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Novel EGFP reporter cell and mouse 
models for sensitive imaging and 
quantification of exon skipping
Yuko Hara1, Yoshitaka Mizobe1, Yukiko U. Inoue   2, Yasumasa Hashimoto1, Norio Motohashi   1, 
Yoshiaki Masaki3, Kohji Seio3, Shin’ichi Takeda   1, Tetsuya Nagata4, Matthew J. A. Wood5, 
Takayoshi Inoue2 & Yoshitsugu Aoki   1 ✉

Duchenne muscular dystrophy (DMD) is a fatal X-linked disorder caused by nonsense or frameshift 
mutations in the DMD gene. Among various treatments available for DMD, antisense oligonucleotides 
(ASOs) mediated exon skipping is a promising therapeutic approach. For successful treatments, 
however, it is requisite to rigorously optimise oligonucleotide chemistries as well as chemical 
modifications of ASOs. To achieve this, here, we aim to develop a novel enhanced green fluorescence 
protein (EGFP)-based reporter assay system that allows us to perform efficient and high-throughput 
screenings for ASOs. We design a new expression vector with a CAG promoter to detect the EGFP 
fluorescence only when skipping of mdx-type exon 23 is induced by ASOs. Then, an accurate screening 
was successfully conducted in C57BL/6 primary myotubes using phosphorodiamidate morpholino 
oligomer or locked nucleic acids (LNA)/2′-OMe mixmers with different extent of LNA inclusion. We 
accordingly generated a novel transgenic mouse model with this EGFP expression vector (EGFP-mdx23 
Tg). Finally, we confirmed that the EGFP-mdx23 Tg provided a highly sensitive platform to check the 
effectiveness as well as the biodistribution of ASOs for exon skipping therapy. Thus, the assay system 
provides a simple yet highly sensitive platform to optimise oligonucleotide chemistries as well as 
chemical modifications of ASOs.

Duchenne muscular dystrophy (DMD) is a highly common and fatal X-linked disorder caused by nonsense and 
frameshift mutations in the dystrophin (DMD) gene. No effective treatments are currently available for DMD; 
however, recently, several therapeutic approaches for DMD have been investigated1–3. Among them, exon skip-
ping therapy is a highly advanced approach with great potential to effectively treat DMD. This approach uses anti-
sense oligonucleotides (ASOs) to modulate the pre-mRNA splicing of DMD transcripts to restore the disrupted 
DMD reading frame. ASOs are designed to hybridise and mask the splicing signals of a target exon and thus 
prevent its inclusion in the final mRNA by the splicing machinery, thereby leading to the synthesis of a shorter, 
but partially functional protein4–9 (Supplementary Fig. S1a,b).

Eteplirsen, which targets DMD exon 51, was conditionally approved by the US Food and Drug Administration 
(FDA) as the first antisense drug for the treatment of DMD patients in September 2016. In addition, there are 
many candidates ASOs for exon skipping therapy, including those targeting other exons (https://clinicaltrials.
gov/). To achieve efficient dystrophin protein restoration due to exon skipping, the selection of appropriate lead 
oligonucleotide chemistries and chemical modifications in addition to sequences of ASOs is vital10–16. Generally, 
ASO candidates are screened by injecting them into the mouse skeletal muscles, then collecting these tissue sam-
ples to evaluate the exon skipping by reverse transcription PCR (RT-PCR), and finally confirming the recovery 
of DMD expression by western blotting. However, these steps are often time-consuming and need considerable 
numbers of mice, which is not suitable for the rapid screening of multiple candidate drugs. Therefore, a simple 
and accurate primary screening method is required.
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Here, we designed a new ASO drug-screening system with an enhanced green fluorescent protein 
(EGFP)-based reporter vector with a CMV early enhancer/chicken β actin (CAG) promoter. In the reporter 
vector, exon 23 of Dmd with nonsense mutation same as mdx mouse is inserted into a split EGFP (EGFP-exon23/
pCAGGS) to detect the EGFP fluorescence, only when skipping of exon 23 with ASOs restores the EGFP-reading 
frame and expression of EGFP protein. By using the vector, we demonstrated that we could screen highly potent 
chemical modifications of ASOs based on the intensities of EGFP signal using a plate reader. With such an 
effective screening system, we revealed that we could precisely measure the exon skipping efficiency for can-
didate ASOs in a short time compared with the conventional method. We were also able to identify the opti-
mal LNA/2′-OMe mixmers with different extent of phosphorothioate modification to induce targeted exon 
skipping using this reporter system. We finally generated novel transgenic mice with the EGFP-based reporter 
(EGFP-mdx23 Tg mice) to successfully detect the biodistribution of ASOs in vivo. These results indicated the 
value of our system for the immediate screening of multiple candidate exon skipping drugs for DMD.

Results
Evaluation of mouse Dmd exon 23 skipping events by ASOs using our novel EGFP-reporter 
system in C57BL/6 primary myotubes.  We sought to develop a novel EGFP-mdx23/pCAGGS reporter 
vector to demonstrate the efficiency of specific ASOs for exon skipping. In this vector, the insertion of exon 23 
from the Dmd gene with a mdx-type nonsense mutation together with its two flanking introns within the EGFP 
transcript, leads to the disruption of the EGFP reading frame. When specific ASOs skip exon 23, EGFP expression 
should be restored (Fig. 1a). We assumed that the levels of EGFP expression were correlated with the efficiency of 
exon skipping both in vitro and in vivo.

We then introduced the EGFP-mdx23/pCAGGS vector into wild-type (WT) C57BL/6 primary myotubes; 
after 24 h, we transfected the myotubes with the phosphorodiamidate morpholino oligomer (PMO), a modified 
form of ASOs, to target exon 23 of the Dmd gene. Two days after PMO transfections, we measured EGFP fluores-
cence in WT primary myotubes by fluorescence microscopy (Fig. 1b). We accordingly found that the number of 
EGFP-positive cells was positively correlated with the concentration of EGFP-mdx23/pCAGGS vector plasmid 
(Fig. 1c). Next, we measured the EGFP fluorescence intensity in the cells using a plate reader. We revealed that the 
fluorescence intensity was positively correlated with the vector plasmid concentration, and there were significant 
differences in intensity between PMO-treated and untreated WT primary myotubes (Fig. 1d). Interestingly, the 
cells transfected with 0.015 pmol PMO showed the most vigorous fluorescence intensity among the groups.

Subsequently, we performed RT-PCR to confirm the level of exon 23 skipping induced by PMO and analysed 
the efficiency of exon 23 skipping using a microchip electrophoresis system, MultiNA. As the results, we could 
obtain bands with a length of 141 bp indicating the occurrence of exon 23 skipping, and also found that no 
skipped bands were detected in the untreated WT primary myotubes (Fig. 1e). We performed sequence analysis 
of the 141 bp band, in which the mdx-exon 23 cassettes were expected to be spliced out, and confirmed that the 
EGFP fragment contained the inserted sequence (Fig. 1f). Thereafter, we found that the calculated efficiency of 
exon skipping enhanced with increasing plasmid concentrations. There were significant differences in exon skip-
ping efficiency between the treated and the untreated myotubes.

Furthermore, the cells transfected with 0.015 pmol plasmids showed the highest exon skipping efficiency 
(Fig. 1g). These values were proportional to the fluorescence intensity of EGFP. EGFP fluorescence intensity, as 
measured using a plate reader, was found to be positively correlated with exon skipping evaluated by RT-PCR.

Screening results from LNA and 2′-OMe mixmers that target mouse Dmd exon 23 in C57BL/6 
primary myotubes.  To confirm the usefulness of this reporter system, we designed eight novel LNA/2′-OMe 
mixmer ASOs (each mixmer includes 0 to 8 LNAs), as well as two LNA/DNA mixmers as positive con-
trols (7 or 8 LNA)17 (Fig. 2a, Supplementary Fig. S2a–c). These mixmers had the same nucleotide sequences 
(5′-AACCTCGGCTTACCT-3′) with different extent of phosphorothioate modifications. We transfected each of 
the ten mixmers into C57BL/6 (WT) primary myotubes at a final concentration of 50 nM or 100 nM.

Two days after the transfection, we successfully detected EGFP fluorescence in mixmer-treated cells by flu-
orescence microscopy. On the other hand, we did not detect any EGFP fluorescence in cells without plasmid 
treatment (Fig. 2b). To assess the extent of mixmer-induced exon skipping, we measured the EGFP fluorescence 
intensity using a plate reader. The 15M_3L and 15M_4L mixmers showed significantly higher fluorescence inten-
sity compared with the other mixmers (Fig. 2c). As shown in Fig. 2a, the 15M_3L mixmer contained three LNAs, 
while 15M_4L contained four LNAs. This result suggests that exon skipping efficiency was not correlated to the 
number of LNAs. It was surprising that the 15M_3L mixmer contained three LNAs induced significantly higher 
exon skipping efficiency than other mixmers contained five to eight LNAs.

Next, we examined the efficiency of the 15M_3L and 15M_4L mixmers by reducing the concentration of each 
mixmer to investigate the sensitivity of our assay system. WT primary myotubes were treated with 0 nM, 12.5 nM, 
25 nM, 50 nM, or 100 nM of each mixmer; after 48 h, EGFP fluorescence intensity was evaluated by a plate reader 
(Fig. 2d, Supplementary Fig. S3a). The fluorescent intensity was consistent with the observation of fluorescence 
microscopy. Finally, we prepared total RNA samples from mixmer-transfected cells to determine the extent of 
exon 23 skipping in mRNA. The RT-PCR results showed that 15M_3L and 15M_4L induced exon skipping in a 
dose-dependent manner (Fig. 2e, Supplementary Fig. S3b).

Screening results from mixmer-based ASOs in EGFP-mdx23 Tg primary myotubes.  We then 
generated the EGFP-mdx23 Tg mice to examine the exon skipping efficiency of ASOs in vivo. We obtained five 
founder lines for EGFP-mdx23 Tg mice. After confirming the stable germline transmission of the transgene, we 
determined its copy number. As the results, we found that the line 2 harbours the most adequate copy number for 
further experiments (Supplementary Fig. S4a,b). We thus isolated EGFP-mdx23 Tg primary myotubes from the 
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Figure 1.  In vitro screening analysis using the mdx-exon23/enhanced green fluorescence protein (EGFP) 
vector. (a) The structure of the EGFP-exon 23 cassette to report dystrophin exon skipping is depicted: The 
EGFP gene is split into two regions, 5′-EGFP and 3′-EGFP, with the insertion of mouse dystrophin genomic 
region containing the exon 23 and neighbouring introns (Int 22 and Int 23). Skipping the exon 23 with antisense 
oligonucleotides (ASO) restores the EGFP open reading frame to express EGFP proteins. (b) Schematic 
diagram of in vitro experiments. (c) Representative images are showing the detection of EGFP expression by 
fluorescence microscopy. The cells in the left column are treated with increasing concentrations of the EGFP-
exon23/pCAGGS vector plasmid only. The cells in the right column are treated with 10 μM phosphorodiamidate 
morpholino oligomer (PMO) and the indicated concentrations of the EGFP-exon23/pCAGGS vector. Note 
that EGFP expression is only detected in the presence of PMO. Scale bar, 100 μm. (d) Average fluorescence 
intensity of EGFP is measured using a plate reader (n = 5 replicates per group). Data represent the mean ± 
SEM. **P < 0.01 and ***P < 0.001. (e) RT-PCR analysis for exon 23 skipping is developed by a microchip-
based capillary electrophoresis (MultiNA) system (n = 3 replicates per group). LM, lower marker dye; UM, 
upper marker dye. Noticeably, administration of PMO changes the transcripts from the vector. (f) Sequencing 
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line 2 mice, the copy number was 10 and examined the compositions of 15M_3L and 15M_4L, which showed the 
high skipping efficiency in WT primary myotubes. We simultaneously examined 15D_7L as an efficient ASO and 
15M_0L as an inefficient ASO. We transfected each of the four mixmers at 50 nM into isolated EGFP-mdx23 Tg 
primary myotubes and two days after the transfection, and we measured EGFP fluorescence in the myotubes by 
fluorescence microscopy (Fig. 3a).

Consequently, high proportions of EGFP-positive cells were observed after transfection with the 15M_3L or 
15M_4L mixmers, similar to the intensity observed in the positive control (15D_7L)-treated group. In addition, 
we reveal that a low proportion of EGFP-positive cells after transfection with 15M_0L (Fig. 3b). To evaluate the 
efficiency of mixmer-induced exon skipping of 15M_3L or 15M_4L, we measured EGFP fluorescence intensity 
using a plate reader (Fig. 3c). As the results, we found that the EGFP fluorescence intensity of the cells added with 
15M_3L or 15M_4L was significantly higher than that of not added with mixmer. Finally, we performed RT-PCR 
to confirm the efficiency of exon 23 skipping using the EGFP-primer pairs. We detected exon 23-skipped bands 
(141 bp) in both 15M_3L- and 15M_4L-treated cells (Fig. 3d), and the percentage of exon skipping for both mix-
mers was higher than that for 15M_0L (Fig. 3e). This result well correlates with our results of mixmer transfection 
in WT myotubes.

Investigation of exon skipping in vivo using EGFP-mdx23 Tg mice.  We next used the EGFP-mdx23 
Tg mice to assess the efficiency of exon skipping in vivo. To examine whether exon skipping could be detected in 
EGFP-mdx23 Tg reporter mice, we first intramuscularly injected PMO (20 μg) into the left TA muscles and saline 
into the right TA muscles as a control. We then evaluated exon skipping by using the In Vivo Imaging System 
(IVIS) on day 0, 2, and 7 (Fig. 4a). As a consequence, EGFP fluorescence in the PMO injection area increased in 
left TA muscles, while no changes were observed in the right TA muscles (Fig. 4b). We also observed significant 
differences in fluorescence intensity between tissues with and without PMO treatment at day 7 (Fig. 4c). As a 
control, we injected PMO or saline into WT mouse TA muscles; however, we found that the fluorescence signals 
were feeble in WT mice (Fig. 4d,e). To confirm that the induction of exon skipping occurred in TA muscles, 
we extracted RNA from the TA muscles and performed RT-PCR with primers flanking exons 22 and 25 of the 
Dmd gene (Fig. 4f), and successfully detected exon 23-skipped bands (648 bp) in PMO-treated TA muscles. We 
additionally performed RT-PCR using the extracted RNA to confirm the efficiency of exon 23 skipping using the 
EGFP-primer pairs and confirmed that the EGFP fragment contained the inserted sequence (Supplementary 
Fig. S5a,b).

Conversely, we detected only non-skipped bands (839 bp) in the saline-injected TA muscles. In addition, we 
confirmed via sequence analysis that the 648-bp band was missing exon 23 (Fig. 4g). Thus, we concluded that the 
levels of EGFP expression reliably reflected the efficiency of ASO in vivo.

Based on these results, we next performed a systemic injection of 640 mg/kg body weight of PMO to examine 
the induction of exon skipping using EGFP-mdx23 Tg mice. At 7 days after the systemic injection, we assessed 
exon skipping efficiency based on EGFP fluorescence in the heart, lung, diaphragm, liver, kidney, TA muscles, 
and GC muscles using the IVIS. Because EGFP has a detection wavelength close to that of erythrocytes, ex vivo 
analysis allowed us to evaluate EGFP fluorescence in each organ more accurately. EGFP fluorescence was virtually 
detected in the diaphragm, liver, kidney, TA, and GC of PMO-treated EGFP-mdx23 Tg mice, while almost no 
fluorescence was detected in the heart or lung (Fig. 4h). We additionally evaluated EGFP fluorescence in each 
organ and identified significant differences in fluorescence intensity between TA and GC muscles with and with-
out PMO treatment (Fig. 4i).

Discussion
Splice switching therapy using ASOs is one of the most promising approaches to treat DMD. By blocking abnor-
mal splice sites in the targeted exon, ASOs are able to correct an abnormal splicing pattern of the gene. Therefore, 
ASOs are used to induce the skipping of target DMD exon(s) to restore the correct reading frame. The identifica-
tion of effective ASOs capable of inducing exon skipping is a significant focus of research.

In this study, we developed a new EGFP-based reporter assay system to screen ASOs for DMD therapy. The 
mdx mouse, which has a nonsense mutation (C > T) in exon 23 of the Dmd gene, is a well-known DMD model. 
We targeted the exon 23 of the Dmd gene, which contains an mdx-type nonsense mutation (C > T) in exon 23, 
with our EGFP-based reporter to visualise and evaluate the efficiency of exon skipping.

EGFP is a bright, monomeric green fluorescent protein that is easily observable under a fluorescence micro-
scope in vitro. An EGFP reporter has been used injection study in mouse models18, however, it is not ideal for in 
vivo observations because of the increase in background noise due to its detection wavelength being similar to 
that of red blood cells and melanocytes. To overcome this limitation, we incorporated a CAG promoter into the 
vector, which is a ubiquitous and robust promoter from the chicken Ac gene that is frequently used to induce high 
levels of gene expression in mammalian expression vectors19–21. In this way, we successfully detected fluorescence 
signals in primary myotubes using a plate reader and evaluated exon skipping efficiency in EGFP-mdx23 Tg mice 
using an in vivo imaging system.

To confirm the usefulness of this screening system, we first transfected PMO, which targets exon 23, into 
mouse primary myotubes, and detected EGFP fluorescence using a fluorescence microscope and fluorescence 
intensity using a plate reader. Our data suggested that this assay system produced similar results to those obtained 

analysis of the 141-bp band detected by RT-PCR clarifies the exon skipping events by PMO. (g) Average exon 23 
skipping efficiency is summarised by a bar graph (n = 3 replicates per group). Data represent the mean ± SEM. 
****P < 0.0001.
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Figure 2.  In vitro analysis using model antisense oligonucleotide (ASO) mixmers. (a) Schematic representation 
of the positions of locked nucleic acid (LNA) and 2′-OMe in the 15-mer oligonucleotide used in this screening. 
Each circle represents one nucleotide; the grey circle indicates 2′-OMe, and the blue and black circles indicate 
LNA and DNA, respectively. (b) Fluorescence microscopy images of wild-type (WT) primary myoblasts 
treated with LNA and 2′-OMe or LNA and DNA mixmers at 50 nM or 100 nM. Scale bar, 100 μm. (c) Average 
fluorescence intensity of EGFP in untreated or treated cells with mixmer is measured using a plate reader 
and indicated by bar graphs (n = 3 replicates per group). Data represent the mean ± SEM. ***P < 0.001 and 
****P < 0.0001. (d) Average fluorescence intensity of EGFP in cells treated, as described below, is measured 
using a plate reader. Two lead mixmers, 15M_3L and 15M_4L, and two positive controls, 15D_7L and 15D_8L, 
are added at the indicated concentrations (0, 12.5, 50, 100 nM) (n = 5 replicates per group). Data represent 
the mean ± SEM. (e) Average exon 23 skipping efficiency of each mixmer is indicated by a line graph (n = 3 
replicates per group). Data represent the mean ± SEM.
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using conventional methods such as RT-PCR. Therefore, it should be suitable to measure EGFP fluorescence 
intensity with a plate reader to evaluate exon skipping efficiency. This has the advantage of no necessity of detach-
ing cells, extract RNA, and perform RT-PCR.

Next, we screened eight novel LNA/2′-OMe mixmer compounds as model compounds using this assay sys-
tem. Our results revealed that two mixmers, which contained three and four LNA molecules, respectively, showed 
efficient exon skipping similar to that of the positive control. Because LNA has a high melting temperature, it is 
known to have high binding activity with RNA. On the other hand, it is known that LNA shows hepatic toxicity; 
thus, it is essential to minimise the number of LNAs in mixmer ASOs22,23. Therefore, if we can reduce the number 
of LNA molecules while keeping a high exon skipping efficiency, the risks of hepatic toxicity will be significantly 
reduced. Interestingly, we found that exon skipping efficiency did not improve as the number of LNAs increased 
in our assay system. According to our results, the exon skipping activity of the mixmers containing three or four 
LNA molecules in our 15-mer ASO showed the highest activity. Thus, our assay system could also effectively 
screen chemically modified ASOs rapidly in vitro. Similar results are reported that the LNA/DNA mixmer com-
pounds have better efficacies than all-LNA ASO with an equivalent sequence for SMN2 exon inclusion in human 
spinal muscular atrophy patient fibroblasts (PMC5473822).

In exon skipping treatment, it is essential to know the dynamics of the ASOs in vivo. For this purpose, we gen-
erated EGFP-mdx23 Tg mice and performed quantitative PCR (qPCR) to estimate the transgene copy number. 
Among the five lines of EGFP-mdx23 Tg mice, line 4 showed the highest copy number. Based on our previous 
studies, Tg mice which have 8–10 copies are most useful. This is partly because high copy number founders tend 
to harbour multiple integration sites in the genome, making it challenging to maintain Tg lines stably. In this 
study, we have established primary myoblasts from different Tg lines to virtually find out that the Line 2 with a 
copy number 13 yields most stable results for the detection of EGFP due to exon 23 skipping in vitro and in vivo 
studies. Using Line 2 Tg mice, we investigated whether EGFP fluorescence could be detected with IVIS after the 
administration of PMO. EGFP fluorescence was detected after both intramuscular injections into TA muscles 
and systemic intravenous administration. In the case of intramuscular injection, EGFP fluorescence was strongly 
detected in the injection area. In the case of systemic administration, we detected EGFP fluorescence in the liver, 
kidney, GC muscles, and TA muscles. On the other hand, PMO was not delivered to the brain or heart. Because 
the CAG promoter is not directional to a specific organ, it is strongly expressed in organs in addition to skeletal 
muscle. In addition, EGFP fluorescence detected using the IVIS reflected the exon skipping-inducing effect on 
endogenous Dmd; thus, our EGFP-mdx23 Tg system is useful for systemic medical and kinetic evaluation of 
ASO efficacy. A limitation of the model is that it cannot be used to assess dystrophin restoration levels after 

Figure 3.  Transfection of LNA and 2′-OMe mixmers into isolated primary myotubes of EGFP-transgenic (Tg) 
mice. (a) Schematic diagram of in vitro experimental protocol using EGFP-mdx23 Tg primary myotubes. (b) 
Fluorescence images of Tg primary myotubes treated with 50 nM of 15M_0L, 15M_3L, 15M_4L and 15D_7L. 
(c) Average fluorescence intensity of EGFP is measured using a plate reader with 50 nM of the mixmers 
indicated (n = 6 per group). Data represent the mean ± SEM. *P < 0.05, ***P < 0.001, and ****P < 0.0001. (d) 
RT-PCR analysis for exon 23 skipping is developed by MultiNA. LM, lower marker dye; UM, upper marker dye. 
(e) Average band concentration of exon 23 skipping is indicated by a bar graph (n = 3 per group). Data represent 
the mean ± SEM. Antisense oligonucleotides: ASO.
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Figure 4.  In vivo analysis of exon 23 skipping using EGFP-mdx23 Tg mice. (a) Schematic diagram of 
intramuscular injection of PMO. PMO is injected at 20 μM into the left TA of EGFP-mdx23 Tg or WT mouse, 
and saline is injected into the right TA as a negative control. Intramuscular EGFP fluorescence is analysed at 
day 0, 2, and 7 by the In Vivo Imaging System imaging (IVIS). (b) Analysis of intramuscular injection of PMO 
into EGFP-mdx23 Tg mice by IVIS imaging. Representative images are shown. (c) The total efficiency of EGFP-
mdx23 Tg mice in the injection area. EGFP fluorescence intensity increases over time following the PMO 
injection. No significant changes are observed in the saline injection area (n = 3 per group). Data represent 
the mean ± SEM. *P < 0.05. (d) Analysis of intramuscular injection of PMO into WT mice by IVIS imaging 
as the negative control. Representative images are shown. (e) The total efficiency of WT mice in the injection 
area. No EGFP fluorescence is detected in the injection area (n = 3 per group). Data represent the mean ± 
SEM. *P < 0.05. Representative images are shown. (f) RT-PCR analysis of TA muscle tissue samples with or 
without PMO treatment. (g) Results of sequence analysis of the exon 23 skipped band detected by RT-PCR. 
(h) Representative images of Ex vivo analysis using IVIS images of systemic injection of PMO to EGFP-mdx23 
Tg mice. Mice are injected with 640 mg/kg body weight PMO. The left column shows the muscles and organs 
of PMO-treated mice, and the right column shows those of mice treated with saline. (i) The total efficiency of 
EGFP expression in TA and GC muscles after systemic injection (n = 3 per group). Data represent the mean ± 
SEM. *P < 0.05, ****P < 0.0001.
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ASO mediated exon skipping due to the nature of the model and, as a next step, we are currently developing 
EGFP-mdx23 Tg mice with mdx background.

In conclusion, we developed a CAGGS-EGFP-based reporter system capable of evaluating the exon skipping 
efficiency of ASOs. Our screening system and EGFP-mdx23 Tg mice provide a simple, fast and very sensitive 
approach to screen varieties of oligonucleotide chemistries as well as chemical modifications of ASOs, which 
could accelerate the development of highly efficient exon skipping drugs for DMD.

Materials and Methods
EGFP-reporter vectors for Dmd exon 23 skipping.  The mouse Dmd EGFP-exon 23/pCAGGS reporter 
vector was constructed based on the procedure reported previously24. The EGFP sequence was split into two 
regions, 5′-GFP and 3′-GFP, through the insertion of a human β-globin intron sequence9 that also included the 
mouse Dmd exon 23 with nonsense mutation same as mdx mouse flanked by a 300-bp intronic sequence at each 
end (mouse intron 22 on the 5′-end and mouse intron 23 on the 3′-end). Then, the fragment was inserted into the 
pCAGGS vector by homologous recombination. The expression of EGFP was driven by the CAGGS promoter, 
which induces high gene expression throughout the body. Without ASO intervention, the vector expressed an 
out-of-frame EGFP/exon 23 chimeric transcript. Skipping exon 23 with ASOs restored the EGFP reading frame 
and the expression of EGFP protein.

Animals.  Eight- to twelve-week-old C57BL/6 male mice were purchased from Clea Japan Inc. (Tokyo, Japan). 
Four-week-old B6C3F1 females were obtained from Japan SLC (Tokyo, Japan). All animals were handled in 
accordance with the guidelines of the Experimental Animal Care and Use Committee of the National Center 
of Neurology and Psychiatry, Tokyo, Japan. The Experimental Animal Care and Use Committee of the National 
Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan, approved all experimental proto-
cols in this study.

Generation of EGFP-reporter transgenic mice.  B6C3F1 females were superovulated and mated to 
obtain fertilised eggs. EGFP-mdx23/pCAGGS transgenic mice (EGFP-mdx23 Tg mice) were generated by micro-
injecting the linearised EGFP-exon23/pCAGGS reporter vector into pronuclei of those fertilised mouse eggs 
to establish a transgenic founder cohort (F0). For all mouse experiments, six- to ten-week-old Tg/+ F2 mice 
with a copy number of 8–10 were used. The transgene copy number was estimated by quantitative PCR (qPCR) 
using the EGFP TaqMan probe #4400291 (Applied Biosystems, Foster City, CA, USA) (Supplementary Fig. S5)25. 
Briefly, qPCR on an ABI StepOnePlus real-time PCR system (ThermoFisher Scientific) was performed. Ten ng 
of genomic DNA samples or copy number standards with EGFP TaqMan probe were compared in triplicates to 
rigorously estimate the copy number from ΔCt values for standard curve samples.

Synthesis of antisense oligonucleotides.  The DmdE23D-25mer sequence (5′-GGCCAAACCTC 
GGCTTACCTGAAAT-3′), designed based on the boundary sequences of exon and intron 23 of the mouse Dmd 
gene, was used in this study. Phosphorodiamidate morpholino oligomer (PMO) was purchased from Gene Tools 
(Philomath, OR, USA). Locked nucleic acids (LNA)/DNA and LNA/2′-OMe mixmer-based ASOs with phospho-
rothioate backbone were purchased from Gene Design Inc. (Osaka, Japan).

Primary myoblast preparation.  For the preparation of primary myoblasts, anterior tibialis (TA) and gas-
trocnemius (GC) muscles were isolated from 10–12-week-old C57BL/6 and EGFP-mdx23 Tg mice26. Isolated 
TA and GC muscles were minced and incubated with 0.2% type II collagenase (Worthington Biochemical 
Corporation, Lakewood, NJ, USA)/Dulbecco’s modified Eagle’s medium (DMEM) for 30 min at 37 °C. Dissociated 
muscles were filtered through a 100-μm filter, followed by a 40-μm filter (Falcon, Corning Inc., Corning, NY, 
USA), and centrifuged at 200 × g for 5 min. The pellet was resuspended in growth medium and then plated 
on collagen-coated dishes (Falcon). During the first several passages of the primary cultures, myoblasts were 
enriched by preplating27,28.

Cell culture.  Isolated C57BL/6 primary myoblast cells were cultured in the growth medium, which consisted 
of DMEM (high-glucose, sodium pyruvate, and GlutaMAX supplement; Thermo Fisher Scientific, Waltham, MA, 
USA) supplemented with 20% fetal bovine serum (FBS; Thermo Fisher Scientific), 1% chicken embryo extract 
(CEE; US Biological, Salem, MA, USA), and 5 ng/ml basic Fibroblast Growth Factor (bFGF; Sigma Aldrich, St. 
Louis, MO, USA) at 37 °C with 5% CO2. The medium was changed every 2 days. Isolated EGFP-mdx23 Tg pri-
mary myoblasts were cultured in Ham’s F-10 Nutrient Mix (Thermo Fisher Scientific) supplemented with 20% 
FBS, 1% penicillin-streptomycin (PS; Thermo Fisher Scientific), and 5 ng/ml bFGF at 37 °C with 5% CO2. The 
medium was changed every 2 days. All plastic plates and dishes used for primary myoblast culture were coated 
with Matrigel-Growth Factor (Corning Inc.).

Plasmid and ASO transfection.  C57BL/6 primary myoblasts were seeded in 96-well black plates with clear 
bottoms (Corning 3603) at a density of 1 × 104 cells per well and cultured in the growth medium. After 1 day, 
0.0019, 0.0038, 0.0075, 0.015, or 0.03 pmol EGFP-exon23/pCAGGS reporter vector was transfected into the cells 
using Lipofectamine LTX and PLUS Reagent (Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions. After 1 day, the culture medium was replaced with differentiation medium, which consisted of DMEM 
supplemented with 2% horse serum (Thermo Fisher Scientific); next, 10 μM PMO per well were transfected using 
Endo-porter (Gene Tools) according to the manufacturer’s instructions.
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EGFP-mdx23 Tg primary myoblasts were seeded in 96-well black plates with transparent bottoms at a density 
of 1.5 × 104 cells per well and cultured in the growth medium. After 1 day, the culture medium was replaced with 
differentiation medium, and PMO was transfected as described above.

For mixmer transfection, Lipofectamine 3000 (Thermo Fisher Scientific) was used according to the manufac-
turer’s instructions.

Measurement of EGFP fluorescence intensity.  Two days after the ASO treatment, the average EGFP 
fluorescence intensity per well was measured by a plate reader (Synergy HTX; BioTek, Winooski, VT, USA). The 
cells were visualised using the KEYENCE BZ-9000 fluorescence microscope (Keyence, Osaka, Japan).

RNA isolation and reverse transcription PCR analysis.  Total RNA was isolated from primary 
myotubes using the RNeasy Mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 
Using 100 ng RNA, single-strand cDNA was synthesised using the High Capacity cDNA Reverse Transcription 
Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. Then, reverse transcription PCR 
(RT-PCR) was performed using ExTaq HS (Takara Bio, Shiga, Japan). The primer sequences for RT-PCR were 
forward 5′-GACGTAAACGGCCACAAGTT-3′ and reverse 5′-ACCACCCTGACCTACGGC-3′. The PCR con-
ditions were as follows: 32 cycles of 10 s at 98 °C, 30 s at 63 °C, and 90 s at 72 °C.

To extract total RNA from TA muscles, muscle tissues were homogenised using Bead Smash12 BS-12R 
(Waken B Tech Co, Ltd., Kyoto, Japan) and centrifuged at 2,500 rpm for 150 s at room temperature. Then, total 
RNA was extracted using the RNeasy Fibrous Tissue kit (Qiagen) according to the manufacturer’s instruc-
tions. Next, cDNA was synthesised as described above, and RT-PCR was performed using the forward primer 
5′-ACCACCCTATCAGAGCCAAC-3′ and reverse primer 5′-CTGGCGGCATATGTGATCC-3′ to amplify of the 
mouse dystrophin exons 20–25 transcript. The PCR conditions were as follows: 35 cycles of 10 s at 98 °C, 30 s at 
55 °C, and 30 s at 72 °C.

In vivo assay using EGFP-mdx23 Tg mice.  For intramuscular injection, 20 μg PMO was injected into the 
left TA muscles of EGFP-mdx23 Tg mice, and saline was injected into the right TA muscles as a control. PMO 
and saline were also injected into the TA muscles of C57BL/6 mice as negative controls. EGFP fluorescence was 
evaluated using the IVIS (PerkinElmer, Waltham, MA, USA) on day 0, 2, and 7.

On day 7, TA muscles were collected for RT-PCR, which was performed as described above. The PCR prod-
ucts were analysed using the microchip electrophoresis system MCE-202 (MultiNA; Shimadzu Corporation, 
Kyoto Japan). The efficiency of exon 23 skipping was calculated using the following formula: the moles of exon 
23-skipped transcript/(the moles of non-skip + the moles of exon 23-skipped transcript) × 100 (%). For systemic 
administration, 640 mg/kg body weight PMO was injected into the retro-orbital venous sinus of EGFP-mdx23 Tg 
mice, and the same volume of saline was injected into negative control mice. Seven days after systemic injection, 
mice were sacrificed and dissected TA and GC muscles, brain, heart, lung, diaphragm, liver, and kidney. The 
EGFP fluorescence intensity in the organs was evaluated ex vivo using the IVIS.

Statistical analysis.  All data are presented as the mean ± standard error of the mean (SEM). Statistical 
analysis was performed using GraphPad Prism version 6.01 (GraphPad Software Inc., La Jolla, CA). Statistical 
significance was assessed by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test. A 
value of P < 0.05 was considered statistically significant.

Data availability
All data generated or analysed during the present study are included in this published article (and its 
Supplementary Information Files).
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