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The effective management of biliary tract cancers (BTCs) has been hampered by limited
options for systemic therapy. In recent years, the focus on precision medicine has made
technologies such as next-generation sequencing (NGS) accessible to clinicians to identify
targetable mutations in BTCs in tumor tissue (primarily) as well as blood, and to treat them
with targeted therapies when possible. It has also expanded our understanding of
functional pathways associated with genetic alterations and opened doors for
identifying novel targets for treatment. Recent advances in the precision medicine
approach allowed us to identify new molecular markers in BTCs, such as epigenetic
changes (methylation and histone modification) and non-DNA markers such as
messenger RNA, microRNA, and long non-coding RNA. It also made detecting these
markers from non-traditional sources such as blood, urine, bile, and cytology (from fine-
needle aspiration and biliary brushings) possible. As these tests become more accessible,
we can see the integration of different molecular markers from all available sources to aid
physicians in diagnosing, assessing prognosis, predicting tumor response, and screening
BTCs. Currently, there are a handful of approved targeted therapies and only one class of
immunotherapy agents (immune checkpoint inhibitors or ICIs) to treat BTCs. Early
success with new targets, vascular endothelial growth factor receptor (VEGFR), HER2,
protein kinase receptor, and Dickkopf-1 (DKK1); new drugs for known targets, fibroblast
growth factor receptors (FGFRs) such as futabatinib, derazantinib, and erdafitinib; and
ICIs such as durvalumab and tremelimumab is encouraging. Novel immunotherapy
agents such as bispecific antibodies (bintrafusp alfa), arginase inhibitors, vaccines, and
cellular therapy (chimeric antigen receptor—T cell or CAR-T, natural killer cells, tumor-
infiltrating lymphocytes) have the potential to improve outcomes of BTCs in the
coming years.
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INTRODUCTION

Biliary tract cancers (BTCs) are a heterogeneous group of
aggressive malignancies that arise from the epithelium of the
biliary tract, which includes the bile ducts and gallbladder (1).
Cholangiocarcinoma (CCA) includes tumors arising from the
bile ducts and are classified anatomically as either intrahepatic
and extrahepatic depending on the part of the biliary tract they
originated from (2). BTCs are rare and aggressive tumors with a
5-year survival rate for metastatic disease being only 2% (3). In
2017, around 200,000 BTC cases were reported worldwide (4).
The incidence and mortality increased by 76% and 65%,
respectively, in the last quarter-century (1997–2017). It is
difficult to estimate the incidence and mortality of BTC in the
United States as epidemiologic data on intrahepatic
cholangiocarcinoma (IHC) and hepatocellular cancers (HCC)
are reported together, while extrahepatic cholangiocarcinoma
(EHC) and gallbladder cancers (GBC) are reported as one group
(5). In 2021, it is estimated that there will be approximately
42,000 new cases and 30,000 deaths from HCC & IHC. For EHC
& GBC this estimate approximately 12,000 and 4,000,
respectively (5). Peri-hilar CCAs are usually classified
under EHC.

While surgery is the only curative treatment, unfortunately,
the majority of patients with BTC (60%–70%) present with
advanced or metastatic disease, and therefore, palliative
locoregional and systemic therapy are the only options for
treatment (6). Based on the results of the ABC-02 trial, the
combination of gemcitabine and cisplatin has become the
standard first-line treatment for advanced biliary tract tumors
demonstrating a median overall survival of 11.7 months (7). For
the modest proportion of patients who go on to receive second-
line chemotherapy, the guidelines are less clear about the
appropriate therapy for patients who have progressed on Gem-
cis and still maintain adequate functional and lab status to
tolerate more therapy. Recently, the phase-3 ABC-06 trial
showed a survival advantage of FOLFOX over active symptom
control (ASC) for patients who had received Gem-cis in the first
line (8). A systematic review of second-line therapies in biliary
cancers demonstrated a mean PFS of 3.2 months and a mean
overall survival (OS) of 7.2 months (9). However, for patients
whose tumors harbor targetable mutations, targeted therapy is
preferred over chemotherapy in the second line. These include
pemigatinib and infigratinib for fusions or mutations in
fibroblast growth factor receptor-2 (FGFR2), larotrectinib and
entrectinib for neurotrophic tropomyosin receptor kinase
(NTRK) fusions, and ivosidenib for isocitrate dehydrogenase 1
(IDH1) (10–14). Pembrolizumab, an immune checkpoint
inhibitor (ICI), is recommended for patients with microsatellite
instability-high (MSI-H) (15). Unfortunately, only a small
proportion of patients have tumors harboring these specific
mutations. There is, therefore, an urgent need to expand the
arsenal of therapeutic options to treat BTCs and identify
biomarkers with reliable prognostic and predictive value. It is
imperative that precision medicine strategies should go beyond
only somatic mutations to help realize this goal.
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PRECISION MEDICINE IN BILIARY TRACT
CANCER: CURRENT STATE AND FUTURE
DIRECTIONS

Precision medicine refers to tailoring an approach specific to an
individual at the molecular level (16). It gained a greater role in
oncology over the last two decades, partly driven by easier access
to next-generation sequencing (NGS)-based comprehensive
genomic profiling (CGP) that enables detection of alterations
in the genome, including base-pair substitutions or single
nucleotide polymorphisms (SNP), copy number variations
(CNV), insertions/deletions, and rearrangements (17).
Precision medicine enables us to understand the genomic
landscape of BTCs that in turn shed light on the pathways
responsible for the malignant transformation and drug resistance
and ultimately in effective drug discovery. Moreover, growing
evidence shows that IHC, EHC, and GBC have noteworthy
differences in their respective genomic landscape (as
discussed below).

Precision medicine is synonymous with mutational profiling
in tumor tissues, precisely for targetable mutations in current
practice. In the last 5 years, there has been remarkable progress in
identifying other DNA molecular markers such as epigenetic
markers and non-DNAmolecular markers such as RNAmarkers
(coding and non-coding), metabolites, and protein markers in
the tumor tissues. Moreover, the fruits of precision medicine
were extended to other sources of tumor genetic material (DNA
and RNA) such as blood, bile, urine, and cytology (biliary
brushings), which is exciting. This part of the discussion will
focus on DNA markers, including somatic mutations, associated
signaling pathways, and epigenetic markers (DNA-methylation
markers) in tumor tissue, blood, bile, and cytology (as illustrated
in Figure 1). Non-DNA markers, such as messenger RNA and
non-coding RNA, will be discussed briefly. Prognostic and
predictive markers are presented in each section if the evidence
is available.

Somatic Mutations and Functional
Pathways in Biliary Tract Cancer
in Tumor Tissue
The most frequently mutated genes in the tumor tissue of BTCs
are TP53, KRAS, CDKN2A/B, and SMAD4 (18–24). The same
studies reported low prevalence (usually <5%) of targetable
mutations such as IDH1/2, FGFR2, BRAF, PIK3CA, and NTRK.
It is difficult to estimate the frequency of each genetic alteration
for the entire group (EHC, IHC, and GBC) as the study
populations were different in these studies. Among BTCs, there
are some noticeable differences in the detected mutations, which
are summarized in Table 1 (22, 25–34).

Targetable mutations with approved therapies (FGFR2 and
IDH1/2) are more common in IHC, and IDH1/2 mutations
rarely occur in EHC or GBCs (32, 33). Eight genes identified
as potential drivers for IHC are TP53, KRAS, IDH1, PTEN,
ARID1A, EPPK1, ECE2, and FYN (30). In multifocal metastatic
IHC, the SNPs and CNVs in the primary are often concordant
November 2021 | Volume 11 | Article 768009
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with the intrahepatic metastasis (same segment and <2 cm from
the primary) and satellite lesions (different segment and >2 cm
from the primary) (35). Clinically, this may indicate that
multifocal IHCs originate from common progenitor cells and
can be considered for surgical resection.

EHCs rarely have targetable mutations and are more likely
than other BTCs to harbor a KRAS mutation. Precursor lesions,
intraductal tubular papillary neoplasm (ITPN), predominantly
originate in intrahepatic ducts and have very few mutations (36).
Intraductal papillary neoplasm of the bile duct (IPNB) is usually
localized in extrahepatic ducts and has mutational profiles
similar to EHC. Overall, the precursor lesions and invasive
CCA have overlapping mutations with few exceptions: ROBO2
mutations exist only in invasive CCA, and CTNNB1 are
identified in ITPN and IPNB (36). TP53 is the most common
Frontiers in Oncology | www.frontiersin.org 3
mutation in GBC, while PIK3CA is the least prevalent (32, 33).
HER2 alterations are common in GBC compared with CCAs.
CNVs in CDKN2A, TP53, MDM2 proto-oncogene, and CCD1
genes and HER2 amplifications increased with the development
GBC from its precursor lesions (gallstones, low-grade/high-grade
dysplasia) (37). These distinct mutational profiles among BTCs
can help localize the origin of the tumor and tailor therapy for
individual patients.

Mutation detection in tumor tissue or blood helps identify the
cell signaling pathways that play a pivotal role in carcinogenesis,
drug resistance, and prognosis. Tools such as Ingenuity Pathway
Analysis (IPA) were used in previous studies to correlate the
genomic variations with specific signaling pathways (27). The
major pathways and associated gene alterations in BTCs are as
follows: i) FGF pathway with FGFR mutations; ii) mTOR with
TABLE 1 | Prominent differences in mutated genes among the BTCs.

Specific BTC Most likely exclusive Most frequent Least frequent

Intrahepatic cholangiocarcinoma Present—IDH1/2 BAP1, CDK2NA, ARD1A, FGFR1–3, MET TP53, PIKCA, HER2
Extrahepatic cholangiocarcinoma Absent—FGFR1–3, MET EGFR KRASb CDK2NA/B, ARD1Aa

Gall bladder carcinoma No exclusive mutations TP53, PIK3CA, HER2, BRAF, EGFR BAP1
November 2021 | Volum
aMutations less frequent in IHC compared with EHC along with KRAS, HER2, and SMAD4.
bMutations more frequent in IHC compared with EHC along with PBRM1.
FIGURE 1 | Precision medicine in biliary tract cancers.
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mutations such as FBXW7, PIK3CA, PTEN, NF1, NF2, PIK3R1,
STK11, TSC1, and TSC2; iii) MAP/ERK pathway with KRAS,
MYC, BRAF, EGFR, MAP2K1, MAP3K1, and NRAS; iv) DNA
damage repair (DDR) pathway with MSH6, BRCA1, BRCA2,
BAP1, ATM, MLH1, and MSH2; and v) chromatin remodeling
(CR) modification pathway with BAP1, ARID1A, and
PBRM1 (27).

About 19% of BTCs have DDR gene alteration mutations and
usually co-exist with CR alterations such as ARID1A and PBRM1
mutations (38). These tumors tend to have a high tumor
mutational burden (TMB) and a worse prognosis (38, 39).
cAMP-dependent signaling activation is another pathway
common for all three types of BTCs (25). Nepal et al. classified
IHCs based on the three common mutations, IDH, KRAS, and
TP53, or undetermined, and showed their potential predictive
value in cell lines. IDH-mutated IHCs are rich in metabolic
pathways such as glutathione metabolism and the citrate cycle
and respond to metabolic modulators such as IDH1 inhibitors.
KRAS-mutated IHCs are rich in immune-related pathways and
actin cytoskeleton rearrangement and may benefit from
microtubule modulators or immunotherapy. TP53-mutated
tumors are rich in cell cycle dysregulation (MAPK, WNT, and
p53 signaling) and may benefit from topoisomerase inhibitors. In
IHC without IDH, TP53, and KRAS mutations, the mTOR
pathway is predominant and may benefit from mTOR
inhibitors. The relation between IDH-mutated tumors and
metabolic enzymes was observed in other studies too, but
rigorous preclinical and clinical studies are needed before this
classification can be used in clinical practice (32).

Mutational profiling can also aid in identifying the etiology of
BTCs. Fluke-positive (Opistharchis viverrine and Clonorchis
sinensis related) tumors predominantly have KRAS, TP53,
KMT2C (MLL3), ROBO2, RNF43, PEG3, GNAS, SMAD4,
BRCA1/2, and HER2 compared with fluke-negative tumors
(40–42). BAP1, IDH1/2, and FGFR mutations are frequent in
the latter group (41, 42). In IHCs, HBsAg-seropositive patients
most likely have TP53 mutations, and KRAS mutations are
common in HBsAg-seronegative patients (30). IDH alteration-
positive IHCs usually do not have any underlying risk factors
such as infections, bile duct cysts, alcohol/tobacco, or Thorotrast
exposure (33).

Prognostic and Predictive Value of
Somatic Mutations in Biliary Tract Cancer
The somatic mutations with potential prognostic value are
summarized in Table 2 (20, 22, 26–28, 32, 42–45). Detection
of FGFR and/or IDH1 in IHC and PBRM1 and/or BAP1 in EHC
is associated with a good outcome. Alternatively, PIK3CA in
EHC and specific mutations in IHC, such as TP53, KRAS,
CDK2NA/B, EGFR, and PBRM1, are bad prognostic markers.
Mutations with prognostic value are not well established for
GBCs. CCAs with mismatch repair (MMR) deficiency and low
mesothelin levels have poorer outcomes compared with those
with MMR proficient and high mesothelin expression (median
OS: 14.5 vs. 30.0 months, p = 0.05) (46). In the same study, CCA
Frontiers in Oncology | www.frontiersin.org
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with MMR deficiency alone had a trend toward the worst
prognosis (median overall survival or OS: 19.2 vs. 28.1 months,
p = 0.07). In IHC, Zhu et al. have demonstrated an interesting
relation between mutations and pathological features: a) IDH1
alone or IDH/IDH2 is associated with bilobar invasion of the
tumor; b) KRAS alone with positive margins (R1) and direct
invasion of surrounding organs and KRAS, NRAS, or BRAF with
R1; and c) NRAS with intrahepatic metastasis (47).

Studies have shown that patients with targetable mutations
have better response and survival advantages if treated with the
appropriate targeted therapy (20, 21). Therefore, it is crucial to
attempt to identify targetable mutations when possible. For
patients with no targetable mutations, there are no established
mutations with predictive value. EHCs with overexpression of
programmed cell death protein 1 (PD-1)/programmed death-
ligand 1 (PD-L1) and higher lymphocyte infiltration respond
better to ICIs (48). There are no mutations that can predict
response in patients receiving chemotherapy either. With limited
treatment options and poor outcomes in BTCs, this area needs
further study. One area where this would be used is in the
neoadjuvant setting where the lack of treatment response to
chemotherapy could be identified upfront, and alternate therapy
such as targeted agents or immunotherapy could be used
instead (49).
TABLE 2 | Somatic mutations and their prognostic value in biliary tract cancers.

Tumor group Worse Better No effect

Biliary tract cancers ARID1A
KRASa

Del at
7q22.1
High
TMB

FGFR2
PRB1A

CDKN2A, CDKN2B, IDH,
PIK3CA, MYC alteration

Intrahepatic
cholangiocarcinoma

TP53
KRAS
CDK2NA/
B
EGFR
BAP1a

ARID1Aa

PBRM1
BRCA1/2

FGFR
(point mutations
and translocations)
IDH1b

CDK2NA
BRAF
PTEN
HER2

Extrahepatic
cholangiocarcinoma

PBRM1
BAP1c

PIK3CA TP53
KRAS
CDK2NB
A1RD1
PBRM1
SMAD4

Gallbladder cancers None
identified

None identified TP53
KRAS
CDK2NA/B
ARID1A
IDH1
PIK3CA
SMAD4
MYC
November 2021 | V
TMB, tumor mutational burden.
aNo effect in one study and bad prognosis in others.
bNo effect in some studies and good prognosis in others.
cPFS is different but not OS.
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DNA-Methylation Markers and Integrative
Approach in Biliary Tract Cancer
Epigenetic changes are modifications in the genome not
involving the nucleotide sequence (50). They can be a) DNA
hypo- or hypermethylation; b) histone modification including
methylation, phosphorylation, acetylation, and SUMOylation;
c) CR; and d) RNA-associated silencing. In this section, the focus
will be on DNA-methylation markers. Comparing the
methylation profiles of malignant vs. normal or precancerous
tissues can provide insight into pathways of malignant
transformation and cells of origin in BTCs (36). Integrating
methylation profiles with clinical and/or mutational profiles has
prognostic and predictive value (28, 29, 42, 51).

In CCAs, frequently methylated genes are APC, DAPK, E-
cadherin/CDH1, GSTP, RASSF1A, hMHL1, MGMT, p15INK4b,
p16INK4a, p14ARF, p73, 14-3-3 sigma, SOCS-3, EGFR, and RAR-b
(52, 53). RASSF1A, HOXA1, HPP1, CDH1, and NEUROG1 are
predominantly methylated genes in EHC, while CHFR, GSTP1,
IGF2,MGMT,MINT31, p14, and RBP1 are predominant in IHC
(52, 54). MGMT promoter methylation level is high, and protein
expression is low in IHC compared with normal tissues (55).
MGMT inhibition promotes cell proliferation via p21, P27, and
Cyclin E. Low-expression MGMT in tumor tissues is associated
with worse clinicopathological features and outcomes. Similarly,
promoter methylation of APC, p16, and TIMP3 have a good
prognostic value in IHC (56). EHCs with lymph node metastasis
have higher CpG island loci and hypermethylation of T1G1 gene
(54). A data mining study in an extensive database identified
genes associated with methylation pathways in GBC (FGA, F2,
HAO1, CFH, PIPOX, ITIH4, GNMT, MAT1A, MTHFD1, HPX,
CTH, EPHX2, HSD17B6, AKR1C4, CFHR3, ENNP1, and NAT2)
(57). Among them, the methylated genes were FGA, CFH, F2,
HPX, and PIPOX. When validated in the clinical samples, FGA,
CFH, F2, HPX, and PIPOX were high compared with controlled
tissues but not significantly different. Multiple studies identified
numerous genes methylated in GBC, and a set of genes
consistently represented in these studies is as follows: APC,
SHP1, 3-OST-2, FHIT, p16, SEMA3B, and CDH13 (58).

Integration of the genomic (somatic mutations, CNVs, and
gene expression) and epigenomic data (methylation) has been
attempted to better understand the disease processes. In such
studies, the tumors are classified into groups, or clusters, to
identify high-risk populations. In one such study, IHCs were
divided into four clusters using the iClusterPlus platform (42).
Cluster 1 mainly had fluke-positive IHCs rich in TP53, ARID1A,
BRCA1/2, and H3K27me3 promoter mutations; had high
expression of HER2, AKT1, and EZH2; and low expression of
TET2 and CpG island hypermethylation. Clusters 2 and 3 had a
mix of fluke-positive and fluke-negative tumors. Cluster 2
tumors were rich in TP53 mutations and had high expression
of CTNNB1,WNT5B, and AKT1. Cluster 3 was rich in immune-
related pathways and had the highest CNVs. Cluster 4 had
tumors rich in BAP1, IDH1/2, and FGFR mutations; high
FGFR1–4 gene express ion ; and CpG shore i s land
hypermethylation. Cluster 4 had a better prognosis over
clusters 1–3. Qui et al. divided BTCs into six clusters based on
Frontiers in Oncology | www.frontiersin.org 5
the degree of methylation (51). The cluster with a high
methylation rate had the highest CNV and a worse prognosis.
Lower methylation rate tumors had higher BCR/TCR diversity,
immune cell infiltration, and PD-L1 and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) mRNA expression
and, hence, potentially respond to ICI better. Interestingly,
hypermethylated genes participate in DNA-binding
transcription activity, and hypomethylated genes are involved
in transmembrane receptor and ion binding.

In another study, the authors integrated gene expression data,
signaling pathways, chromosomal abnormalities, mutations, and
poor prognosis signatures derived from previous studies in HCC
and tyrosine kinase inhibitors in CCA (28, 59–61). They divided
the IHCs into two classes: “proliferative” and “inflammatory”.
The proliferative class accounted for 62% of the study
population. These tumors had KRAS and BRAF mutations;
more oncogenic pathways such as RAS/MAPK and MET; poor
prognostic signatures; specific CNVs, amplifications at 11q13.2,
deletions at 14q22.1; and moderate to poor differentiation with
intraneural invasion on histology and poor survival. In the
inflammatory class, tumors had activated inflammatory
signaling pathways, overexpression of cytokines (interleukin or
IL-3, IL-4, IL-6, IL-10, IL-17A, and CCL19), and STAT 3
activation; no poor prognostic signatures, KRAS or BRAF
mutations; and well-differentiated tumors with favorable
features and good survival.

IDH-mutant CCAs have a distinct molecular profile,
according to a study that integrated genomic (somatic
mutations and CNV) and epigenomic data (DNA-methylation)
with mRNA expression (29). They have higher mitochondrial
DNA copy numbers, low expression of chromatin modifiers, and
elevated expression of mitochondrial genes compared with IDH-
WT tumors. Comparing 103 IHCs with matched controls, Zhou
et al. identified three pathways (transforming growth factor-b/
Smad s igna l ing pa thway a long wi th known Ras /
phosphatidylinositol-4,5-bisphosphate 3-kinase signaling and
p53/cell cycle signaling) along with genes involved in
epigenetic regulation and oxidative phosphorylation more
frequent in IHCs (30). Using samples from patients in Chile
(which has the highest incidence of GBC), Brägelmann et al. were
able to identify methylation changes during the progression from
gallstone disease to dysplasia and then to GBC (37). They
identified stages of progression through a sequence of early
(gallstone disease and low-grade dysplasia), intermediate (high-
grade dysplasia), and late (GBC) stages. In particular,
methylation of genes involved in WNT signaling, Hedgehog
signaling, and tumor suppression increased with tumor
grade. CNVs also increased along with tumor grade (as
mentioned above).

Somatic Mutations in Blood, Bile,
and Cytology Specimens in Biliary
Tract Cancer
Circulating cell-free DNA (cfDNA) usually refers to nucleic acids
(fragments of DNA) detected in the peripheral blood released
secondary to apoptosis or necrosis (62, 63). In cancer patients,
November 2021 | Volume 11 | Article 768009
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a significant proportion of cfDNA comes from normal cells of
the body, a small part related to tumors, coming from primary
tumors, metastatic sites, or circulating tumor cells (CTC), and is
called circulating tumor-DNA (ctDNA) (64). In the last 5 years,
liquid biopsies (detecting mutations in cfDNA) have gained
popularity in oncology practice as they may be the only source
for tumor DNA in certain cancers such as BTCs, where getting
adequate tissue for sequencing is difficult. Among BTCs,
acquiring tissue for EHCs is more difficult than for IHC and
GBCs. In BTC, limited studies in this area indicate a high
mutation detection rate (74%–85%) regardless of whether
patients are treatment naive or on treatment at the time of
sample collection and have reliable concordance with mutations
in the tumor tissue (50%–74%) (21, 65–67). Concordance in the
matched samples (blood and tissue from the same patient)
depends on the source of the tissue (higher with metastatic vs.
primary site) and also the tumor type [higher in IHC (92%)
compared with EHC or GBC] (67).

The cfDNA has a dependable sensitivity and specificity in
diagnosing BTC (68, 69). The frequency of the detected
mutations in cfDNA in BTC patients is the same as those
detected in the tumor tissue (21, 67). Due to limited studies, it
is hard to conclusively identify cfDNA mutational profile
differences between IHC, EHC, and GBCs. In one study with
69% IHCs, 18% EHC, and 13% GBC, FGFR and ARID1A were
the most prevalent alteration in IHC and EHC, respectively.
CDK6, APC, and SMAD4 alterations were common in GBCs.
TP53 and KRAS were the most prevalent in all three groups (70).
BTCs in younger patients (<50 years) have more FGFR2,
PIK3CA, MET, and BRAF mutations compared with older
patients (≥50 years) (70). TP53 (67% vs. 35%, p = 0.6) was
predominant in the older population.

Detection of clinically relevant and targetable mutations for
approved therapies is better in ctDNA than tissue, and it ranges
between 30% and 40% in advanced CCAs (65, 71). In a study
with 71 BTCs with detectable ctDNA, 75% of the patients had
targetable mutations (both on- and off-label for BTC), indicating
that this will be a valuable tool in the future (21). Variant allelic
frequency (VAF) represents the percentage of mutant reads
divided by the total number of reads coverage at a specific
genomic position (72). VAF in ctDNA at the baseline
correlates well with the tumor burden in CCA but does not
have any predictive or prognostic value (65, 67). cfDNA integrity
(ratio of ALU247 and ALU115) had a reliable diagnostic and
prognostic value (unfavorable clinicopathological features) in
GBC (68). Short segments of DNA originally characterized by
Arthrobacter luteus (Alu) restriction endonucleases are ALU
units (69).

CTC detection is low in CCA, especially in early-stage (stages
I and II) tumors, and detection rates vary with the thresholds for
positive tests (CTC ≥ 2 vs. CTC ≥ 5). In a study reported in 2016,
detection rates for the threshold of ≥2 and ≥5 were 17% and 9%,
respectively, and most of them were advanced-stage cancers (73).
Both the thresholds had significant prognostic value in the entire
group. In subgroup analyses, both maintained prognostic value
in metastatic CCA and EHC. A threshold of ≥5, in addition, had
Frontiers in Oncology | www.frontiersin.org 6
prognostic value in the IHC group and trended toward
significance in non-metastatic CCAs. Li et al. proposed the
concept of ctDNA fingerprinting in eight tumor types,
including CCA (74). The authors began with whole exosome
sequencing (WES) in patients before the treatment (surgery or
systemic therapy or locoregional therapy) appropriate to the
disease. Then, a patient-specific panel with high-frequency clonal
population clusters was designed and followed in the patients
after treatment. Two entities followed in subsequent tests were
ctDNA content fraction (CCF) and the fold change in CCF. The
CCF is higher, and the fold change increased in patients who
progress compared with patients with stable disease or response.
In patients receiving selective internal radiation, a reduction in
the CNVs was observed in patients with IHC (75). Platinum-
based therapy showed a potential benefit in BTCs with DDR gene
mutations in a small study (65). The benefit was seen in partial
response rate, radiological response, and increased
overall survival.

In one of the earlier studies that proved the feasibility of
detecting DNA-methylation markers in CCA, a four-gene panel
with HOXA1, PKRCB, CYP26C1, and PTGDR was proposed to
differentiate CCA from healthy controls with sensitivity/
specificity of 83%/93% (76). A couple of years later, higher
cfDNA methylation levels of OPCML and HOXA9 genes,
individually or together, also proved to have a good diagnostic
value in distinguishing CCA from benign biliary diseases (77).
The sensitivity/specificity of a combined marker is 62%/100%.
Non-specific methylation levels in cfDNA do not have good
diagnostic utility in GBC, with sensitivity/specificity around
55%/50% (68). We need robust studies to take the methylation
markers in cfDNA to clinical practice.

Examining cytology specimens derived from endoscopic
retrograde cholangiopancreatography (ERCP) to identify
malignant cells is the standard test to diagnose malignancy.
The addition of fluorescence in situ hybridization (FISH) and
mutational profile testing to cytology helps to diagnose BTCs in
patients who present with biliary strictures (78–81). Mutational
profiling with KRAS and other prominent tumor-suppressor
genes alone can increase the sensitivity by 56% and diagnostic
yield to 100% when done in conjunction with cytology (82).

DNA-methylation markers in the biliary brushings can also
be a tool for diagnosing CCA, and many studies reported using
four to six gene panels for this purpose. Andersen et al. suggested
that a four-gene panel, namely, CDO1, CNRIP1, SEPT9, and
VIM, detected in 45%–77% of the samples had a sensitivity and
specificity of 85% and 98%, respectively (83). Prachayakul et al.
reported using the methylation index (MI) of two genes, HOXA1
and NEUROG1 (84). Each has better sensitivity and accuracy
than cytology and CA 19-9 in differentiating CCA from benign
diseases. The methylation markers were positive even in patients
with negative cytology and normal CA 19-9 levels. The combined
sensitivity/accuracy of MI, cytology, and CA 19-9 was 97%/91%.
Yang et al. reported good sensitivity and specificity of methylated
EMX1 for differentiating EHC from primary sclerosing
cholangitis (PSC) and non-PSC controls (85). In the same
study, HOXA1 had a sensitivity of 100% differentiating CCA
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from non-PSC controls, but not in PSC controls. Parsi et al.
showed that 80% (N = 10) of NTCs have positive methylation for
one of three genes, CCND2, NPTX2, and TFPI2 (86).

The ctDNA isolated from the bile using the techniques
employed for plasma cfDNA (NGS) has shown some
encouraging results (87, 88). In bile, mutations can be detected
in 60%–75% of BTC patients, with specificity close to 100%.
Concordance rates between bile ctDNA and tissue DNA are
higher than plasma cfDNA (88%). p16INK4a is a tumor-suppressor
gene frequently associated with many cancers, including CCA
(89). In bile samples, promoter methylation of p16INK4a is positive
in over 50% of CCA compared with just 6% in benign diseases
(cholelithiasis) and normal bile ducts (90). Concordance with the
tissue samples for p16INK4a promoter methylation was as high as
86%. Just as with mutation profiling of biliary brushings, few
panels for methylation markers in bile have been reported in the
literature. In EHC, methylation of the five-gene panel with
CCND2, CDH13, GRIN2B, RUNX3, and TWIST1 has a better
sensitivity than cytology (83% with methylation markers vs. 46%
in cytology) (91). Similarly, Zhang et al. proposed a six-gene
panel (DKK3, p16, SFRP2, DKK2, NPTX2, and ppENK) to
diagnose pancreatobilary cancers with sensitivity/specificity/
accuracy of 77.27%/77.78%/77.50% (92). In summary,
expanding precision medicine to bile and cytology brushings
can improve diagnostic testing and help identify better
prognostic and predictive biomarkers.

Non-DNA Molecular Markers
in BTC Tissues
Non-DNAmolecular markers include messenger RNA (mRNA),
non-coding RNA (ncRNA), proteins, and metabolites. mRNA
and ncRNA are within the scope of precision medicine. The
ncRNA refers to RNA that is not translated into protein and can
be detected in the blood and is being extensively studied in
Frontiers in Oncology | www.frontiersin.org 7
tumors for diagnostic and prognostic purposes (93, 94). They can
be classified bases on their size into a) long non-coding RNAs or
lcRNAs that are more than 200 bases; and b) small non-coding
RNAs or sncRNAs that have up to 200 bases which are further
classified into small nucleolar RNAs (snoRNAs), small nuclear
RNAs (snRNAs), Piwi-RNAs (piRNAs), and microRNA or miR.
Extracellular vesicles are lipid membrane-bound spheres released
from cells into body fluids (blood, saliva, bile, and urine)
comprising materials shed from the cells, including proteins,
nucleic acids, and metabolites (95, 96). They are a good source
for molecular markers in the blood. They are of three kinds:
microvesicles, exosomes, and apoptotic bodies (97, 98).

Among the RNA molecular markers, miR is the preferred
biomarker among all the ncRNAs in oncology as it has a proven
role in pathways implicated in malignant transformation and can
be detected/measured easily in blood, bile, and other body fluids;
it is a more stable nucleic acid making it more reliable (94, 99–
101). Even though it is still in the experimental stage, the current
landscape of prominent non-DNA markers in blood and urine is
summarized in Table 3 (44, 102–128).

In summary, NGS of the tumor tissue (when available) is
widely used to identify the targetable mutations in the current
clinical practice for managing BTCs. There is a strong clinical
need to develop novel biomarkers. On the clinical side, we may
see the expansion of precision medicine in three different
directions soon: firstly, identifying more reliable DNA-
molecular markers such as DNA-methylation markers and
non-DNA markers such as mRNA, miRNA, and lncRNA;
secondly, making detection of the molecular markers in non-
invasive sources of genetic material such as blood (ctDNA and
EV), bile, and urine feasible with acceptable reliability and
accessible in day-to-day clinical practice; and finally,
integrating different molecular makers from different sources
and stratifying in high prognostic and predictive value. Non-
TABLE 3 | Non-DNA markers in biliary tract cancers.

Source Non-DNA marker

Tissue miR-22, -125a/b, -127, -199a, -376a/c, -142-3p, -25, -15a/b, -193, -17-5p, -374, -106a/b, -224, -130b, -19a, -331, -324-5p, -20, 17-3p, -223, -15b, -103,
-98, -204, -338, -198, -302d, -328, -337, -302b, -184, -320, -371, -185, -222, -214, -373, -145, -200c, let-7a, let-7b, -21, -135b, -122, -27a, -29a, -429,
-24, -203, -29b, -20a/-20b, -93, -30e, -30b, -151-3p, -10a, -181a, -96, -663b, -103, -221, -107, -424, -340, -451, -145, -99a, -630, let-7c, -144, -100,
-139-5p, -337-3p, -1, -126, -376c, -517c+-519a, -520e, -30c, -96, -30b, -100, -145
lncRNA PANDAR 141, AFAP1‐AS1 140, CCAT-1, NEAT-1, MALT-1, CPS1-IT1
Prognostic value: miR-192, -675-5p, -652-3p, -338-3p, -126, -21, 192, -21, -214, -151-3p, -373

Blood In circulating-free RNA: mRNAH/PSC/UC: CMIP, GAD1, NME1, CSD1, NME1, CDS1, CK1B, CKS1B; miR-21HI/b, -221H/b, -194 with miR483-5pH/b, -222 with
miR483-5pPSC, -122H, -192hI/Liverfluke, 26aH, -150H/I, -106AHL, -26aPSC, -122PSC, -1281PSC, -126PSC, -30bPSC

In EV: miR-604H, -1224H, -200c-3p, -96-5p, -151a-5p, -191-5p, -4732-3p, -551BH/PSC/UC, -200a/c-3p: lcRNA—LOC100134868, LOC643955. PTTg3P
Prognostic value: seven mRNA signatures, namely, CD36, GGCX, UBASH3B, DBN1, PTTG1, CCNA2, and SPATS2. In resected tumors, postop decline in
total miR level (by 20), miR-106a, -192, -26a, -150. miR-200a/c-3p (in EV)

Bile Circulating-free miR9, -145, -105, -147b,let-7f-2,let-7i,-302c,199a-3p, -222a, -942, -640PSC, -412PSC, -1537PSC, -3189PSC, -30d-5pBenign, -92a-3pBenign;
higher methylation rates of miRNA-1247 and -200a
In EV: miR-191, -486-3p, -1274b, -16, -484

Urine Circulating-free mRNA: UBE2C, SERPINB1; miRNA 21 and 192H

In EV: miR-483; snRNA—RNU11: miscRNA—LOC257358: vtRNA—RNA1-1
H, compared to healthy; PSC, compared to primary sclerosing cholangitis; UC, ulcerative colitis; I, exclusive for IHC; B, include all BTCs; Benign, compared to benign; mRNA, messenger
RNA; miR, micro RNA; lncRNA, long non-coding RNA; EV, extra vesicles; miscRNA, miscellaneous RNA; vtRNA, vault RNAs; snRNA, small nuclear RNA.
amiR122 is lower compared with PSC and higher in healthy.
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invasive sources will also help in monitoring the treatment
response. Novel techniques to detect ctDNA such as surface-
enhanced Raman scattering (SERS) and biosensors are being
studied, which may compete and replace traditional techniques
(polymerase chain reaction and NGS) (129–133).
TREATMENT UPDATES

Current Management of Biliary
Tract Cancers
Gemcitabine/cisplatin (GC) combination is the systemic therapy of
choice in advanced BTC, and capecitabine is the recommended
adjuvant treatment (in case of negative margins) (134, 135). The
NCCN guidelines recommend FOLFOX based on the ABC-06 trial,
and the difference in OS was minimal even though statistically
significant (6.2 months in the FOLFOX group vs. 5.3 months in the
supportive therapy group) (136). GC and the nab-paclitaxel
combination seem promising, especially in the first line (49, 137).
In a recently presented trial, nanoliposomal irinotecan (nal-IRI) plus
5-FU/LV was compared with 5-FU/LV in a phase IIb randomized
trial (138). The PFS (7.1 months for the combination vs. 1.4months,
p = 0.019), OS (8.6 vs. 5.5 months, p > 0.001), and ORR (14% vs.
5.8%) were better for the combination therapy which is
encouraging. The serious adverse events (≥ grade 3) were very
high in the combination group (77% vs. 31%).
Frontiers in Oncology | www.frontiersin.org 8
Targeted Therapy
In FGFR2 fusions or rearrangements, pemigatinib and
infigratinib are recommended (139). IDH1 or IDH1 mutant
BTCs can be treated with ivosidenib (14). Neurotrophic tyrosine
receptor kinase (NTRK) gene rearrangement-positive tumors
respond to NTRK inhibitors such as larotrectinib and
entrectinib (10, 11). Dabrafenib and trametinib combination
was recently approved for BRAF V600E mutation (140, 141).
The list of targeted therapies is summarized in Table 4. The
published trials are cited, and the identifier is added to
unpublished trials.
Immunotherapy
Treating disease by modulating (suppressing or activating) the
immune system refers to immunotherapy (153). ICI is the most
commonly used for immunotherapy in oncology and is used in
almost all solid and hematological malignancies. In clinical
practice, after progression in GC, targeted therapy or
immunotherapy is considered if feasible. In patients with
microsatellite instability (MSI-H), pembrolizumab is
recommended based on the KEYNOTE-158 study with 22
advanced BTCs. The objective response rate was observed in
41% of BTCs with two patients with complete response (154).
Correlation between TMB and response to ICI is difficult to
assess as none of the BTCs enrolled in KEYNOTE-158 had
TABLE 4 | Targeted therapy in biliary tract cancer.

Target Drug Approved Early success Ongoing

FGFR2 Pemigatinib Pemigatinib** Pemigatinib + GC (NCT03656536)III *
Infigratinib Infigratinib** Infigratinib vs. gemcitabine cisplatin (NCT03773302)III *
Futibatinib Futibatinib** II (142) Futibatinib vs. GC (NCT04093362)* III

Derazantinib Derazantinib** I/II (143) Ponatinib (NCT02265341)** II

Erdafitinib Erdafitinib** II (144) Deibo 137 (NCT03834220)** II

IDH1 Ivosidenib Ivosidenib**
LY3410738 (for IDH1 R132) LY3410738 (NCT04521686)** I

Olutasidenib (FT-2102) FT-2102 vs. FT-2102 and nivolumab (NCT03684811)** I/II

IDH1/2 Dasatinib Dasatinib (NCT02428855)** II

AG-881 AG-881 (NCT02481154)** I

IDH2 Enasidenib (NCT02273739)** I/II

NTRK Larotectinib Larotectinib**
Entrectinib Entrectinib**

Protein kinase CK2 inhibitor Silmitasertib Silmitasertib + GC* I/II (145)
VEGF inhibitor Regorafenib Regorafenib** I (146) Regorafenib (NCT02053376)** II

Surufatinib Surufatinib** II (147)
HER2 inhibitor Zanidatamab Zanidatamab** I/II (148, 149) Zanidatamab (NCT04466891)** II

Neratinib Neratinib** II (150)
Trastuzumab Trastuzumab + pertuzumab** II (151)

Trastuzumab + mFOLFOX** II (152)
Dickkopf-1 (DKK1) DKN-01 DKN-01 + GC* I (128) DKN-01 + N (NCT04057365)** II

ATR inhibitor Ceralasertib (Ce) (AZD6738) Ce + D (NCT03780608)** II

Ce + olaparib (NCT03878095)** II

BRCA1/2 inhibitor Olaparib Olaparib (NCT04042831)* II

Niraparib Niraparib (NCT03207347)* II

CDK4/6 Abemaciclib Abemaciclib (NCT04003896)** II

HDAC Entinostat Entinostat + nivolumab (NCT03250273)** II
I, phase 1 trials; II, phase 2 trials; III, phase 3 trials; *first line; **second line or more; NTRK, neurotrophic tyrosine receptor kinase; ATR, ataxia telangiectasia and Rad3-related; HDAC,
histone deacetylase; BRCA, breast cancer gene; VEGF, vascular endothelial growth factor; HER2, human epidermal growth factor receptor 2; IDH, isocitrate dehydrogenase; FGFR,
fibroblast growth factor receptor.
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higher TMB (≥10 mutations/Mb). PDL-1 overexpression does
not seem to have any effect on responses either (155, 156).
Nivolumab and ipilimumab combination did not have
encouraging results either, with just 23% ORR (157). The
current NCCN recommendation is to use nivolumab for
refractory advance BTCs that are not MSI-H irrespective of
TMB, and PDL-1 expression is weak (156).
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Currently, many trials are combining ICI with either
chemotherapy or targeted therapy or locoregional therapies
such as transarterial chemoembolization (TACE), cryotherapy,
radiofrequency ablation (RFA), and radiotherapy (as reported in
Table 5). Traditional ICIs target either PD-1 or PD-L1 or CTLA-4.
Bintrafusp alfa, a bifunctional antibody targeting TGF-b
(transforming growth factor-b) and PD-L1, had success in the
TABLE 5 | Immunotherapy in biliary tract cancers.

Drug class Drug Approved Early success Ongoing trials

Immune checkpoint
inhibitor

Pembrolizumab (P) P** in
MSI-H

P + lenvatinib** II (158) P + GC vs. placebo + GC* III (159)
P + sargramostim (NCT02703714)** II

P + Olaparib (NCT04306367)** II

XmAb®22841 monotherapy
vs.
XmAb®22841 + P (NCT03849469)** I

P + XL888 (Hsp90 inhibitor)** I (NCT03095781)
P + Peginterferon alpha-2b** II (NCT02982720)

Nivolumab (N) N** N + GC vs. N + ipilimumab* II

(160)
N + S-1+ G (NCT04172402)* II

N + GC** I (161) N + rucaparib (NCT03639935)* II

Nal-irinotecan/5-fluorouracil/leucovorin + N (NCT03785873)** I/II

N + high-dose XRT
vs.
N + ipilimumab and high-dose XRT (NCT02866383)** II

N + TPST-1120 (PPARa antagonist)* I (NCT03829436)
Bintrafusp alfa Bintrafusp alfa** II (162) Bintrafusp alfa + GC* II/III (163)
Durvalumab (D) ±
tremelimumab (T)

D ± T + GC (164) D + GC (NCT03875235)* III

D and D + T** I (165) D + olaparib (NCT03991832)** II

D + AZD6738 (ATP inhibitor) + olaparib (NCT04298021)** II

D vs. D + T (NCT04238637)** II

D + guadecitabine (NCT03257761)** I

T + TACE or RFA** II (166) D + T
vs. D + T + TACE
vs. D + T + RFA
vs. D + T + cryotherapy (NCT02821754)** II

D + SNDX-6352 (NCT04301778)** II

D + T + XRT (NCT03482102)** II

Toripalimab (To) To + GC* (167)
To + lenvatinib + GEMOX (168) To + GEMOX (NCT04191343)* II

To (IV) + HAIC infusion of oxaliplatin, 5-FU, and Bev (NCT04217954)
* II

Camrelizumab (C) C + cryoablation (NCT04299581)** II

C + radiotherapy (NCT03898895)* II

Sintlimab Sintlimab (PD-1) + anlotinib
(AL3818) (169)

STI-3031 STI-3031 (NCT03999658)** II

SHR-1210 SHR-1210 + capecitabine (NCT04295317)** II

Avelumab Avelumab + regorafenib (NCT03475953)** I/II

Arginase inhibition NCB001158 NCB001158 + GC* I/II (13)
Natural killer (NK)
cells

Allogenic NK cell Allogenic NK cell (SMTNK) + P (NCT03937895)** I/I

Autologous cells T cells Tumor-infiltrating lymphocytes with high-dose aldesleukin** II

(NCT03801083)
Central memory T cells + standard therapy after resection* II

(NCT03820310)
CAR-T cell therapy CAR-T MUC1 CAR-T cell therapy + fludarabine + cyclophosphamide* I/II

(NCT03633773)
Anti-HER2 CAR-T cell* I (NCT04660929)

Oncolytic virus Adenovirus Virus encoding immunostimulatory TMZ-CD40L and 4-1BBL with
GC* I/II (NCT03225989)
I, phase 1 trials; II, phase 2 trials; III, phase 3 trials; *, first line; **, second line or more; GC, gemcitabine/cisplatin; CAR-T, chimeric antigen receptor—T cell; MSI-H, microsatellite
instability—high.
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early phase trials (162). Vaccines with individual peptides such as
MUC1, Wilms tumor 1 (WT1), or multiple in treating advanced
BTC peptides had limited success previously but not enough to
pursue it forward (170–175). There is some evidence that chimeric
antigen receptor-modified T cells (CART) against epidermal growth
factor receptor (EGFR) and CD133 and tumor-infiltrating
lymphocytes are effective in managing refractory CCA (176–178).

CONCLUSION

BTCs are rare cancers with a high mortality rate and limited
systemic options. It is important to recognize the significant
differences in the genomic landscape of IHC, EHC, and GBC. As
noted above, we need to start investing in DNA markers other
than somatic mutations such as methylation markers and non-
DNA markers (miRNA, mRNA, and lncRNA) to help diagnose,
screen, and predict the treatment response in BTCs. There is also
a critical need to explore and refine biomarkers (DNA and non-
DNA) in blood, bile, and cytology specimens, as they are more
accessible than tissue in BTCs. The low prevalence of MSI-H and
targetable mutations in BTC restricts the use of available/
Frontiers in Oncology | www.frontiersin.org 10
approved therapies. The success of drugs targeting new targets
(such as PKCK2, HER2, and DKK1) and newer drugs for older
targets (FGFR inhibitors such as futibatinib, derazantinib, and
erdafitinib) is encouraging, and we may have a host of new drugs
in the next 3–4 years. Traditional PD-1, PD-L1, and CTLA-4
inhibitors are being tested in various ways, as monotherapy, in
combination with targeted therapy or chemotherapy, or
locoregional therapies for treating BTCs, which might open up
a whole new arsenal of drugs to choose. Newer immunotherapies
such as bintrafusp alfa, arginase inhibitors, and T-cell-mediated
treatments can further expand the horizon in the management
of BTCs.
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