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Abstract: Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens,
causing serious economic losses to a large number of hosts worldwide. Although virulence factors
have been identified in this filamentous fungus, including various cell-wall-degrading enzymes,
toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To
explore novel factors contributing to disease, a new pipeline combining forward genetic screening and
next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed
that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is
a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic
acid homeostasis.
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1. Introduction

Sclerotinia sclerotiorum (Lib.) de Bary is an economically devastating fungal pathogen
with an extremely broad host range. Infection is initiated through multiple orchestrated
strategies that ultimately incite rapid host tissue maceration, causing diseases in over
600 plant species [1]. Largely through reverse genetic analysis, genes involved in apothecia
and ascospore development [2–4], mycelial growth [5,6], appressorium establishment [7,8],
sclerotial formation and development [9–11], and fungal virulence [7,12,13] have been
identified over the last decades. Many virulence factors were confirmed to play critical
roles in host tissue disruption and degradation, such as cell-wall-degrading enzymes
(CWDEs) and toxins [14]. In addition, some small secreted proteins functioning in both
host defense suppression and inducing host cell death have been identified [15,16].

The full virulence of S. sclerotiorum requires controlled oxalic acid (OA) accumulation.
OA levels are regulated through its biosynthesis and degradation [7,12,13]. Defective OA
synthesis leads to severely compromised virulence, implicating the importance of OA in
Sclerotinia pathogenesis. Proposed roles of OA include creating a low pH environment
available for hydrolytic enzyme activities [17–19], contributing to calcium chelation and
cell wall breakdown, reducing calcium exposure toxicity during invasion of growing hy-
phae [20,21], eliciting apoptotic programmed cell death to allow fungal pathogenicity [22],
and disruption of chloroplast function [23]. Moreover, OA suppresses and promotes host
reactive oxygen species (ROS) at different stages of infection to achieve successful disease
development [22,24,25].

With the increasing availability of sequenced whole genomes of fungal pathogens, re-
verse genetic analysis for genes of interest are available for functional investigation. In terms
of novel gene discovery, it is inevitably limited by bias. Recently, Xu et. al. [26] provided an
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effective pipeline, which combines forward genetic screening with high-throughput next-
generation sequencing (NGS) to enable quick gene discovery and confirmed the reliability
of this method in S. sclerotiorum.

Here, we performed a forward genetic screen for virulence-related genes using the
same mutagenized population acquired from Xu et. al. [26]. Mutants defective in virulence
were isolated and NGS was used to identify the candidate genes. Specifically, we describe a
recovered mutant with a mutation in an amidase-encoding gene. Knockout and transgene
complementation experiments confirmed that this amidase mutation is responsible for
the observed virulence phenotype. Thus, our study uncovered an important role amidase
plays in fungal virulence, probably by affecting OA homeostasis.

2. Results
2.1. Screening for S. sclerotiorum Mutants with Reduced Virulence

Using a UV-mutagenesis based forward genetics pipeline [26], we generated a muta-
genized population originated from single haploid ascospores. Our initial screen aimed
for mutants deficient in sclerotial formation and melanization. The same population was
then grown to search for mutants which exhibit reduced virulence on lettuce leaves. Here,
we report on the characterization of mutant 5–10. On lettuce leaves, wild-type (WT) S.
sclerotiorum caused large lesions 48 h post-inoculation, while 5–10 mutant formed smaller
ones (Figure 1A,B). To test whether the reduced virulence was associated with hyphal
development, we examined the growth rate of the mutant. As shown in Figure 1C,D,
mycelial growth of the 5–10 mutant is comparable with WT. Accordingly, the defects in
5–10 seems specific to fungal virulence.

Figure 1. Virulence on lettuce leaves and mycelial growth phenotypes of the 5–10 mutant. (A) Necrotic
lesions caused by S. sclerotiorum infection on lettuce leaves. Bar = 5 mm. Data were recorded at 36 h
post-inoculation (hpi). WT: wild-type. (B) Quantification of lesion size of WT and 5–10 on lettuce
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leaves. ImageJ was used to quantify the lesion size. Statistical significance was analyzed using
Student’s t-test between WT and the 5–10 mutant. a and b represent different significance levels.
(C) Colonial morphology and mycelial growth of WT and 5–10 strains after 12 h, 24 h, 36 h, 48 h and
7 days on potato dextrose agar (PDA) media. (D) Colony diameter of WT and 5–10. Strains were
grown on PDA medium and colony diameters were measured every 12 h. All experiments were
conducted at least three times with similar results. Error bars represent standard error (SE). Statistical
significance was analyzed using Student’s t-test between WT and the 5–10 mutant.

2.2. Less Oxalic Acid Is Observed in 5–10 Mutant

As oxalic acid (OA) is a key virulence factor in S. sclerotiorum [20], we examined
whether the level of OA in 5–10 is altered. When OA was measured both qualitatively
and quantitatively (Figure 2A,B), 5–10 indeed showed significantly reduced OA amounts.
Thus, the reduced virulence observed in 5–10 is likely due to its reduced OA levels during
mycelial growth.

Figure 2. The 5–10 mutant strain produces less oxalic acid (OA). (A) Image of mycelia of WT and 5–10
grown on PDA medium containing bromophenol blue. Bar = 10 mm. (B) OA content of WT and 5–10
strains. Experiments were conducted at least three times with similar results. Error bars represent SE.
Statistical significance was analyzed using Student’s t-test between WT and the 5–10 mutant. a and b
represent different significance levels.

2.3. Mutation in Sscle_10g079050 Is Responsible for the Mutant Phenotypes of 5–10

To identify the mutation responsible for the observed phenotypes of 5–10, the full
genome of 5–10 was subjected to whole genome next-generation sequencing (NGS). The
genomic sequence of an unrelated mutant pnk1 was used as negative control to exclude
background mutations that occured in both 5–10 and pnk1 [26]. From whole genome se-
quence comparisons, a total of 77 SNPs (single nucleotide polymorphisms) and 689 INDELs
(insertions and deletions) were captured in 5–10, including mutations in exonic, intronic,
upstream, downstream, and intergenic regions. After manual elimination of synonymous,
intronic, intergenic, and non-homozygous mutations, 2 exonic SNPs remain that led to
nonsynonymous changes in the 5–10 genome. These two SNPs in Sscle_06g054440 (L1407S)
and Sscle_10g079050 (L82S) became the prime candidate mutations for 5–10.

To determine which of the two mutations is responsible for the 5–10 phenotypes,
transgenic complementation of Sscle_06g054440 and Sscle_10g079050 was individually
conducted (Figures 3 and 4). Only when Sscle_10g079050 was transformed into 5–10, did
the transgenic lines yield similar level of acidic substances and display almost identical
virulence compared to WT (Figure 3B–E). Transformation of the other candidate gene
had no effect on virulence (Figure 4A,B). Therefore, we conclude that the mutation in
Sscle_10g079050 is likely responsible for the 5–10 phenotypes.



Int. J. Mol. Sci. 2022, 23, 11207 4 of 12

Figure 3. Transgenic complementation of the 5–10 mutant by Sscle_10g079050. (A) Knock-in method
illustration for targeted gene complementation in S. sclerotiorum. Fragment 1 is composed of upstream
sequence of the target gene genomic DNA, and the first half of hygromycin-resistance gene (HY),
and Fragment 2 is composed of the second half of hygromycin-resistance gene (YG) and downstream
sequence of the target gene. Once transformed into protoplasts, the two fragments replace the target
gene with wild-type genomic DNA by homologous recombination. (B) Color change in WT, 5–10,
and Sscle_10g079050 independent transgene complementation lines (Com-4 and Com-5) grown in
PDB medium containing bromophenol blue indicator 48 hpi. (C) pH of WT, 5–10 and Com-4 and
Com-5 lines after 48 hpi in PDB medium. (D) Lesions caused by S. sclerotiorum infection on lettuce
leaves by the indicated fungal strains. Bar = 10 mm. Experiments were conducted at least three
times with similar results. Data were recorded at 36 h post-inoculation (hpi). (E) Quantification of
lesion size of WT, 5–10, Com-4 and Com-5 lines on lettuce leaves. ImageJ was used to analyze lesion
size. Error bars represent SE. Statistical significance was analyzed using Student’s t-test. a, b and c
represent different significance levels.

Figure 4. Sscle_06g054440 failed to complement the defects of 5–10. (A) Necrotic lesions on lettuce
leaf due to S.sclerotiorum infection by the indicated strains. Bar = 10 mm. Data were recorded at 36 h
post-inoculation (hpi). (B) Quantification of the lesion size of WT, 5–10, Sscle_06g054440 transgenic
lines on lettuce leaves. ImageJ was used to analyze lesion size. Error bars represent SE. Statistical
significance was analyzed using Student’s t-test. a and b represent different significance levels.
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To investigate the function of Sscle_10g079050 (protein accession number, APA13135.1/
XP001584936.1), homology alignment and phylogenetic analysis were conducted within
S. sclerotiorum (Figure 5A). This gene appears to be a member of a large gene family, and
the highest identity with its paralogous protein (Sscle_04g033530) was only 42.34%. Phylo-
genetic analysis among multiple species indicated that the transcripts of Sscle_10g079050
were conserved in fungi (Figure 5B,C). Based on the annotation of its homologous proteins,
Sscle_10g079050 was predicted to possess a function of amidase or acetamidase. The point
mutation in 5–10 caused an amino acid to change from Leucine to Serine (L82S) and this Leu
is conserved in fungi, especially in Leotiomycetes (Figure 5C), suggesting a critical role of this
residue to its function. As Sscle_10g079050 encodes an enzyme catalyzing the hydrolysis
of an unknown amide, it does not seem to be directly involved in OA biosynthesis or
catabolism. It likely affects the OA level through indirect means.

Figure 5. Sequence analysis of Sscle_10g079050. (A,B) The phylogenetic tree was generated by the ML
method with bootstrap analysis (1000 bootstrap replicates) using an amino acid sequence alignment
of homologous proteins within S. sclerotiorum (A) and among different species (B). APA12093.1
(Sscle_09g068630), annotated as a hydrolase, was selected as an outgroup. (C) Sequence alignment of
homologous proteins from different species. Red box represents the homologous region of L82 in
Sscle_10g079050. Numbers indicate the positions of the amino acids.

2.4. 5–10 and Sscle_10g079050 Knockout Mutants Exhibit Similar Hypovirulence

To further confirm that the mutation in Sscle_10g079050 is responsible for the hy-
povirulence in 5–10, targeted gene replacement by homologous recombination was per-
formed in WT background. The Sscle_10g079050 transformants were selected on PDA
with 50 µg/mL of hygromycin, and two independent transformants, KO1 and KO2, were
obtained (Figure 6A). PCR analysis showed that the WT copy of Sscle_10g079050 was not
fully absent in the knockout strains, suggesting that the mutants generated likely represent
partial loss-of-function alleles (Figure 6B,C). The virulence in KO1 and KO2 nevertheless
were reduced compared with WT on both lettuce and Arabidopsis (Figure 6D–G). Therefore,
we conclude that the mutation in Sscle_10g079050 is responsible for the hypovirulence
in 5–10. As knocking out Sscle_10g079050 resulted in attenuated virulence, the encoded
amidase serves as a positive regulator of virulence. When its gene expression pattern was
analyzed from publicly available RNA-Seq datasets [27], we found that it is up-regulated
after 24 h of infection (Figure 6H), which supports its critical role in virulence.
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Figure 6. Knocking out Sscle_10g079050 phenocopies 5–10 and exhibit reduced virulence. (A) Split
marker method illustration. Fragment 1 is composed of the upstream sequence of the target gene and
the first half of hygromycin-resistance gene (HY), and fragment 2 is composed of the second half of
hygromycin-resistance gene (YG) and downstream sequence of the target gene. Once transformed
into protoplasts, the two fragments can replace the target gene with hygromycin-resistance gene
(HYG) by homologous recombination. (B) Agarose gel electrophoresis illustrating the fragments
amplified with primers of PF and HY-PR. (C) Agarose gel electrophoresis illustrating the fragments
amplified with primers of SeqF and SeqR. (D,F) Image of lesions on leaves of Arabidopsis (D) and
lettuce (F) caused by fungal infection. Bar = 10 mm. Data were recorded at 36 h post-inoculation
(hpi). (E,G) Quantification of lesion size of WT, 5–10, and Sscle_10g079050 knockout mutants on
leaves of Arabidopsis (E) and lettuce (G). ImageJ was used to analyze lesion size. Experiments were
conducted at least three times. Error bars represent SE. Statistical significance was analyzed using
Student’s t-Test. a, b in (E) and a, b, c in (G) represent different significance levels. (H) Expression
of Sscle_10g079050 during infection of Brassica napus. Data were extracted from publicly available
RNA-Seq dataset [27]. Fold change relative to 0 h post inoculation (hpi). 1: No significant change
in expression.

3. Discussion

Historically, virulence-related genes in S. sclerotiorum were generally identified based
on either homology with well-characterized genes from other pathogens, or genes encoding
secreted proteins with effector functions. However, these approaches have limitations and
biases. In this study, we identified an amidase-encoding gene (Sscle_10g079050) using
an effective and reliable pipeline which combined forward genetic screening with NGS.
Mutants of this gene contained less OA and showed reduced virulence. It is the first
evidence that an amidase might contribute to the homeostasis of OA in fungi.

Amidases are versatile enzymes owing to their broad substrate specificity [28]. They
are widespread in all organisms including bacteria, fungi, plants, and animals [29,30].
According to their primary structure, amidases are divided into three families, namely
amidase signature (AS) family, nitrilase superfamily, and FmdA_AmdA family [31]. Ss-
cle_10g079050 belongs to the AS family, which carry a highly conserved stretch of approxi-
mately 130 amino acids known as the AS sequence [32]. The crystal structure of analyzed AS
enzymes share an α/β sandwich folded core domain, containing a Gly/Ser-rich motif and
Ser-cis Ser-Lys catalytic triad [33–35]. After sequence alignment with Pam (PDB ID: 1M21),
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a structural analyzed AS enzyme determined in Stenotrophomonas maltophilia, the catalytic
triad of Sscle_10g079050 was predicted as Ser202-Ser226-Lys127 (Supplementary Figure S1A).
According to the 3D structure model, the residue Leu82 was located sterically far from that
core region but spatially close to Lys127(Supplementary Figure S1B). We speculate that the
substitution of Leu82 might affect the catalytic function in an indirect way, leading to loss
of the enzymatic function.

In filamentous fungi, OA is derived from either the hydrolysis of oxaloacetate or
the oxidation of glyoxylate or glycolaldehyde [20], and OA biogenesis in Ascomycota
species relies predominately on oxaloacetate acetylhydrolase (OAH)-mediated oxaloac-
etate hydrolysis [12]. As a metabolic intermediate of both the tricarboxylic acid (TCA)
and glyoxylate cycle, malate or pyruvate might be an oxaloacetate precursor in the OA
biosynthesis [36–39]. In addition, many enzymes involved in lipid metabolism are required
for virulence, such as isocitrate lyase in Magnaporthe grisea, Leptosphaeria maculans, and
Colletotrichum lagenarium [40,41], and malate synthase in Stagonospora nodorum and S. sclero-
tiorum [42,43]. It is well known that isocitrate lyase and malate synthase are key enzymes
in glyoxylate cycle, but whether they affect pathogenic processes in an OA-dependent
manner remains unclear. Amidases diverged widely with regard to substrate specificity
and function. A large spectrum of amide substrates, including aliphatic amides, aromatic
amides, and α-hydroxyamides were found to be catalyzed by AS enzymes [44–46]. One-
way Sscle_10g079050 affects OA accumulation might be through hydrolyzing suitable
amide-containing substrates during OA biosynthesis.

Amidases in the AS family usually exhibit both hydrolytic and acyl transfer activities.
The intracellular transport of acetyl coenzymeA (acetyl-CoA) is a valuable component
of the glyoxylate cycle, and a peroxisomal carnitine acetyl transferase (Pth2) identified
in Magnaporthe grisea was found to facilitate acetyl-CoA transport specificity, which was
required for both β-oxidation of fatty acid and pathogenicity [47,48]. With this in mind, it
is possible that Sscle_10g079050 could also play a role in glyoxylate pathway by its acyl
transfer activity. Moreover, OA level is also indirectly affected by the redox status of
S. sclerotiorum [10]. Thus, Sscle_10g079050 may affect OA accumulation by participating
in maintenance of redox environment. The amidase may even affect OA-independent
processes involved in virulence.

Sscle_10g079050 is predicted to be a cytoplasmic enzyme, and it contains a N-terminal
cytoplasmic tail (1 to 463aa) and a C-terminal single transmembrane segment, implying
that it might anchor to membrane and cannot be accessible to other organelles. Since
malate and citrate biosynthesized by the TCA cycle or the glyoxylate cycle can diffuse
across the membrane barrier to be exported from organelles and finally be transformed
into oxaloacetate, Sscle_10g079050 may co-locate with malate or citrate in the cytosol pool,
and play a role in oxaloacetate or OA metabolism processes. In the future, biochemical
and chemical studies will be essential for identifying the exact substrate of this amidase to
illuminate its precise mechanism of affecting OA levels and pathogenic processes.

4. Materials and Methods
4.1. Fungal Strains and Culture Condition

Wild-type strain S. sclerotiorum 1980 and mutant were maintained on standard PDA
(potato dextrose agar, Bio-Way Technology, Shanghai, China) medium at 20 ◦C and stored
on PDA slants at 4 ◦C or as sclerotia. Transformants (deletion mutants and complemented
strains) were grown on PDA containing 50 µg/mL hygromycin B (Roche).

4.2. Plant Infection Assay

Virulence of the strains was tested on detached leaves of lettuce and Arabidopsis thaliana
(ecotype Col-0). Mycelial agar plugs 2 mm in diameter were inoculated on detached leaves
of A. thaliana (5 mm in diameter on lettuce) placed on moistened paper towels in Petri
dishes (90 mm diameter), with five repeats. Photos were taken at 48 h post-inoculation.
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The pathogenicity test was repeated three times with similar results. Lesion areas were
measured by ImageJ.

4.3. Screening for Mutants with Deficiency in Virulence

Ascospores were collected from apothecia of wild-type (WT) strain S. sclerotiorum
1980. The UV mutagenesis was conducted on ascospores as previously described [26].
The mutagenized population was initially screened using lettuce leaves obtained from
supermarkets. The putative mutants were then confirmed with multiple repeats on both
lettuce and Arabidopsis.

4.4. Genomic DNA Extraction and NGS

Fresh fungal mycelia were cultured in PDB for one week. Surface floating mycelia
were harvested and ground to fine powder in liquid nitrogen. The genomic DNA extraction
was conducted by cetyltrimethylammonium bromide (CTAB) method from the mutant
and WT strains [49]. The crude extract was further purified for NGS with a commercial
service (Novogene, Bioinformatics Technology Co., Ltd., Beijing, China). DNA degradation
and contamination were evaluated on a 1% agarose gel. Paired-end library was built by
Novogene, using Illumina sequencer NovaSeq 6000, and clean reads were aligned to the S.
sclerotiorum genome (ASM185786v1).

4.5. Candidate Genes Identification

The sequence reads from NGS were mapped to the reference genome of WT strain S.
sclerotiorum 1980. Mutations were identified by SAMtools with default parameters [50]. An-
notation of the mutations was performed with germline short variant discovery (SNPs + IN-
DELs) based on GATK best practices [51]. False mutations in repetitive sequences were
manually removed as previously described [52].

4.6. Sanger Sequencing of Sscle_10g079050 in 5–10

Sscle_10g079050 gene fragment was amplified with SeqF and SeqR primers and ge-
nomic DNA of 5–10 was isolated by CTAB method and used as template. A 660-bp PCR
product was then sequenced using universal primer by Sangon Biotech in China.

4.7. Target Gene Knockout and Transgene Complementation

The split marker method was used to generate Sscle_10g079050 gene replacement
constructs [53]. In brief, 1,102-bp upstream and 655-bp downstream flanking fragments of
Sscle_10g079050 were amplified with the primer pairs 5–10-10g KO 1F/2R and 5–10-10g KO
3F/4R, respectively, and were fused with two overlapped hph fragments amplified with
the primers HYG-F/HY-R and YG-F/HYG-R from pUCH18 plasmid (shared by D. Jiang
from Huazhong Agricultural University in China) [54]. All primers used for PCR are listed
in Supplementary Table S1. Gene flanking fragments were fused with two hph fragments,
respectively, by homologous recombination methods. The amplified PCR products were co-
transformed into protoplasts of WT as described [54]. Transformants were selected on fresh
PDA plates supplemented with hygromycin B. The individual germinating transformants
were transferred onto new PDA plates with hygromycin B. Fresh mycelia were used to
perform colony PCR with a pair of primers, 5–10-10g KO 7F/8R (Supplementary Table S1),
to confirm the insertion of the hygromycin gene. Positive transformants were inoculated
onto new PDA plates with hygromycin B by hyphal tip transfer.

Two additional rounds of the same colony PCR and selection were conducted to
accumulate more nuclei with hygromycin insertions. Then, the transformants were cultured
in PDB for 2 days. The fresh mycelia mat was used to produce protoplasts as mentioned
above. The resulting protoplasts were diluted with PDB supplemented with hygromycin
B to 103 protoplasts per milliliter. A 1-mL suspension was evenly spread on PDA plates
supplemented with hygromycin B and dried. The germinating colonies were transferred
onto individual PDA plates with hygromycin B. Transformant DNA was extracted using the
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CTAB method, which were later used as template to conduct PCR with four pairs of primers
as shown in Figure 6A. The transformants with the target gene being homogeneously
knocked out were chosen for further experiments.

For transgenic complementation, a knock-in method was performed to accomplish
the in-situ complementation by candidate gene homologous recombination. As described
in the knockout protocol, a 3307-bp fragment including upstream and genomic DNA
and a 655-bp downstream flanking fragment were PCR-amplified. The resulting two
fragments were fused with hpg fragments, respectively, and the amplified PCR prod-
ucts were co-transformed into protoplasts of 5–10 as described above. SNP primers
(Supplementary Table S1) designed on the mutation site were used to check the insertion
of Sscle_10g079050 gene.

4.8. OA Analysis

Mycelial plugs (5 mm diameter) with growing hyphal tips were inoculated on PDA
medium containing 100 µg/mL bromophenol blue to qualitatively measure oxalic acid.
Three mycelia-colonized plugs were also inoculated in PDB medium containing 100 µg/mL
bromophenol blue for UV absorbance test after 48 h oscillation with three repeats. OA con-
tents were detected using Oxalic Acid Content Detection Kit following the manufacturer’s
instructions (Solarbio Life Science, Beijing, China).

4.9. Phylogenetic Analyses

Homologous proteins were searched within S. sclerotiorum and among different species.
The phylogenetic tree of selected homologous proteins was generated using MEGA7.0 with
the maximum likelihood (ML) algorithm. Bootstrap analysis with 1000 replications was
performed to assess group support.

4.10. Protein Subcellular Localization and 3D Structure Prediction

Protein subcellular localization prediction was conducted utilizing the online tools,
WoLF PSORT (https://wolfpsort.hgc.jp/, accessed on 15 November 2021) and GenScript
PSORT (https://www.genscript.com/tools/psort, accessed on 10 December 2021). Protein
3D structure model prediction was generated by SWISS-MODEL (https://www.expasy.
org/resources/swiss-model, accessed on 27 July 2022).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms231911207/s1.
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