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Abstract

Pathogen-host protein-protein interaction (PPI) plays an important role in revealing the underlying pathogenesis of viruses
and bacteria. The need of rapidly mapping proteome-wide pathogen-host interactome opens avenues for and imposes
burdens on computational modeling. For Salmonella typhimurium, only 62 interactions with human proteins are reported to
date, and the computational modeling based on such a small training data is prone to yield model overfitting. In this work,
we propose a multi-instance transfer learning method to reconstruct the proteome-wide Salmonella-human PPI networks,
wherein the training data is augmented by homolog knowledge transfer in the form of independent homolog instances. We
use AdaBoost instance reweighting to counteract the noise from homolog instances, and deliberately design three
experimental settings to validate the assumption that the homolog instances are effective to address the problems of data
scarcity and data unavailability. The experimental results show that the proposed method outperforms the existing models
and some predictions are validated by the findings from recent literature. Lastly, we conduct gene ontology based
clustering analysis of the predicted networks to provide insights into the pathogenesis of Salmonella.
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Introduction

Pathogen-host protein-protein interaction (PPI) plays an

important role in revealing the molecular-level dynamic mecha-

nism of microbial pathogenesis. Fast and accurate reconstruction

of proteome-wide pathogen-host PPI networks is essential to reveal

the host cellular processes that pathogen proteins may interfere

with. In recent years, high throughput experimental techniques

have drastically accumulated much knowledge about intra-species

PPI networks, though noisy and far incomplete [1,2]. Accordingly

the majority of computational methods have been developed as

the complement of labor-intensive biological experiments for

intra-species PPI network reconstruction, e.g. yeast PPI network

[3], Arabidopsis thaliana PPI network [4], human PPI network

[5], etc. However, the current host-pathogen PPI networks are

comparatively much smaller. The latest HIV-human PPI database

[6] contains about 3,638 interactions, the P.falciparum-H.sapiens
PPI dataset [7] contains about 1,112 interactions, and the small

Salmonella-human PPI data [8] contains only 62 interactions. At

present there are very few computational methods developed for

pathogen-host PPI networks reconstruction, e.g. HIV-human PPI

prediction [9–13], P.falciparum-H.sapiens PPI prediction [14]

and Salmonella-human PPI prediction [15–17]. To improve

the predictive performance, most of the reported methods

simultaneously leverage a catalog of biological feature information

(see Table 1).

Salmonella typhimurium is a facultative intracellular pathogen

that causes a variety of diseases from acute gastroenteritis to

systemic infection. After invasion into the lumen of host small

intestine, Salmonella secretes effectors that interact with the host

cellular proteins to ensure its survival in the host cellular

environment and gain control of the host immune response [18].

To gain more insight into the inflammation/immune signaling

pathways that Salmonella induced or interfered with, we need to

fast and accurately reconstruct the complete Salmonella-human

PPI networks. Unfortunately, the current experimentally derived

Salmonella-human PPI network contains only 62 interactions [8],

much smaller than the HIV-human PPI network [6] and the

P.falciparum-H.sapiens PPI network [7]. As a fast complement to

experimental techniques, computational modeling can accelerate

the reconstruction of Salmonella-human PPI networks at low cost.

To our knowledge, only a few computational methods have been

developed to date for Salmonella-human PPI prediction [15–17].

Schlekera et al. [15] used protein sequence similarity and protein
domain similarity to predict Salmonella-human PPIs. Kshirsagar et

al. proposed two machine learning methods to predict Salmonella-

human PPIs [16,17], wherein the random forest method [16]

imputed the missing feature information of gene ontology and gene
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expression, and the multi-task learning method [17] proposed DC

optimization to integrate the feature information of gene ontology,

gene expression and pathways. Except the similarity based method

[15], the other two methods both adopt data integration to

improve the model performance. Data integration is a popular

method to enrich the abundance of feature information, but it has

two major disadvantages: (1) aggregating more features without

augmenting the size of training data is prone to increase the risk of

model overfitting on small data; (2) integration of multiple aspects

of feature information poses more demanding data constraints on

the computational modeling. If the required feature information is

not available for the proteins to be predicted, the data integration

methods [8–11,14,16–17] will fail to work. Even for those methods

that exploit only one type of feature information, e.g. protein
structural similarity [12], gene ontology [14], etc., the problem of

data unavailability should also be properly addressed. Most of the

types of effective feature information listed in Table 1 are derived

from costly experiments and are likely to be not available for some

proteins. Thus we need to deliberately consider effective substi-

tution of missing feature information and design proper experi-

mental setting to validate the feature substitution. Kshirsagar et al.

[16] conducted explicit substitution for the missing feature

information of gene ontology and gene expression, but did not

explicitly estimate the model performance in the case of feature

information substitution. As compared to non-sequence feature

information, protein sequence is cheap to obtain and imposes the

least demanding data constraints on computational modeling.

However, it has been reported that protein sequence alone is not

sufficient to train a satisfactory model for PPI prediction [19].

In this work, we propose a multi-instance transfer learning

method to reconstruct the proteome-wide Salmonella-human PPI

networks. In the method, gene ontology (GO) is used as

discriminative features to represent proteins. Due to the incom-

pleteness and scarcity of gene ontology knowledge, we treat the

homolog GO information (the aggregated GO information from

the homologs) as independent homolog instance to augment or

substitute for the target instances (the GO information from the

protein itself). The potential noise from homologs is counteracted

by AdaBoost instances reweighting algorithm [20,21]. To validate

the effectiveness of the method, we design the following three

experimental settings: (1) Single Instance Learning as the baseline

model that conducts no homolog knowledge transfer; (2) Multi-
instance Learning Novel where the training data are represented

with target instances and homolog instances, while the test data are

represented with homolog instances only; (3) Multi-instance
Learning where both the training data and the test data are

represented with target instances and homolog instances. Last, we

use the proposed method to reconstruct the proteome-wide

Salmonella-human PPI networks, based on which we further

conduct gene ontology based clustering analysis to provide

valuable cues for further biomedical research.

Materials and Methods

Data and materials
Schleker et al. [8] experimentally derived 62 interactions

between 25 Salmonella proteins and 51 human proteins, based

on which Kshirsagar et al. [16,17] developed two machine

learning methods for Salmonella-human PPI prediction. PPI

prediction is generally treated as a problem of two-class

classification where the PPIs are treated as positive data and a

negative data is needed for computational modeling. At present

the experimental negative data is hardly available and the

common practice to generate negative data is random sampling.

Random sampling is based on the assumption that the expected

number of negatives (non-interacting protein pairs) is several

orders of magnitude higher than the number of positives

(interacting protein pairs) [22], such that the negative space is

randomly sampled with larger probability than the positive space.

The human proteins for negative data sampling are taken from the

latest SwissProt database [23]. Besides the way of negative data

sampling, the second problem is to determine the ratio of positive
data to negative data. Here we adopt 1:1 ratio instead of highly

skewed ratio like 1:100 [16,17] based on the two points: (1) it is

hard to simulate the true ratio of positive data to negative data and

simulation of the ratio makes little sense to computational

modeling; (2) simply pooling so large a negative data is prone to

yield an extremely unbalanced training data and thus yields a

highly biased model.

To validate how well the proposed model generalizes to unseen

data, we further need to construct a validation set from recent

literature. We find 18 Salmonella-human PPIs in [18] and two

novel interactions (SspH2, SGT1) & (SspH2, Nod1) in [24]. After

excluding the non-protein interactions (e.g. cholesterol, inositol

phospates) and the interactions that have been collected in [8], we

obtain 7 novel interactions as validation set.

Transfer learning
As compared to traditional supervised learning, transfer

learning focuses on useful knowledge/information transfer across

related domains that are heterogeneously subjected to distinct

statistical distributions [25]. One major merit of transfer learning

is that there is no need to make the assumption of independent and
identical distribution (iid) between target domain and auxiliary

domain. Such the relaxation opens up wide avenues for transfer

learning in the field of biological data analysis. In recent years,

many sophisticated machine learning methods have been devel-

oped to exploit the auxiliary data for useful biological information

transfer [26,27,28].

In this work, the homolog knowledge is exploited to make up for

data scarcity as well as to address the concern of data
unavailability. Unlike computing individual kernel matrices in

[26,27] and training individual classifiers in [28], the homolog

Table 1. Summary of feature information extracted from literature.

Integration of feature information Literature

sequence k-mer, interlog, gene ontology, metabolic pathways [7]

binding motif, gene expression profile, gene ontology, sequence similarity, post-translational modification, tissue distribution, PPI network topology [9,10]

protein domain profile, sequence k-mer [11]

structural similarity [12]

protein domain profile, gene expression, gene ontology, gene co-expression [14]

doi:10.1371/journal.pone.0110488.t001
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knowledge transfer is conducted here by means of independent

homolog instances under AdaBoost learning framework [20,21].

The merit is that the independent homolog instance is used to

augment and enhance the target instance, and especially substitute

for the target instance when the required feature information is not

available. Meanwhile the potential of negative knowledge transfer

by homolog instances can be attenuated by AdaBoost instance

reweighting algorithm[20,21].

GO feature construction
The homologs for each protein are extracted from SwissProt

57.3 database [23] using PSI-BLast [29]. We choose default PSI-
BLast parameters setting (E-value = 10) to enlarge the coverage of

homologs and GO terms. The GO terms are extracted from GOA
database [30] (114 Release, as of 28 November, 2012). For each

protein i, there are two sets of GO terms, one set contains the GO
terms from homologs denoted as homolog set Si

H
, and the other set

contains the GO terms from the protein itself denoted as target set
Si

T
. Here the term target is used to denote the protein itself

(comparative to homolog) instead of the pathogen targeted protein.

Based on the denotations, two feature vectors for each PPI pair

(i1,i2) are formally defined as follows:

B
(i1,i2)

T ½g�~
0,g 6[S

i1
T ^ g 6[S

i2
T

2,g[S
i1
T ^ g[S

i2
T

1,otherwise

8><
>: ð1Þ

B
(i1,i2)

H ½g�~
0,g 6[S

i1
H ^ g 6[S

i2
H

2,g[S
i1
H ^ g[S

i2
H

1,otherwise

8><
>: ð2Þ

where B
(i1,i2)

T ½g� denotes component g of the target instanceB
(i1,i2)

T

and B
(i1,i2)

H ½g� denotes component g of the homolog instance

B
(i1,i2)

H . Formula (1) and formula (2) mean that if the interacting

proteins pair shares the same GO term g, the corresponding

component in the feature vector B
(i1,i2)

T or B
(i1,i2)

H is set 2; if neither

protein in the protein pair possesses the GO term g, the value is set

0; otherwise the value is set 1. The definition is symmetrical, i.e.,

the protein pair (i1,i2) and the protein pair (i2,i1) have identical

feature representation.

Multi-instance transfer learning
In the scenario of traditional supervised learning, each data

point is represented by only one instance, but only one instance

may not be sufficient to depict a complex object in most cases. For

example, as biological macromolecules protein molecule constant-

ly changes spatial conformations and DNA molecule temporally

changes expression levels. Full depiction of the temporal and

spatial information needs more than one instance. For another

example, evolutionary information is usually used for us to

understand the molecular functions of novel proteins or the

interactions between orthologs (interlog) [7]. In the case that we

can not mingle the information of the protein itself with the

information of the homologs, multi-instance representation is a

good choice.

In this work, we depict each protein with two instances, the

target instance and the homolog instance, The target instance is

used to represent the GO information of the protein itself and the

homolog instance is used to capture the evolutionary information of

the target protein. Besides enriching the feature information of

target instance, the homolog instance serves the second purpose of

substituting the target instance when the target GO information is

not available. We can see that the homolog knowledge transfer by

means of independent homolog instances is a novel way to

simultaneously solve the problems of data scarcity and data
unavailability. Despite the merits, homolog instances may carry a

certain level of noise from evolutionary divergence and the noise

probably does harm to the model performance. For the reason, we

need to choose noise-resistant machine learning methods to

counteract the noise contained in the homolog instances. To our

knowledge, AdaBoost is an empirically established and theoreti-

cally proven machine learning method that boosts an ensemble of

weak learners by instances reweighting [20,21,31]. It has been

theoretically proven that by means of regularization technique,

multiple rounds of instances reweighting help AdaBoost to achieve

maximum margin between two-class hyper-planes [31]. The

regularization technique penalizes the noise/outlier at the cost of

high training error to achieve low generalization error. In this

work, we adopt the latest variant Modest AdaBoost [21] that

softens the weight distributions between easy-to-classify instances

and the hard-to-classify instances. For completeness, Modest

AdaBoost [21] is briefly described as follows:

1. Given training instances(x1,y1),:::,(xN ,yN ), initialize instance

weights D0(i)~1=N,i~1,:::,N;

2. For m = 1,…, M and while fm=0

a. Use distribution Dm(i)and weighted least squares to train

weak classifier:

a.

hm(x)~ arg min
h

XN

i~1

Dm(i).(yi{h(xi))
2

 !
ð3Þ

b. Compute the inverted distribution

b.

Dm(i)~1{Dm(i)
�
Zm

ð4Þ

c. Compute

c.

Pz1
m (x)~PDm (y~z1 ^ hm(x)); P

z1

m (x)

~PDm
(y~z1 ^ hm(x))

ð5Þ

P{1
m (x)~PDm (y~{1 ^ hm(x)); P

{1

m (x)

~PDm
(y~{1 ^ hm(x))

ð6Þ

d. Set

d.

fm(x)~(Pz1
m (1{P

z1

m ){P{1
m (1{P

{1

m ))(x) ð7Þ
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Update the weight distributions

Dmz1(i)~Dm(i) exp ({yifm(xi))=Zm
ð8Þ

3. Construct the final classifier

3.

F(x)~
XM
m~1

fm(x) ð9Þ

where M denotes the number of iterations in the training,

Zm,Zmare normalizing coefficients that are chosen to satisfyPN
i

Dm

{

(i)~
PN

i

Dm(i)~1, Pz1
m ,P{1

m denote the probability that

the weak classifier hm(x) assigns label fz1,{1gto the instance

xunder the weight distr ibutionDm, and similar ly

P
z1

m ,P
{1

m denote the probability under the inverted weight

distributionDm. Formula (8) suggests that the weight increases

(Dmz1(i)wDm(i)) for those misc las s i f i ed ins tances

(yifm(xi)v0). The weight distribution Dm inverted from

Dmconversely assigns higher weights to those correctly-

classified instances. We can see that Dmpays more attention

to those easy-to-classify instances while Dmpays more attention

to those hard-to-classify instances. Modest AdaBoost made a

compromise between the two weight distributions to make soft

the decision function fm(x) (see formula (7)).

In the test phase, each test protein pair (i1,i2) is represented by

two instances, the target instance B
(i1,i2)
T and the homolog

instanceB
(i1,i2)
H . The decision committee F(x) as defined in Formula

(9) yields two outputs F(B
(i1,i2)
T ),F(B

(i1,i2)
H ) for the two instances

(B
(i1,i2)
T ,B

(i1,i2)
H ). In multi-instance AdaBoost, the final decision value

for the protein pair (i1,i2) is defined as follows:

V (i1,i2)~
F(B

(i1,i2)

T ),if DF(B
(i1,i2)

T )DwDF(B
(i1,i2)

H )D

F(B
(i1,i2)

H ),otherwise

(
ð10Þ

where D.Ddenotes the absolute value. The final class label for the

protein pair (i1,i2) is defined as follows:

L(i1,i2)~
1,if V (i1,i2)w0

0,otherwise

�
ð11Þ

For those positive predictions, the decision values are further

normalized to measure the confidence level of prediction:

V
{

(i1,i2)~V (i1,i2){Vmin=Vmax{Vmin
ð12Þ

where Vmindenotes the minimum decision value and Vmindenotes

the maximum decision value.

Model evaluation and model selection
To validate the effectiveness of homolog knowledge transfer by

means of independent homolog instances, we design three

experimental settings: (1) Single Instance Learning that does not

consider homolog knowledge transfer; (2) Multi-instance Learning
Novel where the training data point is represented with target
instance and homolog instance, while the test data point is

represented with the homolog instance only.; (3) Multi-instance
Learning where both the training data point and the test data

point is represented with target instance and homolog instance.

The experimental setting (2) is explicitly designed to estimate the

model robustness against data unavailability, and the experimental

setting (3) is designed to validate the assumption that the homolog
instance is effective to augment the training data and thus to solve

the problem of data scarcity for Salmonella-human PPI prediction.

As regards with Modest AdaBoost [21], there are two hyper-

parameters to be empirically determined, one parameter M is the

rounds of training, and the other parameter is the base learner. Here

M is chosen within {50, 100, 150, 200, 250, 300, 350} and the base

learner is a decision tree with the number of tree splits chosen within

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The model performance is estimated by

10-fold cross validation using the following performance metrics:

ROC-AUC (AUC of Receiver Operating Characteristic), PR-AUC
(AUC of Precision recall curve), SP (Specificity), SE (Sensitivity) and

MCC (Matthews correlation coefficient). We first derive several

intermediate variables from confusion matrix M as defined in

formula (13), and then we calculate SP, SE and MCC for each label

(SPl, SEl and MCCl) as defined in formula (14), based on which to

further calculate the overall accuracy (Acc) and the overall MCC
(MCC) as defined in formula (15).

pl~Ml,l ,ql~
XL

i~1,i=l

XL

j~1,j=l

Mi,j ,rl~
XL

i~1,i=l

Mi,l ,sl~
XL

j~1,j=l

Ml,j

p~
XL

l~1

pl ,q~
XL

l~1

ql ,r~
XL

l~1

rl ,s~
XL

l~1

sl

ð13Þ

SPl~pl=plzrl
,l~1,2:::,L

SEl~pl=plzsl
,l~1,2:::,L

MCCl~(plql{rlsl)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(plzrl)(plzsl)(qlzrl)(qlzsl)
p

,l~1,2:::,L

ð14Þ

Acc~
PL

l~1 Ml,l

.PL
i~1

PL
j~1 Mi,j

MCC~(pq{rs)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(pzr)(pzs)(qzr)(qzs)
p ð15Þ

where the confusion matrix Mi,jrecords the counts that class i are

classified to class j and L denotes the number of class labels. The

AUC metric is calculated on the basis of the decision values defined

by formula (10). For comparison with the existing methods, we also

report the F1 score defined as follows:

F1score~2|SPl|SEl=SPlzSEl
,

l~1denotesthepositiveclass
ð16Þ

Results

Model performance
Cross validation performance evaluation on benchmark

data. We conduct 10-fold cross validation to validate the
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effectiveness of homolog knowledge transfer by means of

independent homolog instances. The ROC curves for the three

experimental settings are illustrated in Figure 1. From Figure 1,

we can see that both the experimental setting Multi-instance
Learning and the experimental setting Multi-instance Learning
Novel outperform the baseline experimental setting Single
Instance Learning, with ROC-AUC scores equal to 0.8335,

0.8176 and 0.8003, respectively. Besides ROC curve, precision-
recall curve (PR curve) is another performance metric that is often

used to measure the performance of two-class classification,

especially in the scenario of highly skewed (extremely unbalanced)

training data [32]. For comprehensive study, the PR curves for the

three experimental settings are plot in Figure 2, with PR-AUC
scores equal to 0.8678, 0.8369 and 0.8325, respectively. From

Figure 1 and Figure 2, we can see that the homolog knowledge

transfer by means of independent homolog instances does improve

the model performance (Multi-instance Learning versus Single
Instance Learning), and the homolog instances can be treated as

effective substitute when the required feature information is not

available (Multi-instance Learning Novel versus Single Instance
Learning).

The ROC Curve and the PR Curve focus on the positive class

(interaction), paying little attention to the negative class (non-

interaction). In this work, we comprehensively survey the

performance on both he positive class and the negative class,

and use MCC to measure the predictive bias. The performance

metrics in terms of SP, SE and MCC are given in Table 2. From

Table 2, we can see that the SE, SP and MCC values show no

significant variance between the positive class and the negative
class in the three experimental settings, except the SE values

(positive class: 0.8065, negative class: 0.6935) in the setting Multi-
instance Learning Novel. The MCC values on the two classes

suggest that there is little predictive bias. As compared to ROC-
AUC scores and PR-AUC scores, the performance metrics of

overall accuracy and overall MCC shows obvious performance

increase between Multi-instance Learning and Single Instance
Learning (overall accuracy 78.23% versus 70.97%; overall MCC
0.6306 versus 0.5260), so does it between Multi-instance Learning
Novel and Single Instance Learning (overall accuracy 75% versus

70.97%; overall MCC 0.5833 versus 0.5260). The results once

again suggest that the homolog instances are effective to augment

the training data and substitute for the missing target GO
information. The very small performance difference between

Multi-instance Learning and Multi-instance Learning Novel
further verifies the effectiveness of homolog instances.

The F1 score defined in formula (16) takes into account SP and

SE on the positive class. As shown in Table 2, the three

experimental settings Multi-instance Learning, Multi-instance
Learning Novel and Single Instance Learning achieve F1 scores

0.80, 0.76 and 0.71, respectively. The relatively significant

increase of F1 scores also demonstrates the effectiveness of

homolog knowledge transfer by means of independent homolog
instances.

Performance comparison with existing models. To

further validate the model merits, we compare our proposed

multi-instance transfer learning method with two reported

machine learning methods, one is Random Forest [16], and the

other is multi-task learning method [17]. As shown in Table 3,

Random Forest [16] achieved rather low SE value (0.407) on the

positive class, much lower than our method (SE = 0.8065), though

a little higher SP values than our method (SP 0.817 versus

0.7692). Such a low SE value (0.407) suggests that Random Forest

[16] is likely to be highly biased towards the negative class. In

addition, Random Forest [16] also achieved much lower F1 score

than our method (F1 score 0.52 versus 0.80).

The multi-task learning method [17] simultaneously exploited

multiple PPI networks from the bacteria S.typhi, B.anthracis,
F.tularensis and Y.pestis. The method reported the F1 score only

(0.758). Model evaluation with inadequate performance metric is

one of major weaknesses to both the methods [16,17]. As

Figure 1. ROC curves for the three experimental settings (Multi-instance Learning, Multi-instance Learning Novel, Single Instance
Learning).
doi:10.1371/journal.pone.0110488.g001
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compared to the Random Forest method [16] and the multi-task

learning method [17], our proposed multi-instance transfer

learning method has the following merits (1) we design the

experimental setting Single Instance Learning as the baseline to

verify the performance gain and robustness of information

substitution by the homolog instances. Unfortunately, the Random

Forest method [16] should have designed the baseline experimen-

tal setting of no imputing missing values, and the multi-task

learning method [17] should have designed the single-task learning

of only S.typhi without information from B.anthracis, F.tularensis
and Y.pestis, as the baseline experimental setting. Without the

baseline performance, we can not gain knowledge about the

performance increase by imputing missing values [16] and

optimizing multiple sub-tasks learning [17]; (2) Besides the baseline

experimental setting, we also design an extreme experimental

setting Multi-instance Learning Novel where the feature informa-

tion of the test proteins is completely not available (e.g. novel

proteins). Both the methods [16,17] did not test the model

robustness against data unavailability; (3) Besides gene ontology,

the two methods [16,17] also need other feature information such

as gene expression, RNAi expression, conserved pathways, Pfam
interactions, etc., which may also be not available. In our methods,

only gene ontology is needed and thus the data constraint is much

less demanding. Of course, the above-mentioned comparison is

rough in a sense. The randomness introduced by data partition of

cross validation and negative data sampling makes it hard to

conduct strictly fair comparison between different computational

methods. Furthermore, the performance increase of novel method

against the existing methods benefits to a certain degree from the

update of data (e.g. GOA update). Nevertheless, a relatively rough

comparison helps us to gain some knowledge about the reliability

of novel models. For the existing models, it is necessary to

frequently update the model training using up-to-date data.

Schlekera et al. [15] used protein sequence similarity (sequence

identity was 21%) to predict interlogs, achieving 49% recognition

rate (i.e. SE = 0.49) on the dataset [8]. The SE value is equivalent

to the Random Forest [16] (SE = 0.407) but much lower than the

proposed multi-instance transfer learning method (Multi-instance
Learning SE = 0.8065; Multi-instance Learning Novel
SE = 0.8065; Single Instance Learning SE = 0.7258).

Model validation on data from recent literature. To

further validate the model performance, we conduct independent

test using the data from recent literature. The recent experimental

findings are generally scarce and scattered in massive biomedical

literature, and it is hard to manually collect adequate data for

model validation. By manual search, we find 18 Salmonella-
human PPIs in [18]. Excluding the non-protein interactions (e.g.

cholesterol, inositol phospates) and the interactions that have been

collected in [8], we obtain 5 novel interactions, together with two

novel interactions (SspH2, SGT1) & (SspH2, Nod1) [24], we

obtain 7 novel interactions as validation set. The predictions on

the validation set are shown in Table 3, where the normalized

decision values in the third column measure the confidence level of

the predictions. All the 7 novel PPIs are correctly recognized by

the proposed method. Interestingly, the two proteins O43765 and

O95905 both are related to the gene SGT1, but only O43765 is

predicted to interact with SspH2. According to gene ontology
annotations, O95905 is annotated as ‘‘Novel regulator of p53
stability and function’’ (http://www.uniprot.org/uniprot/

O95905) and O43765 is annotated as ‘‘Co-chaperone that binds
directly to HSC70 and HSP70 and regulates their ATPase
activity’’ (http://www.uniprot.org/uniprot/O43765). It has been

reported in [24] that SGT1 interacting with SspH2 was restricted
to those SGT1 proteins that have NLR co-chaperone function.

O43765 fulfils co-chaperone function while O95905 does not,

O43765 (SGT1) is predicted to interact with SspH2 while O95905

is not. The details of the predicted interactions between SspH2

and SGT1 are consistent with the experimental findings in [24].

Figure 2. Precision-Recall curves for the three experimental settings (Multi-instance Learning, Multi-instance Learning Novel,
Single Instance Learning).
doi:10.1371/journal.pone.0110488.g002
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Reconstruction of proteome-wide Salmonella-human PPI
networks

Proteome-wide PPI predictions. To reconstruct the pro-

teome-wide Salmonella-human PPI networks, the 25 Salmonella
proteins in the 62 interactions [8] are used as pathogen proteins and

the human proteins are taken from the file uniprot_sprot_human.
dat.gz available at ftp://ftp.uniprot.org/pub/databases/uniprot/

current_release/knowledgebase/taxonomic_divisions/. Excluding

those uncurated proteins and those proteins that already appear

in the 62 interactions [8], we totally obtain 20,334 reviewed human

proteins. Hence the prediction space contains 508,350 (25620,334)

protein pairs. The predictions are given in File S1. Among the

20,334 human proteins, 6271 human proteins are predicted to

interact with the 25 Salmonella proteins and 75,381 novel

interactions are detected by our method. Comparatively, the

Random Forest method [16] predicted 190,868 novel interactions

between 22,653 human proteins and 486 Salmonella proteins, of

which 461 Salmonella proteins were not included in the 62 PPIs [8].

After excluding the 461 Salmonella proteins and the related

predictions, the Random Forest method [16] predicted 134,339

interactions, much larger than 75,381 interactions predicted by our

method, suggesting a larger coverage of true interactions and

meanwhile a higher risk of false positive predictions.

Overlap with existing models. The overlap of predictions

between different computational methods is generally small. For

instance, the overlap between the predictions by the three methods

[9,12,13] contains only 4 HIV-human PPIs. Such a low overlap

largely results from the two points: (1) the overlap analysis is not

based on proteome-wide predictions; (2) the threshold of the final

predictions is generally chosen to be much higher than the

threshold for model estimation [10,16,17], and thus narrows down

the scale of the predicted PPI networks. As regards with

Salmonella-human PPI prediction, the Random Forest method

[16] yielded 134,339 interactions, our method yields 75,381

interactions and there are 23,159 overlapped predicted PPIs (see

File S2). The overlap rate between Random Forest [16] and our

method is 12.41%. Here the overlap rate among K methods is

formally defined as D \
K

i~1
Oi D
�

D |
K

i~1
Oi D, where Oi denoted the

predictions yielded by the i-th method and DAD denotes the

cardinality of set A. The 23,159 overlapped PPIs are supposed to

be more reliable. As compared to the low overlap rate among the

three methods [9,12,13], the large overlap rate between Random

Forest [16] and our method is largely due to the proteome-wide

prediction space. Besides, as compared to large training data, the

small training data is prone to yield a relatively larger portion of

false positive predictions, which may also contribute to the large

overlap rate. It is worth noting that if we further define as positives

those predictions with V
{

(i1,i2)wd(V
{

(i1,i2) is defined in formula

(12)), the predicted interactions are supposed to be more reliable.

Schlekera et al. [15] used the 62 Salmonella-human interactions

to derive interlogs, i.e. the interacting pairs between Salmonella
protein orthologs and human protein orthologs. Unlike the

Random Forest method [16] and our method, Schlekera et al.

[15] did not predict the interactions between the 25 Salmonella
proteins contained in the benchmark data with other human

proteins, so we do not conduct analysis of network overlap with the

method.

Discussions

Reconstruction of pathogen-host PPI networks is of importance

to reveal the underlying mechanism of pathogen infection and host

defence. At present, it is still a challenging task for labor-intensive
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experimental techniques to accurately map the proteome-wide

pathogen-host protein interactome. Computational modeling is a

good complement to experimental methods for fast proteome-wide

interactome mapping at low cost. Unfortunately, the current

experimentally derived pathogen-host PPI networks are rather

small, for instance, there are only 62 known PPIs between

Salmonella typhimurium and human, such a small network would

yield a computational model that does not generalize well. On the

other hand, computational modeling need deliberate dwelling on

the problem that the knowledge in biological databases (e.g. gene
ontology) is currently not complete.

In this work, we conduct homolog knowledge transfer by means

of independent homolog instances to serve the purposes: (1)

augmenting the training data to reduce the risk of model

overfitting; (2) enriching the feature information to improve the

model performance; (3) substituting for the missing feature

information to enhance the model robustness against data
unavailability. The multi-instance transfer learning method is

implemented under the framework of AdaBoost, where the gene
ontology knowledge from the homologs is treated as independent

homolog instance to augment the training data. The noise from the

homolog instances could be counteracted by AdaBoost instance

reweighting algorithm.

To validate the assumptions that the independent homolog
instances are effective to solve the problems of data scarcity and

data unavailability for Salmonella-human PPI prediction, we

deliberately design three experimental settings: Multi-instance
Learning, Multi-instance Learning Novel and Single Instance
Learning and comprehensively survey the model performance by

multiple performance metrics: SP, SE, Accuracy, MCC, ROC-
AUC and PR-AUC. The results of 10-fold cross validation

experiments show that the homolog knowledge transfer by means

of independent homolog instances does improve the model

performance and helps the model work properly in the extreme

case that the gene ontology knowledge is completely not available.

The experimental results also show that the proposed multi-

instance transfer learning method significantly outperforms the

existing machine learning methods with less demanding data

constraints. To further validate how well the proposed model

generalizes to unseen data, we collect 7 experimentally derived

interactions from the recent literatures. Al78 interactions can be

correctly recognized by our method. Interestingly, for the two

proteins {O43765, O95905} that are related to gene SGT1, only

the protein O43765 that fulfils the molecular function of co-
chaperone is predicted to interact with SspH2, which is consistent

with the recent findings.

Noteworthily, there are two concerns that need to be addressed,

one concern is about the feasibility of training model on the small

Salmonella-human PPI data, and the other concern is about false

positive rate. Although the proposed model demonstrates sound

performance from the point of view of cross validation and

independent test experiments, the smallness of data may not

convince us of the validity of the predictions as the large HIV data

does [6,10,28]. The worry comes from whether or not it is feasible

to use so small a data to train a satisfactory model. Actually, some

machine learning methods like SVM (support vector machine) are

derived from small-example statistical learning theory [35], where

only a small number of support vectors (SV) are needed to define

the two-class decision hyper-planes and a large number of non-

SVs are discarded. The gracefulness of sparseness is often used to

reduce the computational complexity [28,36,37]. It has been

theoretically proven that the regularization technique helps

AdaBoost to achieve large margin between two-class hyperplanes

and sparseness like SVM [31], implying that it is still feasible to

train a satisfactory model on such a small data for Salmonella-

human PPI prediction. We note that the multi-instance transfer

learning method is specifically proposed to augment very small

data. For large data like HIV, the proposed method will increase

the computational complexity and thus seems not to be a proper

Table 3. Model validation on data from recent literatures.

Salmonella effector proteins Targeted human proteins Confidence level

AvrA MTOR 0.3271

SipA F-actin caspase-3 0.5157

SipC F actin 0.5185

PibB2 Kinesin-1 0.2943

SseI F-actin 0.5185

SspH2 SGT1 0.1059

SspH2 Nod1 0.5410

doi:10.1371/journal.pone.0110488.t003

Figure 3. The predicted Salmonella-human PPI sub-network GO:
0032862 (biological process: activation of Rho GTPase activity). The
red node denotes Salmonella protein and the green node denotes
human protein.
doi:10.1371/journal.pone.0110488.g003
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solution. As regards with the second concern, both biological

experiments and computational predictions are supposed to yield a

certain level of false positives. For biological experiments, different

experimental techniques are generally specific to particular types

of interactions, for instance, Y2H as an in vivo technique is highly

effective at detecting transient interactions and can be readily

applied to screen large genome-wide libraries, but is limited by its

biases toward non-specific interactions [38]. Likewise computa-

tional method is also prone to yield false positive predictions,

especially on small training data, and the 7 correctly recognized

interactions (see Table 3) may be worried to result from high false

positive rate. Actually, our proposed method greatly reduces the

risk of false positive predictions as compared to the Random Forest

[16] (predicted 75,381 interactions versus predicted 134,339

interactions). To ensure the validity of the predictions, we can

increase the decision threshold as V
{

(i1,i2)wd(V
{

(i1,i2)is defined in

formula (12)).

The ultimate goal of model development and model estimation

is to reconstruct reliable proteome-wide protein interaction

networks between Salmonella typhimurium and Homo sapiens.

To gain insights into the patterns of Salmonella infection and host

response, the predicted PPI networks are further subjected to gene
ontology based clustering analysis. We simply cluster together the

Salmonella targeted human proteins on the basis of gene ontology
terms. To provide valuable cues about the host protein complexes,

molecular functions and signaling pathways that Salmonella
proteins may interfere with, we assign to the same cluster the

human partners that possess the same GO term, with each cluster

corresponding to one PPI sub-network. All the GO terms of

human proteins are classified into thee major classes, i.e.,

biological processes (P), molecular functions (F) and cellular

compartments (C). For each major class, we further discuss the

two cases: (1) all the 25 Salmonella proteins are involved in the PPI

sun-network, denoted as P1, F1 and C1, respectively; (2) NOT all

the 25 Salmonella proteins are involved in the PPI sun-network,

denoted as P2, F2 and C2, respectively. P1, F1 and C1 are given in

File S3, File S4 and File S5, respectively. P2, F2 and C2 are given

in File S6, File S7 and File S8, respectively. For the sake of quite a

large number of predicted PPI sub-networks, we only demonstrate

several PPI sun-networks as examples, interested readers are

referred to File S3,File S8 for insightful biological cues.

PPI sub-network GO: 0032862 - activation of Rho GTPase
activity

It has been reported in [33] that Salmonella typhimurium injects

toxins SopE, SopE2 and SptP to change the GTP/GDP loading

Figure 4. The predicted Salmonella-human PPI sub-network GO: 0008234 (molecular function: cysteine-type peptidase activity). The red
node denotes Salmonella protein and the green node denotes human protein.
doi:10.1371/journal.pone.0110488.g004

Figure 5. The predicted Salmonella-human PPI sub-network
GO: 0007205 (biological process: activation of protein kinase C
activity by G-protein coupled receptor protein signaling
pathway). The red node denotes Salmonella protein and the green
node denotes human protein.
doi:10.1371/journal.pone.0110488.g005
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state of Rho GTPases by transient interactions, wherein SopE and

SopE2 mimic eukaryotic G-nucleotide exchange factors (GEF) and

thereby activate Rho GTPase signaling pathways in the infected

host cells. In this work, the Salmonella proteins are predicted with

7 human proteins that are annotated with GO term GO: 0032862

(activation of Rho GTPase activity). The predicted PPI sub-

network GO: 0032862 is illustrated in Figure 3. The two

Salmonella SopE proteins (O52623, Q7CQD4) are predicted to

interact with 5 human proteins {Q9H8V3, Q6ZW31, Q5VT97,

Q92574, P21709}, suggesting that the SopE activates Rho

GTPase signaling pathways by directly mimicking the molecular

functions of the host proteins or indirectly interacting with the host

proteins. Among the 7 human proteins, the two human proteins

{Q9H8V3, Q92574} are predicted to be targeted by all the 25

Salmonella proteins while the two proteins {Q8IYL9, P32248} are

predicted to be targeted by only one Salmonella protein.

PPI sub-network GO: 0008234 - cysteine-type peptidase
activity

The predicted PPI sub-network is illustrated in Figure 4. In

Figure 4, the Salmonella proteins are predicted to interact with 70

human proteins that fulfil the molecular function ‘‘cysteine-type

peptidase activity’’ (GO: 0008234), wherein the Salmonella
protein Q8ZQQ2 is a hub protein that is predicted to target 63

human proteins. The Salmonella protein slrP (Q8ZQQ2) is an

effector protein that functions to alter the host cell physiology and

promote bacterial survival in the host tissues. This protein is an E3

ubiquitin ligase that interferes with the host ubiquitination

pathway and leads to significant decrease of thioredoxin activity

and increase of the host cell death (http://www.uniprot.org/

uniprot/Q8ZQQ2). The six human proteins {P5521, Q14790,

P42575, O00303, P55210, P55211} are predicted to be targeted

by all the 25 Salmonella proteins, wherein P5521 is involved in the

activation cascade of caspases responsible for apoptosis execution,

whose over-expression promotes programmed cell death. The

predictions suggest the Salmonella proteins may also interfere with

the host apoptotic signaling pathways.

PPI sub-network GO: 0007205 - activation of protein
kinase C activity by G-protein coupled receptor protein
signaling pathway

The predicted PPI sub-network is illustrated in Figure 5. As

shown in Figure 5, all the 20 predicted human partners except

{P46663, P17677} are densely connected with the 25 Salmonella
proteins. Salmonella protein spiC (P0CZ04) is predicted to target

all the 20 human proteins and the human proteins {Q07954,

P49619, Q86XP1, Q9NRD5, Q16760, P52824, Q9Y6T7,

Q9P212, Q8TEW0, Q5KSL6, P23743} are predicted to be

targeted by all the 25 Salmonella proteins. Salmonella protein spiC

(P0CZ04) is a virulence protein that plays a central role in

mammalian macrophage infection by inhibiting phagosome-

lysosome fusion and cellular trafficking (http://www.uniprot.

org/uniprot/P0CZ04). The human protein Q07954 is an

endocytic receptor involved in endocytosis and in phagocytosis

of apoptotic cells, and may modulate the cellular events such

as APP metabolism, kinase-dependent intracellular signaling,

neuronal calcium signaling as well as neurotransmission (http://

www.uniprot.org/uniprot/Q07954). The molecular function an-

notations of the two proteins suggest that Salmonella protein spiC

(P0CZ04) is highly likely to interact with the human protein

Q07954.

Figure 6. The predicted Salmonella-human PPI sub-network GO: 0003777 (molecular function: microtubule motor activity). The red node
denotes Salmonella protein and the green node denotes human protein.
doi:10.1371/journal.pone.0110488.g006
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PPI sub-network GO: 0003777 - microtubule motor
activity

In [34], it is reported that Salmonella typhimurium grows within

the host cells in a permissive compartment termed Salmonella-

containing vacuole (SCV), and some SPI-2 effectors modulate

microtubule motor activity on the SCV. In this work, the

Salmonella proteins are predicted with 74 human proteins that

are annotated with the GO term GO: 0003777 (microtubule motor

activity) (see Figure 6), and the SPI-2 effector sseJ (Q9FD10) is

predicted to interact with 26 human proteins that are involved in

the molecular functions ‘‘microtubule motor activity’’. From

Figure 6, we can see the predicted PPI sub-network GO:

0003777 is densely connected and the 10 human proteins

{Q9H0B6, Q8NCM8, Q8NCM8, Q9GZS0, Q12840, P33176,

Q02224, Q9NS87, O95239, O14576} are predicted to be

targeted by all the 25 Salmonella proteins. The human protein

Q9H0B6 (Kinesin light chain 2) is a light chain of Kinesin (a

microtubule-associated force-producing protein that may play a

role in organelle transport), and the light chain may function in

coupling of cargo to the heavy chain or in the modulation of its

ATPase activity (http://www.uniprot.org/uniprot/Q9H0B6).

The prediction suggests that the Salmonella proteins may interfere

with the host organelle transport and ATPase activity.

Supporting Information

File S1 XML file contains the proteome-wide predicted

Salmonella-human PPIs.

(XML)

File S2 XML file contains the overlapped interactions between

our method and Random Forest [16].

(XML)

File S3 XML file contains the clusters of interacting human

partners that participate in specific biological processes. All the 25

Salmonella proteins are involved in the predicted PPI sub-

networks.

(XML)

File S4 XML file contains the clusters of interacting human

partners that fulfil specific molecular functions. All the 25

Salmonella proteins are involved in the predicted PPI sub-

networks.

(XML)

File S5 Text file contains the clusters of interacting human

partners that are localized in specific cellular compartments. All the

25 Salmonella proteins are involved in the predicted PPI sub-

networks.

(XML)

File S6 XML file contains the clusters of interacting human

partners that participate in specific biological processes. NOT all

the 25 Salmonella proteins are involved in the predicted PPI sub-

networks.

(XML)

File S7 XML file contains the clusters of interacting human

partners that fulfil specific molecular functions. NOT all the 25

Salmonella proteins are involved in the predicted PPI sub-

networks.

(XML)

File S8 XML file contains the clusters of interacting human

partners that are localized in specific cellular compartments. NOT

all the 25 Salmonella proteins are involved in the predicted PPI

sub-networks.

(XML)
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