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Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics
and quantum information science. Although, photonic entanglement is routinely studied in many
experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that
modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and
sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner.
To quantitatively verify the non-classicality of the measurements we determine the detected photon number
and error margin from the registered intensity image within a certain region. Additionally, the use of the
ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode
entanglement, which suggests as well that visual imaging in quantum optics not only provides a better
intuitive understanding of entanglement but will improve applications of quantum science.

E
ntanglement in quantum mechanics describes correlations between at least two systems that are stronger
than classically explainable1,2,3. A prominent system to create and analyse quantum entanglement is the
photonic system. Single photons have the experimental advantage to offer different degrees of freedom

which are rather simple to address and investigate. A fairly young but vibrant field that studies the spatial
structure of the optical modes of photons (e.g. Laguerre-Gauss4, Ince-Gauss5, Bessel-Gauss6) continues to attract
wide interest. Each spatial mode offers many interesting features, like orbital angular momentum7 or continuous
vortex splitting8, which already lead to novel insights in quantum optics like higher dimensional entanglement9–12,
novel uncertainty relations for the angular and OAM degree-of-freedom13,14, remote object identification15 or
angular sensitivity enhancement with very high OAM16.

The rapid progress in imaging technologies over the last few years has made CCD cameras an interesting
option for single photon detection in quantum optics experiments, since the spatial information is directly
accessible. Due to high detection efficiencies, electron multiplied CCD cameras have attracted attention recently
and have been used to show non-classical correlations from photons produced via spontaneous parametric down
conversion (SPDC)17–20. The downside of such cameras is that they only allow relatively long exposure times (ms)
which makes it necessary to sum over many images with a sparse number of photons and makes it unfeasible to
use them for coincidence imaging of entanglement. In contrast, ICCD cameras have lower quantum efficiencies
due to the intensifier and fluorescence screen in front of the CCD chip but show a very good signal to noise ratio
and therefore good single photon sensitivity. They have been used to illustrate non-classical effects of the photons
from the SPDC process21–25. However, the biggest advantage of ICCD cameras is the very fast (,2 ns) and precise
(,10 ps) optical gating of the intensifier which makes it possible to use them in a coincidence scheme for real-
time imaging of quantum entanglement.

Results
In our experiment, we use a combination of the polarization and spatial degree-of-freedom (DOF) to be able to
directly image entanglement. We start with a high-fidelity polarization-entangled two-photon state (Figure 1).
One photon is unchanged; the other photon is brought to a second setup, which transfers the polarization DOF to
a wide range of specifically chosen spatial mode. In this interferometric setup16, the photons get transferred by a
liquid-crystal spatial light modulator, dependent on their polarization (methods), to a hybrid-entangled two-
photon state
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yj i~a Hj i spM1j izeiwb Vj i spM2j i; ð1Þ

where a, b, and w are real and a2 1 b2 5 1, H and V denote the
horizontal and vertical polarization, spM1 and spM2 correspond to
arbitrary spatial modes, and the positions of the ket-vectors label the
different photons. In order to image the created spatial mode and
demonstrate entanglement between the two photons, the polariza-
tion encoded photon is projected onto a certain polarization and
detected by a single photon detector. The signal from the detector
is used as a trigger for the ICCD camera, which in turn registers the
transferred photon.

In our measurements, we use an ICCD (Andor iStar A-DH334T-
18F-03) with a quantum efficiency of 3% for 810 nm wavelength, a
gating of 5 ns and a spatial resolution of 1024 3 1024 pixels (effective
pixel size: 13 3 13 mm). With this camera we observe clear single-
photon images even for very complex mode structures (Figure 2 c
and Figure 4), where the whole spatial information is directly avail-
able with a very high precision. Compared to scanning or masking of
single-pixel detectors, direct imaging with an ICCD also shortens the
measurement time significantly. Thus, the advantage of real-time
imaging with an ICCD is an improvement - both spatially and tem-
porally - of many orders of magnitude, opening up possible novel
applications in quantum information and quantum metrology. Note
that similar ICCD cameras with 20% efficiency and 2 ns gating,
which are readily available, promise a 20-fold increase in the signal
to noise ratio. Since the adjustable insertion delay time for triggering
the ICCD is at least 35 ns, we delay the second photon with a fibre
before sending it through the transfer setup. If a wrong delay is
chosen nearly no accidental photon events can be seen at the camera
(see Figure 2 b) and hence no background correction has to be
applied. This suggests the possibility for precise measurements in
the temporal domain. A few residual events appear due to the high
triggering rate (MHz) and the resulting thermal noise from the

intensifier and from the afterglowing of the fluorescing phosphorous
screen. We find the ratio between the number of detected photon
events in a picture (right delay) to the residual events (wrong delay)
to be on the order of 75 5 1. Those undesirable residual events may be
suppressed substantially, with more efficient ICCD cameras and/or
smaller gating times.

To image the effect of entanglement, we scan the Poincaré sphere
of the polarization encoded trigger photon and register the appearing
mode pattern from the transferred photons at the ICCD camera. In
this way, we are able to visualize directly the probability distribution
of complex spatial modes of the whole Bloch sphere (Figure 2 a).
Because the measurement time to image each spatial mode is very
short, the influence of the polarization measurement of the first
photon is visible in real-time at the ICCD camera (Supplementary
Movie 1). In the movie the frames were recorded with a rate of 0.3 Hz,
which could be speed up to the maximal frame rate of 4 Hz of the
ICCD camera. Entanglement is already visible in this video, since the
high-contrast minima and maxima shift in very good correspond-
ence to the polarization angle measured on the partner photon.

While visual observation already intuitively confirms the presence
of entanglement, we also verify it quantitatively: Since the registered
signal of the camera depends linearly on the detected photon num-
ber, we determine the average signal per detected photon and its
error margin from many single photon events (see Methods for more
information). With this relation between registered signal and cor-
responding photon number it is possible to spatially analyse any
recorded intensity image without the need for individual counting
of single photons over a time consuming data acquisition of many
sparse images.

To confirm entanglement we make use of a specific feature of the
Laguerre-Gauss (LG) mode family. The spatial structure of two
superimposed LG modes with opposite helicities LG+lj i~ LGlj i
zeiQ LG{lj i shows a radially symmetric distribution where a change

Figure 1 | Sketch of the experimental setup. Polarization entanglement is created in a SPDC process (source – grey box) and both photons are coupled

into single mode fibers (yellow). One photon is measured in the polarization bases with a combination of two quarter wave plates, a half wave plate (QHQ

– violet and green) and a polarizer (blue). The photon is detected by single photon detector (brown) and the detector signal is used as a trigger for the

ICCD camera. The second photon is delayed by a 35 m fiber (to account for the delay time from the trigger detector, the travel time of the trigger signal

and insertion delay from the ICCD) and brought into the interferometric transfer setup, which consists of a polarizing beam splitter (PBS), three half wave

plates (HWP – green), a spatial light modulator (SLM - black) and a polarizer (blue) at 45u after the interferometer. In the transfer setup the HWPs rotate

polarization to ensure the optimal working of the SLM and to separate the output from the input path. Depending on the polarization the photon gets

transferred by the SLM to any desired spatial mode. The polarizer after the interferometer erases any information to which spatial mode the photon was

modulated and thus completes the transformation. The spatial mode of the photon is registered by the triggered ICCD camera which is gated for 5 ns and

therefore only detects the transferred photons which belong to polarization encoded trigger photons.

www.nature.com/scientificreports
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of the phase Q between the two modes directly translates to a spatial

rotation of
Q

2l
3600

2p
. To discriminate between different orientations of

the structure and therefore different superpositions, we evaluate the
photon number per angular region from the measured intensity
image for different trigger polarizations (Figure 3 a and b). From
the maximal and minimal detected photon numbers the visibilities in
two mutually unbiased bases and therefore the expectation value of
an entanglement witness operator bW can be calculated26

(Supplementary Information). For all separable states the inequality

bW~visD=AzvisR=Lƒ1 ð2Þ

holds and surpassing this bound verifies entanglement. Capital let-
ters stand for the polarization of the trigger photon (D 5 diagonal, A
5 anti-diagonal, R 5 right circular, L 5 left circular). For first order
LG modes with l561 we obtained a value of 1.68 6 0.03 which
violates the inequality (2) by more than 20 standard deviations,
therefore proving entanglement. For LG62, LG63, LG65 and
LG610 the measured witnesses are 1.53 6 0.05, 1.50 6 0.05, 1.50
6 0.04, and 1.46 6 0.05 respectively and thus violate the bound for
separable states by around 10 standard deviations. We note that no
background subtraction was applied, but the measured photon num-
bers from the registered signal of the ICCD might be a bit smaller
than they were in the actual measurement, due to saturation effects
where a lot of photons are registered in the same region of the
camera, namely the maxima. However, a bigger actual photon num-
ber in the maximum would correspond to a higher value of the
visibility and therefore a stronger violation than the one presented
here.

Recently, it was shown that hybrid-entangled two-photon states of
higher-order LG modes can be used to improve sensitivity in the
remote sensing of an angular rotation16. By using an ICCD camera
to image the mode patterns it is possible to visualize this gear-like
behaviour between the rotation of the polarization and the petal

structure of the spatial mode without any masking and its inherent
significant reduction in count rates. In contrast to the experiment in
Ref. 16, this significantly shortens the acquisition time. A scan of the
polarization around the equator of the trigger photons’ Poincare
sphere leads to a rotation of the structure by 180u for LG61, 90u
for LG62 and 36u for LG65 (Supplementary Movie 2).

Furthermore, the capability of the ICCD camera of resolving
complex spatial pattern with a very high precision enables the first
demonstration of the high flexibility of the presented setup. If
transferring one of the photons to the Hermite-Gauss (HG) mode
family or the general family of Ince-Gauss (IG) modes, all regis-
tered single-photon images show a very good agreement with the
theoretical prediction (Figure 4 a and b). Additionally, it is pos-
sible to create entanglement between polarization and an artificial
mixture of two different mode families at the same time, here a
superposition of a higher order LG and higher order HG mode
(Figure 4c). Since no mask is required the imaging with an ICCD
camera is a very general way to measure entanglement of any spatial
mode or complex pattern of single photons which might advance
quantum optics experiments where information is encoded in the
spatial domain.

Discussion
Our results represent the first imaging of entanglement in real-
time, where the influence of the measurement of one system on its
entangled, distant partner system is directly visible. The use of an
ICCD camera to evaluate the number of photons from a registered
intensity within a given region opens up new experimental pos-
sibilities to determine more efficiently the structure and properties
of spatial modes from only single intensity images. The presented
results suggest that triggered ICCD cameras will advance quantum
optics and quantum information experiments where complex
structures of single photons need to be investigated with high
spatio-temporal resolution.

Figure 2 | Gallery of single photon images where the photons are transferred to different orders of LG modes. Depending on which polarization the

entangled trigger photon is projected (white letters in the images), different mode patterns are registered with ICCD camera. (a) shows a Bloch sphere for

the first order Laguerre-Gauss modes. By scanning the polarization encoded trigger photon around its Poincaré sphere, the whole LG-Bloch sphere of the

entangled partner photon in the spatial mode can be visualized in real-time. A sequence of single-photon images for different trigger polarizations around

a meridian (green circle in the sphere) and the equator (blue circle in the sphere) confirms directly the presence of entanglement due to the high-contrast

minima and maxima for the two mutually unbiased bases and can be seen in the Supplementary movie 1. If no polarizer is put in the path of the trigger

photon (bottom right) a statistical mixture of all states of the LG-Bloch sphere is registered. (b) If the delay is changed to a wrong value by 10 ns, the gating

time of the ICCD camera does not match the arrival of the delayed photons and nearly no intensity is registered. This demonstrates the high signal to noise

ratio and the capability of high temporal resolution. (c) Although the structure of the superposition for higher order LG modes becomes more

complicated and the resolution of the SLM and the camera is getting crucial, the characteristic petal structure can be identified even up to the 100th order.

Note that at the camera one photon event is distributed over more pixels of the CCD because each channel of the intensifier is bigger than the CCD pixels

and therefore is spread over many pixels.

www.nature.com/scientificreports
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Methods
Source and spatial light modulator (SLM). The polarization-entangled photon pairs
were created in a SPDC process using a 15 mm-long type-II nonlinear crystal
(periodically poled potassium titanyl phosphate (ppKTP)) in a Sagnac-type
configuration27,28. A blue 405 nm continuous-wave diode laser with up to 35 mW of
power pumps the crystal and thereby creates photon pairs of 810 nm wavelength.
Two 3 nm band-pass filters were used before the photons were coupled into single-
mode fibers. With this approximately 1.3 million pairs per second can be detected at
full pump power. Any polarization change between the source and the transfer setup
is undone by fiber polarization controllers. The SLM (resolution: 1920 3 1080, pixel
size: 8 mm, Holoeye Photonics AG) in the transfer setup, which modulates only the
phase of the light, was used to create the desired spatial modes.

Evaluation of the photon number. The registered intensity at the ICCD camera is
read out as a signal in counts per pixel, which does linearly depend on a specific
photon number. In order to evaluate the photon number corresponding to a

registered intensity, we need to know the average signal caused by a single photon. For
this purpose we analyse around 5800 detected single photon events to get a
statistically significant mean value. In each shot we subtracted at first the camera-
induced readout noise (mean background) of each pixel. In a second step, we summed
up all signal counts of a contiguous pixel array as one photon where at least one pixel
value is more than 5 standard deviations above the background fluctuations. This has
to be done since the photons are spread over a few pixels due to different resolutions of
the intensifier and the CCD pixel size (see insets in Figure 5a). With the mean value it
is now possible to determine the number of photons which correspond to detected
signal counts within a certain region of the intensity image. To evaluate the error
margin for each photon number, we performed a Monte Carlo simulation based on
the obtained probability distribution from the single photon measurements
(Figure 5a). A very good fit to the resulting histogram of the distribution was found to
be a log-normal probability function. With this distribution 50000 possible signal
counts were simulated for each photon number. The resulting average signal for every
photon number corresponds to the one obtained with the mean value from the single
photon events. The thereby found standard deviation can now be used as a look-up

Figure 3 | Detected photon number per angular region for different polarizations of the trigger photon. From the recorded images (Figure 2) we

evaluate the number of photons per angular region (bin size
22:50

l
) and thereby verify quantitatively entanglement. In (a) and (b) non-classical fringes for

hybrid entanglement between polarization and LG modes with l51 and l 5 10 are shown respectively. Error bars are obtained from a Monte Carlo

simulation which is based on the statistics of around 5800 single photon events (Supplementary Information). From the measured minima and maxima

of the photon numbers, the visibilities are calculated and used to violate the separability bound of an entanglement witness. Because of the periodic

structure of LG superpositions all angular regions in multiples of
3600

l
are summed up to get a bigger number of photons per angle and therefore a better

statistical significance.

Figure 4 | Gallery of registered single photon images where the transferred photon is encoded in different HG, IG, and LG/HG modes which
demonstrates the flexibility of the transfer setup in creating any desired spatial mode entanglement. The white letters in each image denote the

polarization the entangled trigger photon was projected onto and the small insets above each image correspond to the theoretical expected intensity

structure of the transferred photon. (a) For the helical HG mode family29 a trigger photon in diagonal (D) or anti-diagonal (A) polarization leads to

different orders of HG modes for the images of the entangled partner photon. (b) If the photon is transferred to the general family of IG modes

characteristic properties like splitting of the vortices (vertical (V) polarized trigger photons) or additional nodal lines (D or A polarized trigger photons)

can be seen. (c) The artificial superposition between the mode families of LG with OAM and HG without OAM shows that any custom tailored spatial

mode entanglement can be realized.

www.nature.com/scientificreports
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table to determine the error margin of each photon number. The linear dependence of
registered signal on the photon number as well as the standard deviation is shown in
Figure 5 and was used to demonstrate the non-classical behaviour (Figure 3 a and b in
the main text) and demonstrate entanglement quantitatively by violating the bound
of an entanglement witness (equation (2)).
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Figure 5 | Evaluation of the average signal per single photon. (a) shows the measured histogram of the detected signal at the ICCD for around 5800 single

photon events. The insets show example images of single photon events. The spread of a single photon over a few pixels is caused by the different

resolutions of the intensifier and the CCD chip of the ICCD camera. The log-normal distribution was fitted to the data which is specific to the ICCD

camera and was used to Monte Carlo simulate the error margin of each photon number. The linear relation between the signal at the ICCD and the photon

number can be seen in (b). With the help of the fitted log-normal probability function 50000 Monte Carlo simulations (runs) were performed for each

photon number and the mean value (red line) and the standard deviation (orange line) were obtained. The standard deviation was used to determine the

error margin for each photon number. For a comparison, the error estimation from Poissionian statistics is shown (grey dashed line) as well as the result

from a single simulation run (blue circles) for every 5th photon number.
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