())
Input: Parents (ρ), Children (δ), crossover selected using

init_A (q)
Output: rW , pL [nd , ds] ← init_D(ρ) // ds and nd define

dominated and non-dominated offsprings, respectively.
1: Dominated parent (assume ρ1 ≺ ρ2).
2: if ds 6= φ then
3: for i = 1 to 2 do
4: if ρ1 ≺ δi then
5: pLq← pLq + 1
6: else
7: rWq← rWrWq + 1
8: end if
9: end for
10: else
11: // If parent is non-dominated.
12: for i = 1 to 2 do
13: if ρ1 ⊀ δi ρ2 ⊀ δi then
14: rWq← rWrWq + 1
15: else
16: pLq← pLq + 1
17: end if
18: end for
19: end if
20: P← init_P (M)
21: return Optimized values for RF

1) PARENT IS NON-DOMINATED
Pareto optima is evaluated between child and respective par-
ent offsprings. If child offsprings are dominated by parents,
then append pLq by 1, otherwise append rWq by 1. The
pseudocode of updation of penalty and reward is depicted
in Algorithm 2.

2) DOMINATED PARENT
If parent 1 (ρ1) is dominated by parent 2 (ρ2), then pareto
optima of each child offspring is compared with ρ2. If child
offspring is dominated by ρ2, then append pLq by 1.
Otherwise, update rWq by 1.

D. UPDATION OF ADAPTIVE CROSSOVER SELECTOR
AS is utilized to update the crossover selection probabilities.
During evolution process, it is implemented after every IT
steps (refer [43]). Two matrices, i.e., nPIT×C and nRIT×C
are used to hold the values of pL and rW , respectively.
Recently updated IT ’s pL and nR values are utilized tomodify
AS . To evaluate the probability for qth (q = 1, 2, . . . ,C)
crossover, addition of qth column is utilized (refer [43]).

V. PERFORMANCE ANALYSIS
To analyze the efficiency of proposed model, health-related
attributes are collected from [8], [34], [44], [45]. It mainly
consists of attributes such as age, sex, location, fever, skin
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FIGURE 2. Accuracy and loss analysis of the deep learning-based severity classification of Chikungunya
disease.

rashes, and joint pain. It is collected for approximately
10000 users. Around 1805 users are at no risk while 3890 are
at normal risk and 4305 are at high risk. The acquired data
is stored in cloud storage and is used for recognition by an
optimized RFmodel. ACGA-RF is compared with J48, SVM,
ANN, RF, adaptive neuro-fuzzy inference system (ANFIS),
PANFIS [10], and deep learning (DL).

To implement DL model, various layers (i.e., feature
input layer, fully connected layer, batch normalization layer
[46], [47], ReLU layer [46], [47], softmax layer [46], [47],
and classification layer) are utilized. For normalizing the
input data, Z-score normalization [48] is used. Minibatch
size is set to be 8. Adam [49] a stochastic gradient descent
optimizer is used to achieve the better convergence of
DL model.

A. TRAINING ANALYSIS
Figure 2 shows the accuracy and loss analysis of the deep
learning-based severity classificationmodel for Chikungunya
disease. It clearly shows that the deep learning achieves
significantly better convergence speed. It achieves 98.3%
validation accuracy, therefore, least affected by the impact of
over-fitting as training accuracy is 100%.

The performance of RF achieves the best training and val-
idation accuracy values are 99.5% and 97.6%, respectively.
Although it shows remarkable results, the performance of
the proposed approach is still far from the optimal results.
It shows an over-fitting problem as there is a high difference
between training and validation accuracy values. The per-
formance of ACGA-RF model achieves the best training and

TABLE 4. Confusion matrix analysis among the proposed ACGA-RF, DL,
GA-RF, PSO-RF, and RF models.

validation accuracy values are 100.0% and 99.6%, respec-
tively. Thus, ACGA-RF model achieves remarkable results
than both deep learning and RF models. Also, ACGA-RF
is least affected by the over-fitting issue as there is only a
0.4% difference between the training and validation accuracy
which are 1.7 and 1.9 for deep learning and RF, respec-
tively. Also, ACGA-RF shows an enhancement in validation
accuracy over deep learning and RF as 1.3% and 2.0%,
respectively.

B. CONFUSION MATRIX ANALYSIS
To evaluate the performance of ACGA-RF, confusion matrix
analyses are also achieved. Table 4 depicts the confu-
sion matrix analysis proposed ACGA-RF, RF, and deep
learning (DL) models. It is found that RF achieves the testing
accuracy of 97.54%. It is found that the deep learning (DL)
model achieves the testing accuracy of 98.31%. DL shows an
average improvement of 0.77% over RF model. It is found
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that ACGA-RF achieves an accuracy of 99.43%. Thus, the
proposed ACGA-RF achieved an average improvement of
1.89% and 1.12% over RF and deep learning-based severity
classification models, respectively.

C. COMPARATIVE ANALYSIS
Boxplot and ANOVA are used for statistical analysis. The
hypotheses for every performance measure can be defined as:{

H0 µM1 = µM2 = . . . . = µM7,

HA Means are not equal.
(4)

where µMi shows various severity classification models for
Chikungunya disease. M7 shows the proposed ACGA-RF.
H0 and HA define the null and alternate hypotheses, respec-
tively. ANOVA table consists of various attributes such as
a sum of squares (SS), degrees of freedom (df ), the mean
sum of squares (MS), F-statistics (F), and P-value (P). If P
value of F is lesser than the level of significance, then we
can reject H0) and conclude that the models are significantly
different from each other.

FIGURE 3. ANOVA analysis of severity classification models for
Chikungunya disease in terms of testing accuracy.

FIGURE 4. ANOVA analysis of severity classification models for
Chikungunya disease in terms of testing sensitivity.

FIGURE 5. ANOVA analysis of severity classification models for
Chikungunya disease in terms of testing specificity.

Figures 3 - 6 show thatHA is accepted for all the considered
performance metrics as the evaluated p − values are lower
than 0.01. Thus, the performance of different models is sig-
nificantly different from each other. But, it is not possible

FIGURE 6. ANOVA analysis of severity classification models for
Chikungunya disease in terms of testing F-measure.

FIGURE 7. Accuracy analysis of ACGA-RF model.

FIGURE 8. F-measure analysis of ACGA-RF model.

to find which technique outperforms the others. Thus, the
boxplots are obtained to evaluate which technique performs
significantly better than the others (see Figures 7 to 10).

Figure 7 demonstrates the accuracy analysis among
ACGA-RF and the existing recognition Chikungunya dis-
ease recognition models. It is clearly shown that ACGA-RF
achieves remarkably significant and consistent accuracy val-
ues. Compared to the existing Chikungunya disease recogni-
tion models, ACGA-RF achieves 1.3822% improvement in
terms of accuracy.

Figure 8 shows F-measure analysis among ACGA-RF
and the existing Chikungunya disease recognition models.
ACGA-RF outperforms the existing Chikungunya disease
recognition models by an average improvement of 1.4145%.
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FIGURE 9. Specificity analysis of ACGA-RF model.

FIGURE 10. Sensitivity analysis of ACGA-RF model.

Figure 9 shows the specificity analysis among the existing
models and the proposed Chikungunya disease recognition
model. ACGA-RF achieves a 99.21% (median) value, which
is significantly better than the competitive models by an aver-
age improvement of 1.3972%. Therefore, ACGA-RF can effi-
ciently diagnose normal risk Chikungunya disease-infected
patients. Figure 10 shows the sensitivity analysis among the
existing models and proposed Chikungunya disease recog-
nition model. ACGA-RF achieves 99.24% (median) value,
which is significantly better than the competitive models
by 1.4172%. Therefore, ACGA-RF can efficiently diagnose
the high risk Chikungunya disease patients.

It is found that ACGA-RF takes on an average of 1 hour
36 minutes during the training process. During the testing
process, it takes only 2.746 minutes to achieve the results.
Additionally, ACGA-RF provides the testing results on an
average of 1.674 seconds for a single patient. Therefore,
ACGA-RF can be used for real-time applications.

D. DISCUSSION
Table 5 shows the comparison among the proposed model
with state-of-the-art machine learning and deep learning
models. It is found that in [8], J48 was utilized for severity

TABLE 5. Comparative analysis among the proposed ACGA-RF, DL, and
state-of-the art models.

classification of Chikungunya disease. It achieved the sensi-
tivity, specificity, F-measure, and accuracy values as 0.935,
0.965, 0.827, and 92.7865, respectively. Fuzzy-C means
(FCM) [9] achieved the sensitivity, specificity, and accuracy
values as 0.867, 0.888, and 0.934, respectively. PANFIS [10]
achieved sensitivity, specificity, F-measure, and accuracy
values as 0.9578, 0.9787, 0.9431, and 0.9871, respectively.
DL based Chikungunya diagnosis model achieved sensitiv-
ity, specificity, F-measure, and accuracy values as 0.9831,
0.9763, 0.9874, and 0.9818, respectively. Compared to
these models, ACGA-RF achieved a sensitivity, specificity,
F-measure, and accuracy values of 0.9943, 0.9905, 0.9968,
and 0.9936, respectively. Therefore, the proposed ACGA-RF
achieved significantly better results than the existing models
in terms of accuracy, specificity, sensitivity, and F-measure by
1.3822%, 1.3972%, 1.4172%, and 1.4145%, respectively.

VI. CONCLUSION
In this paper, a cloud-based CPS is designed and implemented
for the recognition of Chikungunya disease. The proposed
system is divided into two main categories, i.e., physical
space and cyberspace. Once, the data related to user-health
are collected, it is stored in the cloud sub-system layer.
An evolving RF model was proposed for the severity classifi-
cation of Chikungunya disease by using ACGA. ACGA can
efficiently optimize RF architecture to achieve better results
with better computational speed. The comparative analysis
demonstrates that ACGA-RF achieves significantly better
testing performance than the existing models in terms of
accuracy, specificity, sensitivity, and F-measure by 1.3822%,
1.3972%, 1.4172%, and 1.4145%, respectively. Thus, the
proposed Chikungunya disease recognition model is benefi-
cial for real-time medical applications.
In near future, the deep transfer learning models can be

used to obtain more efficient results. Further novel meta-
heuristic techniques can be designed to efficiently tune the
deep learning architectures. Also, the proposed model can be
applied to other kinds of datasets.
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