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Emerging evidence accumulated over the past several years has uncovered intestinal

CD4+ T cells as an essential mediator in modulating intestinal immunity in health and

diseases. It has also been increasingly recognized that dietary and microbiota-derived

factors play key roles in shaping the intestinal CD4+ T-cell compartment. This review

aims to discuss the current understanding on how the intestinal T cell immune responses

are disturbed by obesity and metabolic stress. In addition, we review how these changes

influence systemicmetabolic homeostasis and the T-cell-mediated crosstalk between gut

and liver or brain in the progression of obesity and its related diseases. Lastly, we highlight

the potential roles of some drugs that target intestinal T cells as a therapeutic treatment

for metabolic diseases. A better understanding of the interaction among metabolites,

bacterial signals, and T cell immune responses in the gut and their roles in systemic

inflammation in metabolic tissues should shed new light on the development of effective

treatment of obesity and related disorders.
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INTRODUCTION

Obesity is a key risk factor for many chronic diseases and represents a growing global and serious
public health crisis. Recent studies show that individuals with obesity are linked with a great
increase in morbidity and mortality from COVID-19 infection (1, 2). Obesity is characterized by
low-grade chronic inflammation in key metabolic tissues such as adipose tissues, which control
whole-body energy homeostasis (3). The intestinal tract, continuously exposed to dietary factors
and foreign antigens, is a critical site of high immune challenge. A complex and highly specialized
network of innate and adaptive immune cells is orchestrated to deal with this complex situation,
including the largest population of T cells in the body (4). In recent years, emerging evidence has
revealed an integral link between the microbial or dietary signals and gut T cell immune responses
during obesity development (5–8).

Conventional gut-resident T cells mainly include CD8+ T cells and CD4+ T cells, the latter
are generally composed of T-helper 1 (Th1) cells, T-helper 2 (Th2) cells, T-helper 17 (Th17)
cells, Follicular helper T (Tfh) cells, and regulatory T (Treg) subsets (4, 9). Th17 cells and Treg
cells are the most abundant CD4+ T cells in mucosal tissue. Th17 cells, induced by TGF-β and
IL-6 through the master transcription factor RORγt, play a critical role in host defense against
fungi and maintenance of intestinal homeostasis through producing IL-17 and/or IL-22 (10, 11).
However, aberrant activation of Th17 cells could lead to the pathogenesis of various autoimmune
diseases (12). CD25+Foxp3+ Treg cells play a nonredundant role in the maintenance of intestinal
homeostasis in a IL-10 and TGF-β-dependent mechanisms (11). Th1 cells, which are a major
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source of IFN-γ, are important mediators in the eradication of
intracellular pathogens such as viruses and bacteria (13). Tfh
cells, characterized by their expression of B cell follicular homing
chemokine receptor CXCR5 and co-stimulatory molecules PD-
1 (14, 15), help differentiation of germinal center B-cells and
production of high-affinity antibody including intestinal IgA
(16). In addition to the widely studied conventional CD4+ and
CD8+ T cell subsets, the gut is enriched by unconventional
T cells, including the γδ T cells, natural killer T (NKT) cells,
and mucosal-associated invariant T (MAIT) cells. All these
cells are critical regulators in maintaining gut barrier function
and immune homeostasis (17, 18). The potential role of these
unconventional T cells in intestinal immunity and inflammation
has been reviewed elsewhere (19–21). In the current review, we
focus on the crosstalk between dietary- and microbiota-derived
signals and intestinal T cell immune responses in the regulation
of obesity and its related disorders. We also highlight the roles
of intestinal T cells in mediating the communication between
the gut and other organs in the initiation and progression of
metabolic-related diseases. Ultimately, we underline an emerging
concept that modulating gut T cells may be an effective approach
in treating obesity-induced metabolic diseases.

INTESTINAL T-CELL ANATOMICAL
DISTRIBUTION

The small and large intestines, which digest and absorb nutrients
and water from ingested food, comprise a continuous tube that
stretches from the outlet of the stomach to the anus. In the
small intestine, the finger-like projections called villi drastically
increase the surface area of the small intestine for greater
absorption of the digested food. In the colon, villi are absent
and the epithelium surface is flat with smaller crypts, which
correlates with their function as reabsorbing water from feces and
acting as a barrier to the commensal microbiota. Gut homeostasis
is maintained by the intestinal epithelial barrier, mucus layer,
commensal microbiota as well as the gut immune system (22).

T cells distributed within the small and large intestine are
frequently arranged within the gut-associated lymphoid tissue
(GALT), which are composed of organized lymphoid tissues
and more diffusely scattered lymphocytes (23). The organized
lymphoid tissues include mesenteric lymph nodes, Peyer’s
patches, isolated lymphoid follicles (ILFs), and the diffusely
scattered lymphocytes consists of intraepithelial lymphocytes
(IELs) compartment and the lamina propria lymphocytes (LPL)
compartment (24, 25). Peyer’s patches occur in the fetal
small intestine independent of the intestinal flora (25). The
organization of Peyer’s patches is comparable to that of lymph
nodes, with large B cell follicles and T cell areas. Peyer’s patches
are in close contact with microfold cells (M cells) located in
gut epithelium which can capture and transport antigens from
the lumen to antigen-presenting cells such as dendritic cells
(DCs) in the underlying Peyer’s patches (26). DCs can also
form transepithelial dendrites that enable the cells to directly
sample luminal antigens (27, 28). These antigen-loaded DCs
emigrate through lymphatics to the mesenteric lymph nodes,

where they present the captured antigens to T cells (28). The
ILFs, with features similar to Peyer’s patches (29), are distributed
along the whole intestinal tract, and, unlike Peyer’s patches, their
development is triggered by the intestinal flora (30). IELs are
in direct contact with the enterocytes and proximity to antigens
in the gut lumen, which making them components of the front
line of immune defense against invading pathogens (31). There
are more IELs in the small intestine compared with the colon
(32). IELs are usually CD8+ T cell populations with a significant
proportion of γδ TCR (33, 34). By contrast, the majority of the
T cells in lamina propria are CD4+ T cells, with only a small
population of CD8+ T cells in this location (35). Similar to
their distribution within the IELs, lamina propria CD4+ T cells
are accumulated at higher levels within the colonic than within
the small intestine (11). The vast majority of T cells present in
the gut epithelium and lamina propria are antigen-experienced
effector/memory phenotypes, making them suitable to quickly
deal with both harmless and hazardous stimuli from incoming
antigens (35) (Figure 1).

THE INTESTINAL T CELL IMMUNE
RESPONSES INFLUENCED BY
OBESITY-ALTERED MICROBIAL AND
DIETARY SIGNALS

The adaptive responses of T cells in the intestine, which are
influenced by microbial and dietary factors associated with diet-
induced obesity, are critical regulators in systemic inflammation
and glucose metabolism.

Overview of Intestinal T Cells in the
Context of Obesity
High fat diet (HFD) feeding induces changes in intestinal
immunity before the onset of systemic low-grade inflammation
and insulin resistance (5). It has also been shown that the effects
of HFD on intestinal T cells are more confined in the small
intestinal lamina propria (SILP) while little or no change is
observed in the colon, suggesting that the interaction between
the immune system and gut microbiota localized in the SILP is
crucial in the development of metabolic disease (5, 36).

Contrary to unaltered Th2 cells in the gut of obese mice,
HFD feeding leads to an increase in the proportion of IFN-
γ+ Th1 cells and CD8+ T cells in the SILP (5–7). Likewise, T-
bet+ Th1 cells are increased in the small intestine and colon of
obese patients compared with lean control human subjects (6).
IFN-γ−/− mice display improved barrier function compared to
wild-type (WT) mice under HFD feeding conditions, implicating
that local intestinal IFN-γ production may be one of the critical
mediators of intestinal permeability in obesity (6). Consistent
with this finding, reduced infiltration of IFN-γ-producing cells
in the bowel contributes to the improved gut barrier function of
β7-deficient mice under HFD feeding conditions (37).

HFD feeding reduces the proportions and numbers of
RORγt+Th17 and Treg cells in the SILP (5–7). Consistently,
Treg cells are decreased in the small intestine and colon of obese
patients compared with lean control human subjects (6). It is
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FIGURE 1 | Anatomical distribution of intestinal T cells. T cells distributed within the small and large intestine are frequently arranged within the gut-associated

lymphoid tissue (GALT), which are composed of organized lymphoid tissues including mesenteric lymph nodes, Peyer’s patches, and isolated lymphoid follicles (ILFs)

as well as more diffusely scattered lymphocytes including the lamina propria lymphocytes and intraepithelial lymphocytes (IELs). IELs reside within the epithelium layer

and are proximity to antigens in the gut lumen, making them components of the front line of immune defense against invading pathogens. There are more IELs in the

small intestine compared with the colon. The majority of T cells in lamina propria are CD4+ T cells, with only a small population of CD8+ T cells. Among the CD4+ T

cell subsets, Th17 cells and Treg cells are the most abundant cells in the gut, conferring protection against fungi and maintenance of intestinal homeostasis. The

organization of Peyer’s patches is comparable to that of lymph nodes, with large B cell follicles and T cell areas. Peyer’s patches are in close contact with microfold

cells (M cells) located in gut epithelium which can capture and transport antigens from the lumen to antigen-presenting cells such as dendritic cells (DCs) in the

underlying Peyer’s patches. DCs can also form transepithelial dendrites to directly sample luminal antigens and then emigrate to the mesenteric lymph nodes, where

they activate naive T cells to induce gut-tropic T cells. The ILFs, with features similar to Peyer’s patches, are distributed along the whole intestinal tract and believed to

provide a complementary system for Peyer’s patches.

suggested that the reduction of Porphyromonadaceae, a family
within the order Bacteroidales, in the ileum at the onset of HFD
feeding could be responsible for the reduction of Th17 cells (5).
Co-transfer of Th17 and Treg cells lowers the fasting glucose and
insulin levels, improves glucose tolerance and insulin sensitivity
in obese Rag1−/− mice, while transfer of Treg cells alone has no
effect (7). Consistently, Rag1−/− mice transferred with T cells
from RORγt−/− mice show increased body weight gain, insulin
resistance, and hyperinsulinemia compared to those injected with
T cells from WT mice even under normal chow diet feeding
conditions (5). Induction of IL-22, a major effector cytokine of
Th17 cells (38), is impaired in the colon of obese mice during
infection (39). In line with this finding, mice deficient in IL-22

receptor are prone to developing metabolic disorders under HFD
feeding conditions (1). Accordingly, administration of exogenous
IL-22 into genetically obese mice and HFD-fed mice reverses
many of the metabolic dysfunctions (1, 40). IL-17 is another
critical cytokine produced by Th17. Increasing IL17-expressing
cells in the intestine by pretreating mice with dextran sodium
sulfate, which increases gut permeability to bacteria and elevates
IL17 production, prevents HFD-induced glucose intolerance and
insulinopenia (5). In accordance with a decrease in intestinal
Th17 cells in mice, T2D patients are more sensitive to intestinal
infections with pathogens like Candida guilliermondii compared
to healthy controls (41, 42). Notably, the decrease of Th17 cells
and IL-17 levels appears to be intestine-specific as elevated IL-17
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levels are observed in peripheral blood, adipose tissues, and
livers of obese subjects (43–45), suggesting that Th17 cells may
have distinct function in the intestine from that in other tissues.
Consistent with this, obesity-induced expansion of Th17 cells in
the spleen is associated with inflammatory autoimmune diseases
in the brain (46, 47). Taken together, these findings suggest that
obesity differentially regulated the immune responses of T cell
subsets in the intestine, leading to disturbed gut homeostasis.

Communications Between Gut Microbiota
and T Cell Immune Responses
The number and type of bacteria in the gastrointestinal tract
vary by region, ranging from about 105 per ml in the upper
small intestine and up to 1012 per ml in the colon (48). It is
well established that obesity and T2D are associated with an
increase in the ratio of Firmicutes to Bacteroidetes phyla in the
gut microbiota (49, 50). The causality of gut microbiota in the
development of metabolic diseases is demonstrated in rodents
by the finding that microbiota transplantation from obese mice
or humans to germ-free recipient mice is sufficient to induce
obesity phenotypes (50–52). In addition to its regulation in lipid
metabolism (53–55), gut microbiota may regulate obesity by
influencing the innate and adaptive immune response (56).

Intestinal microbiota plays key roles in mediating T cell
function in the gut (57). Th17 cells are absent in the intestine of
both germ-free mice and specific pathogen-free animals obtained
from Jackson Labs (58). Segmented filamentous bacteria (SFB),
which induces serum amyloid A (SAA) that stimulates lamina
propria DCs and promotes the development of Th17 cells in
the gut (59–61), is much less abundant after 10 and 30 days of
HFD feeding (5). Ileum microbiota transplantation experiments
further indicate that HFD-induced changes in the gut microbiota
may be the direct cause of the decreased Th17 cells in the ileum,
which is correlated with increased metabolic dysfunction (5).
On the other hand, re-establishment of gut-tropic Th17 cells
in the small intestine of obese Rag1-deficient mice results in a
significant increase of Bacteroidetes and a decrease of Firmicutes,
both changes are associated with leanness (7). Furthermore, a
mucin-degrading bacterium Akkermansia muciniphila, which is
found to prevent obesity-induced metabolic disorders (62, 63),
is also increased after Th17 cell transfer (7). Gut-tropic Treg
cells, which express high levels of CCR9, CD103, and killer cell
lectin-like receptor G1 (KLRG1), are mostly abundant in the
intestine mucosa (64). A significant decrease in the number
of Foxp3+ Tregs was observed in the colonic but not SILP,
of germ-free mice or antibiotic-treated mice (65, 66). These
results are consistent with previous observations that germ-free
mice have increased proportions of Tregs in small intestine
(58), suggesting a differential requirement of microbiota for
the induction and maintenance of Treg cells between the small
intestine and colon. It is suggested that activation of CD4+ T
cells in the small intestine is driven mainly by dietary antigens
whereas in the colon it is induced by the microbiota (67).
Indeed, colonic Treg cells possess unique T-cell receptors (TCRs)
different from those used by Treg cells in other organs, further
implying an important role for local microbial antigens in

shaping the colonic Treg cell population (68). Nevertheless,
colonization (inoculated by gavage) of mice with a defined
mix of Clostridium strains provides a TGF-β-rich environment
that upregulates the IL-10-producing colonic Treg Cells (66).
Colonization of germ-free mice with Bacteroides fragilis (B.
fragilis) promotes the differentiation and function Foxp3+ Treg
via its immunomodulatory molecule polysaccharide A (PSA),
where Toll-like receptor 2 (TLR2) signaling is required for both
Treg induction and IL-10 expression (69).

Tfh cells, which are localized in the germinal centers of Peyer’s
patches and mesenteric lymph nodes, promote class switch and
somatic hypermutation in germinal center B cells to produce
high-affinity IgA (70). Germ-free mice or mice treated with an
antibiotic cocktail show impaired Tfh development within the gut
and this microbiota-dependent Tfh development relies on the T-
cell intrinsic MyD88 signaling (16). T cell-specific knockout of
myeloid differentiation primary response 88 (MyD88) results in
abnormal IgA antibody responses and an altered microbial gut
community, leading to more severe inflammatory diseases, age-
associated obesity, and metabolic disorders (16, 53). On the other
hand, oral treatment of germ-free mice with a purified TLR2
agonist alone was capable of significantly increasing germinal
center-Tfh abundance within Peyer’s patches (16). In summary,
these findings raise the possibility that modulating the interplay
between microbiota and intestinal T cell immune responses may
provide new treating strategies in metabolic diseases.

The Dietary Signals That Influence
Intestinal T Cell Immunity
Nutritional status potentially influences immune responses. How
dietary signals regulate immune cell dynamics and function has
gradually aroused great interest in recent years.

Bile Acids
Bile acids are cholesterol-derived natural surfactants abundant
in the mammalian gut, where they undergo bacteria-mediated
transformation to generate a large pool of bioactive molecules
that are critical for lipid digestion, antibacterial defense, and
glucose metabolism (71, 72). Pharmacologic stimulation of
bile acid receptors, which are mainly expressed on immune
cells, prevents obesity by decreasing blood glucose levels and
increasing insulin sensitivity (73). By contrast, compared with
germ-free mice colonized withWT Bacteroides thetaiotaomicron,
germ-free mice colonized with the bile salt hydrolase-depleted
Bacteroides thetaiotaomicron display reduced body weight gain
on a HFD, decreased fat accumulation in blood and liver, and
enhanced energy expenditure due to a selective alteration of
bile acid pools (74). Lithocholic acid, a secondary bile acid
metabolite, impedes Th1 activation by decreasing the production
of Th1 cytokines IFN-γ and TNF-α (75). Recently, two distinct
derivatives of lithocholic acid, 3-oxoLCA and isoalloLCA, have
been found to impair the differentiation of Th17 cells and
increase the differentiation of Treg cells, respectively (76).
Combined treatment of mice with these two bile acid metabolites
skews T cells into Treg cell at the expense of Th17 cells in the
intestinal lamina propria (76). Since bile acids exist in the gut
where abundant Treg and Th17 reside, it would be of great
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interest to determine the functional roles of these bile acid
derivatives in metabolic diseases.

Retinoic Acid
Retinoic acid, a major metabolite of Vitamin A, is found at higher
concentrations in the small intestine and the mesenteric lymph
nodes compared with the colon (77). Retinoic acid regulates
the intestinal immune homeostasis via generating gut-homing
effector T cells and induction of Treg cells (77–79). Retinoic acid
is also required to elicit pro-inflammatory CD4+ T cell responses
to infection andmucosal vaccination, since blocking retinoic acid
receptor signaling results in a cell-autonomous impairment in
CD4+ T cell activation (61). Additionally, depletion of vitamin A
in obese mice further reduced the proportion of Th17 cells in the
small intestine, leading to increased body-weight gain and insulin
resistance, while adoptive transfer of in vitro-differentiated gut-
tropic Th17 cells to obese mice ameliorates these metabolic
disorders (7). These findings reveal a critical role of retinoic acid
in T cell function in the regulation of metabolic consequences.

Short-Chain Fatty Acids
Short-chain fatty acids, including acetic, propionic, and butyric
acid, are generated in larger quantities through fermentation
of sugars, proteins, and soluble fibers (80). Signals from short-
chain fatty acids could stimulate metabolite-sensing G protein-
coupled receptors (GPR), which are generally expressed on
gut immune cells and some gut epithelial cells (81). Among
them, GPR43 on Treg cells and GPR109 on DCs appear to
be critically important for gut homeostasis. Treg differentiation
and its suppressive function are abolished in GPR43-deficient
and GPR109-deficient mice (82, 83). Mice fed a HFD with
supplement of butyric acid display a significant increase in
intestinal Treg generation and energy expenditure (84, 85).
However, higher concentrations of butyrate has been found to
induce the expression of Th1 master transcription factor T-
bet (86), suggesting that butyrate may exert either beneficial or
detrimental effects on the mucosal immune system depending on
its concentration and immunological milieu.

Dietary Salt
Excessive intake of dietary salt, which is highly contained in
the western diet, can lead to hypertension, one of the major
complications of obesity (61). Mice fed with a high-salt diet
(HSD) for 3 weeks exhibit higher frequencies of lamina propria
Th17 cells compared to normal chow-fed mice via inducing
salt-sensing kinase serum glucocorticoid kinase-1 (SGK1) (40).
However, these promoting effects are abolished in germ-free
mice, indicating a crucial role for intestinal bacteria in mediating
the effect of a HSD on Th17 cells (60). Reduced amount
of Lactobacillus murinus (L. murinus) may contribute to the
increased frequencies of lamina propria Th17 cells within the
small intestine and colon (60). In line with this, colonization of
germ-free mice with L. murinus could significantly reduce the
frequencies of lamina propria Th17 cells induced by SFB (60).
HSD also disturbs intestinal homeostasis by attenuating Treg
function, either promoting IFN-γ secretion from human Treg
cells or decrease luminal levels of Treg-inducing butyrate (43, 50).

Aryl Hydrocarbon Receptor (AhR)
AhR, a widely expressed basic helix-loop-helix transcription
factor that is abundantly expressed on murine IELs (87), can be
activated by ligands from fruits, nuts, and cruciferous vegetables.
AhR activation promotes gene expression of mediators involved
in the regulation of gut homeostasis; such mediators include
IL-22, anti-microbicidal factors, and increased Th17 cell
polarization (81). Alternatively, it is also suggested that AHR
regulates both Treg and Th17 cell differentiation in a ligand-
specific fashion (88). Lack of AhR signaling in IELs compromises
the maintenance of IELs and the control of the microbial load
and composition, leading to reduced immune surveillance and
increased vulnerability to epithelial damage (87, 89). However, a
quantitative trait locus analysis of dietary obesity in C57BL/6 and
129P3/J F2 mice revealed that the AhR gene is one of the seven
candidate genes associated with increased body weight (90).
Consistently, AhR−/− mice are protected against diet-induced
obesity and glucose intolerance (91, 92). These results suggest
that T cell-specific, but not systemic, ligation of AhRmay provide
beneficial effects on defending obesity.

Taken together, although this list of dietary signals on gut
T cell performance is not exhaustive, one can postulate that
modulating dietary factors may greatly influence intestinal T cell
function and consequently gut homeostasis.

INTESTINAL T CELLS UNDER OTHER
METABOLIC STRESSES

Aging
The number of IELs both in the small and large intestines are
highest in 6-month-old mice and then gradually decreases with
age, which may be one of the aging phenomena of the intestinal
immune system that increase liability to intestinal infections
(93). Th2 immune responses against gastrointestinal nematode
parasites are compromised in aging mice, due to inappropriate
or insufficient activation of CD4+ T cells in the submucosa (94).
T cell-specific ablation of MyD88 impairs Tfh cell development
and IgA production within the gut, leading to age-associated
obesity (53). It is suggested that altered gut microbiota and
increased lipid absorption are responsible for T cell-mediated
regulation of age-associated metabolic disorders (53). Moreover,
compared with younger people (<45 years), the small intestinal
CD4+ T cells from older human subjects (>65 years) display
altered phenotypic and functional profiles including reduced
expression of a co-inhibitory molecule, increased spontaneous
cell death, and both reduced frequencies and altered functional
responses of specific T cell subsets (95). These changes may
contribute to altered intestinal homeostasis and loss of protective
gut immunity with age.

Food Availability
It has been postulated that early childhood malnutrition confers
life-long immunodeficiency with an increased risk for metabolic
diseases such as cardiovascular disease and insulin resistance
(96, 97). Although the underlying mechanisms remain unclear,
it is proposed that defects in the diversity and composition of
commensal microbes as well as impaired gut immune function
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in response to malnutrition may contribute to these outcomes
(96, 98–100). Consistently, mice weaned onto macromolecule-
depleted chow lack peripherally generated Treg cells in the
small intestinal required for oral tolerance (67). On the other
hand, many studies have defined the beneficial effects of caloric
restriction on metabolic diseases (101, 102). Intermittent fasting
(IF) decreases Th17 but increases Treg cells in the SILP,
which, along with enriched beneficial gut bacteria, contribute
to the ameliorated experimental autoimmune encephalomyelitis
(EAE), a mouse model of multiple sclerosis diseases (103).
However, compared with those of ad libitum-fed juvenile mice,
longer time fasting (>36 h) greatly reduced the numbers of
IgA+ B cells as well as CD4+ and CD8+T cells in Peyer’s
patches, leading to the failure in inducing oral tolerance (104).
Consistently, a time-restricted feeding regimen in juvenile mice
exacerbated metabolic disorders (105). These findings suggest
that factors such as age may affect the outcome of caloric
restriction. Nevertheless, it remains to be determined as to how
gut T cell immune systems are affected by caloric restriction or
malnutrition and to what extent these changes in gut T cells
contribute to the physiological outcome in adult mice.

CROSSTALK BETWEEN
ANTIGEN-PRESENTING CELLS (APCs)
AND T CELLS IN THE INTESTINE

Small intestinal APCs are believed to sample and present
commensal bacteria to the gut-associated T cells to maintain
immune homeostasis (106). Two major populations of intestinal
APCs have been identified based on differential expression of the
integrin subunit CD103 and the chemokine receptor CX3CR1
(107). Under steady state, intestinal tolerogenic CD103+ DCs,
which are dispersed throughout the lamina propria and can
migrate to the draining the mesenteric lymph nodes, are potent
generators of Treg cells through their ability to activate TGF-
β and metabolize vitamin A into RA, the latter also underlies
the enhanced capacity of CD103+ DCs to induce the gut-
homing T cells (77, 108, 109). DCs that lack integrin αvβ8,
one of the major activators of Treg-inducing TGF-β, led to the
loss of Foxp3+ Tregs in the lamina propria (110). CD103+

DCs can also acquire inflammatory properties during intestinal
inflammation such as the ability to produce IL-6 and drive
Th1 and Th17 responses (111, 112). CX3CR1+CD103−APCs,
which are composed of DCs and macrophages and populate
the lamina propria of the intestine, can form transepithelial
dendrites that enable the cells to directly sample luminal
antigens (27). A subset of these CX3CR1+CD103−APCs,
identified as CD70highCD11clow cells, expresses Th17-inducing
molecules in response to commensal organism-derived ATP
stimulation and preferentially induces Th17 differentiation (113).
These observations highlight the importance of commensal
bacteria and ATP for Th17 differentiation in health and
disease and offer an explanation of why Th17 cells are merely
found in the mesenteric lymph nodes and Peyer’s patches
(113, 114). Though HFD did not induce obvious changes in
the proportions of CD103+ DCs or CX3CR1+ mononuclear

phagocytes, it enhanced the ability of CD103+ DCs to induce
Th1 differentiation while inhibiting the ability of CX3CR1+

cells to induce Th17 differentiation (7). Genes involved in T
cell co-stimulation such as Icam1 and Cd86 and Th17-inducing
cytokines such as IL-6 and IL-12p40 are all downregulated in the
SILP APCs after 30 days HFD feeding, which is consistent with an
early significant decrease of Th17 cells in the small intestine (5).
In summary, these HFD-induced changes in APC characteristics
correlate well with the increased Th1 cells and reduced Th17 cells
observed in small intestine of HFD mice, adding a potential way
to modulate T cell immune responses via manipulating APCs.

INTESTINAL T CELL-MEDIATED
CROSSTALK BETWEEN GUT AND OTHER
TISSUES

Obesity is associated with an impaired intestinal barrier (49),
which causes increased translocation of food antigen, bacterial
components, and bacterial metabolites from the gut to various
metabolic tissues such as liver and brain, triggering local
immune responses (49, 115). Obesity is reported to be associated
with higher Parkinson’s disease risk among never smokers
(116). It has been proposed that initial α-synuclein aggregation
and subsequent Lewy bodies generation in the gut occurred
several months before the manifestation of motor symptoms
(117). Dysbiosis could lead to an oxidative environment, where
oxidized α-synuclein are captured by mucosal DCs and activate
intestinal pro-inflammatory Th1 and Th17 cells that play a
fundamental role in promoting nigrostriatal neurodegeneration
(117, 118). In addition to Parkinson’s disease, growing evidence
suggests that obesity is associated with the susceptibility and
disease severity of multiple sclerosis (119). In an adoptive-
transfer EAE model, the transferred Th17 cells preferentially
infiltrate into colonic lamina propria and enter blood circulation
via lymphatic vessel. Preventing Th17 cells from entering into
the colon significantly attenuates EAE (120). Non-alcoholic fatty
liver (NAFLD) is strongly associated with immune turbulence in
the mesenteric lymph nodes, with increased ratios of Th1/Th2
cells and Th17/Treg cells (121). These gut-derived memory T
cells could migrate to the liver and promote liver inflammation
(122–124). Restoration of ratios of the mesenteric lymph node
CD4+ T cell subsets markedly alleviates NAFLD progression
(121). These studies suggest that intestinal T cell immune
responses may play a critical role in mediating inflammatory
brain or liver diseases, whereas the detailed mechanisms are
remained to be elucidated.

DRUGS TARGETING INTESTINAL T CELLS
IN TREATING OBESITY AND ITS RELATED
COMPLICATIONS

HFD feeding induces an early pro-inflammatory shift in gut
immune responses, which contributes to a later-stage systemic
low-grade inflammation and obesity-related insulin resistance.
Thus, developing treatments that are restricted to the gut
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TABLE 1 | Drugs targeting intestinal T cells in treating obesity and its related complications.

Drug Disease model Dosage Intestinal T cell Metabolism References

5-ASA Diet-induced obesity

(n = 10–15)

1,500 or 150 mg/kg/day for

12–14 weeks

Reduce IFN-γ-producing T

cells

Increase Treg cells

Alleviate Gut and VAT

inflammation, improve

glucose tolerance, and insulin

sensitivity

(6)

PACAP Subacute ileitis model

(Toxoplasma gondii infection,

n = 21–26)

1.5 mg/kg/day for 6 days

from day 3 post-infection (p.i.)

until day 8 p.i

Decrease T cells in ileal and

colon

Alleviate intestinal

inflammation

(126)

Probiotics

(Prohep)

s.c. HCC model (n = 6–8) Starting 1 week before or at

the same day until 38 days

after tumor injection

Downregulate Th17 cells Inhibit the liver tumor growth (127)

NX-13 Adoptive transfer colitis

(n = 10)

Spontaneous colitis by

Mdr1a−/− (n = 9)

Dextran sodium sulfate colitis

(n = 9)

0, 1, 10, 20 mg/kg/day for

6–8 weeks

DSS group for 7 days

Decrease Th1, Th17 subsets Suppress intestinal

inflammation

(129)

BT-11 Adoptive transfer colitis

(n = 10)

DSS colitis (n = 10)

8 mg/kg/day for 6 weeks

DSS group for 7 days

Induce Treg cells Alleviate intestinal

inflammation

(130)

anti-CD3

mAb

Genetic obesity (n = 10) 5 µg of anti-CD3

Plus 100 µg of GC for 5 days

Promote Treg generation Alleviate inflammation in

adipose tissues

Reduce hepatic steatosis

(134)

Biopsy-proven NASH patients

(n = 9)

0.2, 1.0, 5.0 mg/day for 30

days

Reduce AST and fasting

plasma glucose level

(32)

FIGURE 2 | Intestinal T cell immune responses under steady state. Th17 cells and Treg cells are the most abundant CD4+ T cells in the gut to maintain intestinal

homeostasis. Excessive salt intake and AhR ligation both contribute to the increased Th17 cell polarization in the gut, while AhR ligation also required for the induction

of Treg cells and maintenance of IELs. Bile acids are cholesterol-derived natural surfactants abundant in the mammalian gut. Lithocholic acid, a secondary metabolite

of bile acids, impedes Th1 activation and two distinct derivatives of lithocholic acid, 3-oxo-lithocholic acid and isoallo-lithocholic acid, have been found to impair the

differentiation of Th17 cells and increase the differentiation of Treg cells, respectively. CD103+ DCs represent the dominant DC population in the murine small intestinal

lamina propria (SILP). CD103+ DCs induce the gut-homing receptors CC chemokine receptor (CCR)9 and α4β7 on responding T cells and Treg cell differentiation, both

of which are dependent on signaling events initiated by the vitamin A metabolite, retinoic acid (RA). Short-chain fatty acids (SCFAs) could also induce Treg polarization

directly through a receptor GPR43 on T cells or indirectly through a receptor GPR109 on CD103+ DCs. Segmented filamentous bacteria (SFB) induce serum amyloid

A (SAA) production from gut epithelial cells and stimulates CX3CR1+ DCs to promote Th17 cell development in the gut, the latter process could also be induced by

commensal organism-derived ATP stimulation. Clostridium strains provide an environment rich in TGF-β that induces IL-10-producing colonic Treg Cells. Bacteroides

fragilis (B. fragilis) promotes the differentiation and function Treg via its immunomodulatory molecule polysaccharide A (PSA), where Toll-like receptor 2 (TLR2) signaling

is required. TLR2 ligand could also stimulate Tfh development in the germinal center to facilitate IgA production by B cells. Taken together, IL-17 and IL-22 produced

by Th17, IL-10 and TGF-β produced by Treg cells, and IgA in the gut lumen constitute an immune barrier in maintaining gut homeostasis in steady state.
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inflammation could avoid broad systemic deleterious effects and
be an effective approach for metabolic disease (6).

5-aminosalicylic acid (5-ASA), first-line therapy for
inflammatory bowel disease (IBD) in humans (125), contributes
to improved systemic metabolic parameters in mice during
HFD feeding through changes in intestinal barrier function,
fat inflammation, and oral tolerance to gut luminal antigen
(6). Specifically, 5-ASA reduces IFN-γ-producing Th1 and
CD8+ T cells while promotes Treg cell accumulation in the
intestine, leading to alleviated gut and even visceral adipose
tissue inflammation in mice (6). Pituitary adenylate cyclase-
activating polypeptide (PACAP), a neuropeptide well-known for
its functions in inhibiting inflammation, decreases the number
of apoptotic epithelial T cells in the ileal and colon of mice
(126). In addition, a novel probiotic mixture, Prohep, inhibits
liver tumor growth in mice by downregulating Th17 cells in
the small intestine which could otherwise contribute to liver
tumor growth after migrating to the liver via the cardiovascular
system (127). NX-13, an orally active, gut-restricted novel drug
(128), decreases the differentiation of Th1 and Th17 subsets in
an NLRX1-dependent manner in vitro, which contributes to
alleviated disease severity of mouse IBD models (129). Besides,
BT-11, an investigational new drug for IBD, has been found

to alleviate IBD by inducing Treg cells in the mouse colonic
lamina propria through controlling glucose flux and enhancing
IL2/STAT5 signaling axis (130, 131). It has been shown that
oral anti-CD3 mAb is absorbed in gut-associated lymphoid
tissue and stimulates CD4+CD25−LAP+ Tregs to suppress
autoimmune diseases (132), like autoimmune diabetes in NOD
mice (133). Oral anti-CD3 plus β-glucosylceramide (an NKT
cell target antigen) treatment promotes Treg cell generation in
mesenteric lymph nodes and bowel and alleviates inflammation
in adipose tissue and improves hepatic steatosis in ob/ob mice
(134). Accordingly, non-alcoholic steatohepatitis patients with
oral OKT3 (anti-CD3 antibody) shows increased Treg cell
proportions and reduced AST and fasting plasma glucose levels
and alleviated insulin resistance (32). Taken together, these
studies suggest that targeting gut T cells holds huge potential in
treating obesity and its associated diseases (Table 1).

CONCLUSIONS AND PERSPECTIVES

In this review, we discuss the connection between intestinal local
environments influenced by diets, specific microbes, metabolites,
and gut T cell immune responses. We also highlight how
the connection contributes to metabolic health and disease

FIGURE 3 | The roles of intestinal T cell immune responses in the development of obesity. HFD feeding reduces the proportions and numbers of RORγt+Th17 and

Treg cells and increases the proportion of IFN-γ+ Th1 cells and CD8+ T cells in the SILP. HFD feeding also enhances the ability of CD103+ DCs to induce Th1

differentiation and inhibits the ability of CX3CR1+ cells to induce Th17 differentiation. The reduction of Porphyromonadaceae and SFB in the ileum at the onset of HFD

feeding could be responsible for the reduction of intestinal Th17 cells. The increased IFN-γ production by Th1 and CD8+T cells impairs the gut barrier function and

induces intestinal inflammation, which is aggravated by decreased production of IL-17, IL-22, TGF-β, and IL-10 from Th17 and Treg cells. Depletion of vitamin A in

obese mice further reduced the proportion of Th17 cells in the small intestine, leading to increased body weight gain and insulin resistance and the metabolic

disorders could be ameliorated by adoptive transfer of in vitro-differentiated gut-tropic Th17 cells to obese mice. Increasing Th17 cell proportion or function in the

intestine by pretreating mice with dextran sodium sulfate or IL-22 administration also prevents HFD-induced glucose intolerance and insulinemia. However, Rag1−/−

mice adoptive transferred with T cells from RORγt−/− mice leads to increased body weight gain and insulin resistance when compared with those adoptive transferred

with wild-type T cells. IgA is also important in maintaining metabolic homeostasis by modulating gut microbiota homeostasis, while T cell-specific MyD88 knockout

results in abnormal IgA antibody responses and an altered microbial gut community, leading to more severe HFD- and age-associated metabolic disorders.
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(Figure 2).We conclude that the imbalance of intestinal flora and
modified APCs induced by HFD feeding directly or indirectly
contribute to the dysregulation of T cell responses in the intestine,
with increased Th1 and CD8+T cells as well as decreased
Th17 and Treg cells. These T cell immune turbulence leads
to intestinal inflammation and impaired gut barrier function,
which contributes to subsequent obesity and insulin resistance.
Besides, dysbiosis caused by defects in Tfh development and IgA
production also critically involved in the HFD- and age-assciated
obesity (Figure 3).

While accumulating evidence strongly suggests that intestinal
T cells are potential therapeutic targets of metabolic diseases,
many questions remain to be answered. It has been shown
that, compared with younger people, the function of small
intestinal CD4+ T cells in older people is reduced, concurrently
with increased spontaneous cell death (95). However, it is
currently unknown whether these changes contribute to aging-
associated alterations in intestinal and metabolic homeostasis.
Besides, cold exposure markedly shifts the composition of
the gut microbiota, which contributes to thermogenesis and
enhanced insulin sensitivity (135). Since gut microbiota is
tightly associated with T cell immune responses (57) and
thermogenesis is thought to boost mucosal immunity (136), it
is worth determining whether intestinal T cells are involved
in cold-induced thermogenesis. In addition, the ecology of gut
microbiota and the composition of the intestine immune system
vary according to the intestinal segments (48, 137). Therefore, the

contributions of the interplay between microbiota and immune
system in the gut tometabolic diseasesmay be intestinal segment-
dependent and thus location distinct. What is more, controlling
dysbiosis of gut microbiota by adaptive immunity is critically
involved in the improvement of metabolic features, suggesting
that vaccination may be considered as a possible therapeutic
approach for T2D (36). Finally, a better understanding of the key
cellular components of the intestinal T cell immune responses
and their regulatory network, and how they control systemic
metabolic homeostasis will allow researchers to design improved
targeted therapies to treat intestinal and metabolic disorders.
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