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A comprehensive study of long-term skeletal changes after

spinal cord injury in adult rats

Tiao Lin1,2*, Wei Tong1,3*, Abhishek Chandra1, Shao-Yun Hsu4, Haoruo Jia1,5, Ji Zhu1, Wei-Ju Tseng1, Michael A Levine6,
Yejia Zhang1,7, Shi-Gui Yan8, X Sherry Liu1, Dongming Sun4, Wise Young4 and Ling Qin1

Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment.
Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic
chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical
changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344
male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae,
and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery
rats for micro-computed tomography (mCT), micro-finite element, histology, and serum biochemical analyses.
At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the
metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much
milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae
but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and
supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and
increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on
bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic
stage of SCI.
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INTRODUCTION
Osteoporosis is a well-known secondary complication of

spinal cord injury (SCI).1–2 Shortly after the injury, sublesional

bone density and mass decline rapidly and linearly. This is

particularly deleterious to the cancellous bone located in

the metaphyseal-epiphyseal area of the distal femora and

proximal tibiae, which experiences a 1%–4% per month

bone loss in the first 6–12 months after SCI.3–5 This rate is

4-, 10-, and 30-fold greater than those observed during

microgravity, prolonged bed rest, and early menopause,

respectively. Hence, severe osteoporosis, with at least a

40% reduction in bone mineral content, is common in SCI

patients.6 Studies in patients demonstrate that serum or urine

levels of bone resorption markers, such as type I collagen C-

telopeptide and N-telopeptide, increase within 2 weeks

post-SCI and reach extremely high levels within 2–4 months.7

On the other hand, bone formationmarkers are at normalor

slightly above normal levels during this acute phase.7–8

These data suggest that excessive bone resorption is the

major contributor for the rapid bone loss in the acute phase.

During the chronic phase that begins 1–2 years after

injury, bone mass reaches a nadir at a very low level9–10

but bone loss continues.11 As a result, 50% of SCI patients

will sustain a low-impact or osteoporotic fracture at some
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point following their injury.4 Minor stress or trauma, such as

transfers, range of motion exercises, bending, or minor

falls, can cause a pathological fracture. These sublesional

fractures are difficult to treat and are often associated

with delayed union and nonunion.12–13 In addition to lim-

iting mobility and predisposing to skin pressure ulcers, frac-

tures and their management might trigger severe

hypertensive crisis due to autonomic dysreflexia.

To date, there have been many studies using the rat SCI

model to understand the mechanisms of SCI-induced

bone damage and to explore possible treatments.

However, there are several limitations associated with

the previous studies that employed the SCI model, which

reduce their potential clinical relevance. First, most of the

studies used adolescent rats ranging from 4 to 8 weeks of

age. Morse et al. have demonstrated that SCI also

damages the growth plates of long bones in young rats

(7 weeks old) by disorganizing the chondrocyte columnar

structure, decreasing chondrocyte number, and acceler-

ating chondrocyte apoptosis.14 This growth plate arrest is

well correlated with clinical cases of children with SCI who

have stunted bone growth below the injury site.15

However, the average age of human subjects at the time

of SCI is 43 years, when growth plates have been closed for

a long time and bone mass has passed its peak amount.

Therefore, it should be more appropriate to perform

experiments on adult rats to minimize the confounding

factor of longitudinal bone growth. Secondly, most pre-

vious studies focused on analyzing bone changes at the

acute stage. Because SCI is a lifelong condition, it would

be most useful to delineate bone structural and cellular

changes during the chronic stage of SCI and to invest-

igate potential therapies that might improve bone

strength at this stage. Lastly, there have been few and

conflicting animal data characterizing the SCI damage

on supralesional bones, particularly at the chronic stage.

Besides disuse and bone denervation, other systemic fac-

tors, such as hormonal modifications, may also play piv-

otal roles in the development of osteoporosis after SCI.2 To

date, the clinical outcome of SCI on forearm bone mass

remains uncertain.16–18

To prevent rapid bone loss, hypercalciuria, and some-

times hypercalcemia after SCI, antiresorptive drugs, such

as bisphosphonates, are frequently administered to reduce

high bone resorption. While these drugs decrease bone loss

in SCI patients, they have not been shown to increase BMD

in any skeletal sites tested.3,19–20 In addition, long-term use

of bisphosphonates is associated with atypical femur frac-

tures, which might worsen the condition of SCI patients.

Mechanical loading, such as weight-bearing and func-

tional electrical stimulation (FES), is promising if applied dur-

ing the early stage of SCI but its effect at the later stage is

unknown, with minor or no bone benefits reported.21–22

To delineate the damaging effect of SCI on the entire

skeleton in a clinically relevant setting, we performed a

comprehensive analysis of long-term structural and mech-

anical changes in axial and appendicular bones in adult

male rats after SCI. Our study revealed site-specific effects

of SCI on bone and demonstrated sustained inhibition of

bone formation and elevation of bone resorption at the

chronic stage of SCI. These results provide mechanistic

insight for developing new effective treatments for SCI-

induced severe osteoporosis.

METHODS
SCI surgery and tissue harvest

All animal studies were reviewed and approved by the

Institutional Animal Care and Use Committees (IACUC) at

Rutgers University and the University of Pennsylvania. Four-

month-old male Fischer 344 rats (Taconic, Hudson, NY, USA,

n 5 5) were anesthetized by isoflurane and their back skin

was incised at the mid-line. Muscle was sharply dissected

from the spinal column to expose the T9–10 dorsal pro-

cesses. After cutting the dorsal intravertebral ligament, a

T9–10 laminectomy was used to expose the T13 cord. Rats

were then moved to a New York University Impactor where

their T13 spinal cord received modest injury delivered by a

10-g rod dropped from a 25 mm height. Muscle and skin

were then closed with stitches and stainless steel clips,

respectively. Post-surgery, manual bladder expression was

performed 1–2 times per day throughout the entire experi-

ment. The control group consisted of age- and gender-

matched Fischer 344 rats (n 5 6). Sixteen weeks later, rats

were weighed, subjected to cardiac puncture for blood

collection, and perfused with 4% paraformaldehyde

(PFA). Sublesional bones, including femurs and tibiae, and

supralesional bones, including fourth lumbar vertebrae (L4)

and humeri, were collected and fixed further in 4% PFA for

subsequent measurements. Before fixation, the full lengths

of long bones were measured by a Vernier caliper.

Evaluation of bone microarchitecture by micro-

computed tomography

All bones were scanned by a compact fan-beam-type

vivaCT40 (Scanco Medical AG, Bassersdorf, Switzerland)

at a 15 mm nominal voxel size. The scanned and analyzed

areas of each type of bone are summarized in Table 1. All

images were first smoothed by a Gaussian filter (sigma 5

1.2, support 5 2.0) and then thresholded corresponding to

392.1 (trabecular bone) and 582 mgHA?cm23 (cortical

bone). Three-dimensional analyses were performed to

calculate trabecular parameters, such as trabecular volu-

metric bone mineral density (vBMD), bone volume fraction

(BV?TV21), trabecular thickness (Tb.Th), trabecular number

(Tb.N), trabecular separation (Tb.Sp), and structure model

index (SMI), and cortical parameters, such as cortical
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BMD, cortical area (Ct.Ar), cortical thickness (Ct.Th), peri-

osteal perimeter (Ps.Pm), endocortical perimeter (Ec.Pm),

porosity, and polar moment of inertia (pMOI) as described

by Bouxsein et al.23

Trabecular bone stiffness was calculated for humeri,

femora, and L4 vertebrae based on thresholded micro-

computed tomography (mCT) images as previously

described.24 Briefly, microstructural finite element (mFE)

models were generated by converting each bone voxel

to an 8-node brick element. Bone tissue was modeled as

an isotropic, linear elastic material with a Young’s modulus

of 15 GPa and a Poisson’s ratio of 0.3. A uniaxial compres-

sion was applied along the axial direction of the model and

the model was subjected to a linear elastic analysis to

determine the bone stiffness.

Bone histology analysis

After mCT scans, right tibiae were decalcified and pro-

cessed for paraffin sections. Five-mm longitudinal sections

were stained either by hematoxylin and eosin (H&E) for

counting the number of cuboidal and plump bone lining

osteoblasts, or by tartrate-resistant acid phosphatase

(TRAP) assay kit (Sigma-Aldrich, St. Louis, MO, USA) for

counting the number of TRAP-positive multinucleated

osteoclasts within the secondary spongiosa. All images

were captured by Nikon Eclipse 90i and quantified using

Bioquant Osteo Software (Bioquant Image Analysis,

Nashville, TN, USA).

Serum chemistry

Blood was collected via cardiac puncture at euthanasia

and left at room temperature for at least 30 min before

centrifuging at 200 3 g for 10 min to separate serum.

Serum calcium levels were measured by Calcium

Colorimetric Assay (Sigma-Aldrich). Osteocalcin and

TRACP 5b level were determined by Rat Osteocalcin EIA

Kit (Biomedical Technologies, Stoughton, MA, USA) and

RatTRAPTM Assay (Immunodiagnostic Systems, Scottsdale,

AZ, USA), respectively.

Statistics

Data are expressed as means 6 standard error (SEM) and

analyzed by unpaired, two-tailed Student’s t-test for com-

parison between control and SCI groups using Prism 5 soft-

ware (GraphPad Software, San Diego, CA, USA). Values of

P , 0.05 were considered statistically significant.

RESULTS
General observations

Initial body weight was the same among control (308 6 15

g) and SCI (305 6 14 g) groups. Sixteen weeks after surgery,

the weight of SCI rats (289 6 15 g) was 30% (P , 0.001) lower

than that of controls (417 6 8 g). Both sublesional and

supralesional long bone lengths were significantly affec-

ted in SCI rats compared to controls (femur: control 41.5 6

0.2 mm, SCI 37.8 6 0.9 mm, P , 0.01; humerus: control

31.6 6 0.2 mm, SCI 29.1 6 0.5 mm, P , 0.01). These results

suggest that SCI impairs normal weight gain and longit-

udinal bone growth.

Bone microarchitectural impairment in sublesional

extremities after SCI

In SCI patients, the most severe bone loss occurs at the

knee joint, including both distal femur and proximal tibia.

There are three types of trabecular bone within this region:

primary and secondary spongiosa in the metaphyseal

area and subchondral trabecular bone in the epiphyseal

area. All three types of bone are formed through endo-

chondral ossification. During development, the two meta-

physeal sites are formed within the primary ossification

center and the epiphyseal site is formed within the sec-

ondary ossification center. While most previous studies

focused on analyses of trabecular bone in the secondary

spongiosa, there are very few reports describing the

changes in trabecular bone at the other two sites under

physiological and pathological conditions. To gain

detailed knowledge about SCI damage on bone in the

knee joint, all three sites were scanned by mCT at a high

resolution at 16 weeks post-surgery. At the distal femoral

site, we observed that the most drastic bone loss occurred

in the secondary spongiosa immediately followed by the

primary spongiosa, while, surprisingly, there was only mod-

est bone loss in the subchondral region (Figure 1a).

Specifically, 3D analysis of mCT data revealed striking 54%

and 65% reductions in vBMD and BV?TV21, respectively, in

the secondary spongiosa from the SCI group compared to

those from controls (Figure 1b). This was mainly due to sig-

nificant decreases in Tb.N (36%) and Tb.Th (26%), and an

Table 1. mCT-analyzed areas for measuring trabecular and cortical structural parameters in appendicular and axial bones at 16 weeks after SCI

Bone Scanned area Analyzed area

Femur Subchondondral bone 2–3 mm below the distal growth plate within the secondary ossification center

Femur Primary spongiosa 1–2.5 mm above the distal growth plate within the primary ossification center

Femur Secondary spongiosa 2.5–4 mm above the distal growth plate within the primary ossification center

Femur Mid-shaft cortical bone 0.5 mm above to 0.5 mm below the midline of a femur

Humerus Secondary spongiosa 0.75–2.25 mm below the proximal growth plate within the primary ossification center

Humerus Mid-shaft cortical bone 4.5–5.25 mm below the proximal growth plate within the primary ossification center

L4 vertebra Trabecular bone 1.5 mm below the top growth plate to 1.5 mm above the bottom growth plate
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increase in Tb.Sp (73%). Furthermore, a 2.9-fold increase in

SMI suggests that SCI impairs the structural integrity of tra-

becular bone. In the primary spongiosa, similar but rela-

tively smaller reductions in vBMD (47%), BV?TV21 (56%),

Tb.N (34%), Tb.Th (30%), and Tb.Sp (70%), and an increase

in SMI were observed in SCI rats compared to controls

(Figure 1c). By contrast, much milder trabecular bone

damage (216% in vBMD, 219% in BV?TV21, 26% in Tb.N,

213% in Tb.Th, 17% in Th.Sp, and 169% in SMI) was

detected in the subchondral area (Figure 1d), implying

that the extent of trabecular bone loss induced by SCI is

site-specific even within the same bone. Similar patterns of

trabecular bone damage were also observed in the prox-

imal tibial region (data not shown).

Next, we analyzed cortical bone structural parameters

at the femoral mid-shaft. As shown in Figure 2, cortical

BMD remained the same after SCI. However, compared

to those from the control group, bones from the SCI group

were slimmer with 14% and 8% reductions in Ps.Pm and

Ec.Pm, respectively, resulting in a 16% decrease in Ct.Th

and a 30% decrease in Ct.Ar. These structural changes

led to a drastic 45% reduction in pMOI, a parameter

reflecting the bending strength of cortical bone.

The effects of SCI on bone microarchitecture in forelimbs

In addition to the paralysis of trunk and lower extremities

below the injury site, SCI causes remarkable neuronal and

hormonal changes throughout the entire body, which

might affect the bones in the upper extremities. To explore

this in our SCI rat model, the supralesional proximal humeri

were scanned and analyzed bymCT. We did not detect any

differences in trabecular bone within the subchondral site

and the primary spongiosa after SCI (Figure 3a). In the sec-

ondary spongiosa, a trend of structural impairment was

observed, with 15%, 20%, 21%, and 4% decreases in vBMD,

BV?TV21, Tb.N, and Tb.Th, respectively, and a 29% increase in

Tb.Sp (Figure 3b) in the SCI group compared to controls, but

none of the changes reached statistical significance. By

contrast, we observed significant changes in the mid-shaft

cortical bone of humeri in SCI rats (Figure 3c and 3d). Bone

perimeters, Ps.Pm and Ec.Pm, decreased by 9% and 12%,

respectively, in the SCI group compared to controls, but
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Figure 1. SCI causes severe trabecular bone loss and structural deterioration in the metaphyseal area but relatively moderate damage in the sub-
chondral bone area in distal femur. (a) Representative longitudinal mCT images of distal femurs in control and SCI rats at 16 weeks after injury. Brackets
define the regions of three types of trabecular bone: subchondral trabecular bone (STB), primary spongiosa (PS), and secondary spongiosa (SS) in the
metaphysis. (b) mCT measurement of trabecular structural parameters in the secondary spongiosa area. (c) mCT measurement of trabecular structural
parameters in the primary spongiosa area. (d) mCT measurement of trabecular structural parameters in the subchondral trabecular area. *P , 0.05; **P
, 0.01; ***P , 0.001 vs control (con).
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bone thickness (Ct.Th) increased by 9%. A small but signifi-

cant increase in cortical BMD (3%) was also detected after

SCI. Overall, those changes led to a trend of decrease in

bending strength after SCI (a 17% decrease in pMOI, P 5

0.056). Taken together, our results indicate that SCI also has

harmful effects on the mobilized forelimbs, albeit to a much

lesser extent compared to affected immobilized hindlimbs.

SCI is detrimental to vertebral trabecular bone

Clinical studies describe conflicting conclusions about

whether sublesional axial bones are as severely affected

by SCI as appendicular bones.25–26 In our study, SCI rats lost

significant amounts of trabecular bone in the sublesional

L4 vertebral body, particularly within the central region

(Figure 4a). Trabecular vBMD and BV?TV21 in L4 from SCI

rats were 31% and 37%, respectively, less than those

from controls, and were accompanied by remarkable

decreases in Tb.N (16%) and Tb.Th (27%) as well as

increases in Tb.Sp (32%) and SMI (Figure 4b).

The site-specific effect of SCI on trabecular bone strength

mFE analysis was performed to measure the integrated

mechanical competence of trabecular compartments

in femur, humerus, and vertebra (Figure 5). Strikingly, the
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measurement of trabecular structural parameters in the secondary spongiosa area. (c) Representative cross-sectional mCT images of humeral mid-shaft
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loss of trabecular bone and deterioration of bone structure

led to an almost complete diminishment of bone stiffness

(91%) in the femoral secondaryspongiosafromSCI ratscom-

pared to controls. In line with the above results that SCI

causes a trend of trabecular bone impairment in humerus,

we detected only a non-significant decrease in trabecular

bone stiffness in this region after SCI. However, strong reduc-

tion in bone stiffness (52%) was observed in L4 vertebra.

Bone histology and serum biochemistry analysis

To understand the underlying cellular mechanisms of long-

term SCI damage to bone, we performed histological ana-

lyses on right tibiae. At 16 weeks post-surgery, osteoblast

number was 71% less and osteoclast number was 3.7-fold

more than those in controls (Figure 6a). This imbalance

between bone-forming and bone-resorbing cells was fur-

ther attested by a decreased serum level of bone-forma-

tion marker (osteocalcin) and a trend of increased amount

of resorption marker (TRAP; Figure 6b). Serum calcium level

is usually elevated at the acute SCI stage due to the hyper-

activation of osteoclasts (14). However, it returned to nor-

mal in SCI rats at this chronic stage (Figure 6b).

DISCUSSION
Bone is a dynamic tissue that undergoes constant remo-

deling, and coordination between osteoblastic and

osteoclastic activities is required for optimal bone home-

ostasis. After SCI, the interaction between osteoblasts and

osteoclasts favors bone resorption, leading to severe bone

loss particularly in the sublesional appendicular bones and

increased risk of low impact fractures in these bones. In this

study, we used an adult rat T13 contusion model to repro-

duce the effects of SCI in mature patients and performed

a comprehensive analysis of the long-term effects of SCI

on bone structure and mechanics at multiple clinically rel-

evant skeletal sites. Our high resolution mCT scans revealed

that the most severe trabecular bone loss and structural

deterioration occurred in the metaphyseal area of tibia

and femur. By contrast, more modest but significant

damage occurred in vertebral trabecular bone, and only

a trend of trabecular bone loss was noted in humerus.

Further mFE analysis confirmed this sequence in terms of

the degree of mechanical property changes. At cortical

sites, SCI does not induce bone demineralization but

reduces bone amount and strength in both sub- and

supralesional bones. Many factors, including local ones

(immobilization and bone denervation) and systemic

ones (hormonal and metabolic changes), contribute to
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area from control and SCI rats at 16 weeks after injury. (b) Biochemical
assays of osteocalcin, TRAP, and serum calcium level in control and SCI
groups. *P , 0.05; ***P , 0.001 vs con.
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SCI-induced bone damage. Our data indicate that tra-

becular bone is primarily sensitive to local factors while

cortical bone is also sensitive to systemic factors.

Remarkably, we found that SCI has distinct site-specific

effects on trabecular bone even within the same appendi-

cular bone. In mammals, long bone is developed through

endochondral ossification and eventually has two ossifica-

tion centers.27 The primary ossification center is formed in

the center of diaphysis at the embryonic stage by convert-

ing the hypertrophic cartilage in the growth plate into tra-

becular bone and marrow space. It consists of primary

spongiosa, which is directly connected with the growth

plate and is mainly shaped by bone modeling during

longitudinal growth, and secondary spongiosa, which is

derived from the primary spongiosa by a bone remodeling

process. Shortly after birth, the epiphyseal cartilage is exca-

vated by canals invaginated from the perichondrium to

form the secondary ossificationcenter. The trabecularbone

within thiscenter is anatomically located below the articular

cartilage and is termed subchondral bone. Previous studies

have principally examined pathological effects of SCI on

trabecular bone in the metaphyseal region, whereas no

studies have attempted to characterize the response of

subchondral bone. Surprisingly, we found that subchondral

bone is much more resistant to SCI damage than trabecular

bone in the metaphyseal area. Moreover, unlike the other

trabecular sites, where the bone loss is caused by both

trabecular thinning and loss of trabecular bone, the SCI-

induced subchondral bone loss occurs mainly through

decreasing Tb.Th with little loss of Tb.N. To our knowledge,

this is the first report delineating selective responses of

trabecular bone within different anatomical regions of the

same bone to the same injury. Further investigation will

be required to identify whether this is specific for SCI only

or represents a more general response to skeletal perturba-

tions and to define the functional mechanisms.

Because of complicated post-surgery care, the majority

of previous rodent studies examined bone phenotypes

shortly (i.e., usually within 3 weeks) after SCI.14,28–32 The

longest follow-up of bone phenotypes was 6 months after

SCI in young (6-week-old) male Sprague–Dawley rats by

Jiang et al.33 Similarly to our results, they reported a striking

76% reduction in BV?TV21 in tibial metaphysis and a rela-

tively milder 34% reduction in L4 vertebra at this chronic

stage. However, their densitometric analysis and mech-

anical testing did not detect any changes in distal radius

and humerus, respectively, leading to their conclusion that

SCI has a negligible effect on supralesional bones. The dis-

crepancy between our data and theirs on supralesional

appendicular bone can be attributed to differences in

rat strains (F344 vs Sprague–Dawley), type of SCI model

(contusion vs transection), outcome measurement (areal

BMD vs volumetric BMD), and animal age (4-month-old vs

6-week-old). While we found that adult SCI rats barely

gained weight or even lost weight after paralysis, adoles-

cent SCI rats almost doubled their body weight after 6

months.33 These data imply that SCI might have greater

systemic effects on adult rats than on young rats.

Currently, there is no conventional treatment for SCI-

induced osteoporosis at the chronic phase. Given the ex-

treme degree of bone loss following SCI, which far exceeds

that induced by other insults, such as estrogen defi-

ciency,34 neurological deficit,35 and mechanical unload-

ing,36 and the notable loss of osteoblasts at later stages,

antiresorptive agents such as bisphosphonates would

seem to be ineffective choices for treating bone loss at

chronic SCI. The great reduction (271%) in osteoblast num-

ber in tibial metaphysis revealed in our study suggests that,

in contrast to acute SCI when the osteoblast number and

activity are unaffected or even elevated,37 chronic SCI

almost completely eliminates the osteoblasts in the meta-

physeal region of tibia and femur. Therefore, in order to

restore bone mass, to repair micro-architectural damage,

and to reduce risk of fracture, anabolic treatments that

greatly stimulate new bone formation via promoting

osteoblast number and activity should be suitable ther-

apies for SCI patients at the chronic stage. The treatment

choices include teriparatide (recombinant human PTH1-

34), the only FDA-approved anabolic treatment for severe

postmenopausal osteoporosis,38 and monoclonal anti-

body against Sclerostin (Scl-Ab), which has shown potent

efficacy in patients with postmenopausal osteoporosis in a

phase 2 clinical trial.39 A recent patient study suggested a

trend of bone improvement after 1 year of teriparatide

injection together with gait training. However, it did not

reach statistical significance, likely due to the limited num-

ber of subjects.40 In contrast, the preclinical data with Scl-

Ab are very promising. Three weeks of Scl-Ab injections

immediately after SCI completely restored the trabecular

bone structure and cortical bone strength in rats.41

Our study has several limitations. First, we used age- and

gender-matched naive rats instead of sham-operated

rats as controls. According to our experience, sham

operation does not have detectable effects on rat beha-

vior and neuron functions and should not significantly

affect our conclusions. Second, unlike human subjects,

rats never cease longitudinal bone growth. As shown in

our recently published paper,42 at age of 8 months, rat

proximal tibial growth rate is still at 3 mm/day. Therefore,

we cannot completely exclude the confounding factor

of growth on the metaphyseal region, especially the prim-

ary spongiosa. Indeed, we still observed reduced bone

length in both femur and humerus. Applying a 3D image

registration approach we developed recently24 on in vivo

longitudinally scanned mCT images should further improve

the accuracy and significance of our data. Nevertheless,
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in terms of analyzing bone phenotypes and studying the

underlying mechanism, this adult rat model is much more

clinically relevant than young adolescent rats.

In conclusion, our comprehensive study has demon-

strated that chronic SCI has deleterious effects on the

entire skeleton, with the most severe bone loss and struc-

tural deterioration in the lower extremities followed by sub-

lesional vertebrae. The upper extremities also experience

bone damage but to a much lesser extent. Furthermore,

our finding of sustained inhibition of bone formation and

continuous elevation of bone resorption at the chronic

stage of SCI strongly suggest that anabolic treatments

should be vigorously pursued for promoting bone health

and preventing fractures in patients with chronic SCI.
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