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Abstract: We use Langevin dynamics simulations to study dense 2d systems of particles with both
size and energy polydispersity. We compare two types of bidisperse systems which differ in the
correlation between particle size and interaction parameters: in one system big particles have high
interaction parameters and small particles have low interaction parameters, while in the other system
the situation is reversed. We study the different phases of the two systems and compare them to
those of a system with size but not energy bidispersity. We show that, depending on the strength of
interaction between big and small particles, cooling to low temperatures yields either homogeneous
glasses or mosaic crystals. We find that systems with low mixing interaction, undergo partial
freezing of one of the components at intermediate temperatures, and that while this phenomenon
is energy-driven in both size and energy bidisperse systems, it is controlled by entropic effects in
systems with size bidispersity only.
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1. Introduction

Multicomponent systems of particles in which at least one of the parameters (e.g., size,
interaction, etc.) varies from particle to particle, exhibit rich phenomenology compared to systems in
which all particles are identical. In particular, their thermodynamic phases are quite different from
one-component systems [1–3] and exhibit unique phenomena such as fractionation [4], i.e., phase
separation into phases whose compositions are different from that of the parent phase.

Size polydisperse systems of particles with sizes which are randomly selected from
various distributions (e.g., Schultz, Gaussian, uniform) were studied using molecular dynamics
simulations [5–13]. For example, it was shown that in a size polydisperse system with Lennard–Jones
interactions on the liquid–gas coexistence line, the average particle size in the liquid phase is greater
than in the gas phase [5]. Another study of a size polydisperse system with a uniform size distribution
has shown that in the liquid phase at constant density and temperature, increasing the polydispersity
leads to slowing down of dynamics and diminishing of structural order [11].

Binary size mixtures with a single interaction parameter at high density were studied in
Refs. [14,15] where both the size ratio and composition (fraction of big particles) were varied; as the size
ratio is increased at low temperature, hexatic order decreases and the system undergoes a transition
from a mosaic crystal to a glass (the details of the transition depend on the composition).

Previous studies by our group [16–21] have focused on energy polydisperse systems in which the
parameters that characterize the strength of interactions between particles are randomly chosen from
a geometric mean [16,17,19], uniform [16,18,21] or exponential [20] distributions. Using computer
simulations we have shown that upon cooling, there is ordering not only of the centers of mass of the
particles, but also of the identities of neighboring particles: as temperature is decreased, the system
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lowers its energy by arranging neighboring particles in a non-random fashion that depends on
the distribution of interaction strengths and on the temperature (neighborhood identity ordering).
We have also demonstrated the existence of fractionation in dilute energy polydisperse systems [19]:
cooling from a gas phase results in liquid–gas coexistence (and at yet lower temperatures in solid–gas
coexistence), where droplets of the condensed phase are enriched in highly interacting particles
whereas the gas phase is enriched in weakly interacting ones.

As described above, size polydisperse and energy polydisperse systems exhibit some similar
phenomena such as fractionation (in polydisperse hard sphere systems fractionation appears to
depend on dimensionality: it has been demonstrated in 3D [12] but not in 2D [13]). Other properties
of these types of systems are quite different; for example, while crystallization is suppressed in size
polydisperse systems, energy polydisperse systems crystallize into periodic structures similarly to
systems of identical particles. In addition, neighborhood identity ordering that was shown to exist
in energy polydisperse systems has no counterpart in size polydisperse ones. In view of the above,
it is interesting to explore the possibility of observing new effects in a system which combines both
energy and size polydispersity. In the following we report the results of a study of a simple model
of a system in which particles can have two sizes (big and small) and three interaction parameters
(big-big, small-small and big-small). While models of such binary mixtures are commonly used to
simulate low temperature glasses and amorphous solids (see e.g., the Kob–Andersen model [22–24]),
other aspects of their behavior such as liquid-liquid phase separation and formation of mosaic crystals,
have not been explored so far. Elucidating the qualitative features of this behavior is the objective of
the present study.

The organization of this paper is as follows. In Section 2, we present the computational model
and discuss the simulation algorithm. In Section 3, we present the results of our computer simulations
and compare the behaviors of binary systems of large and small particles, with different choices of
interaction parameters. In Section 4, we discuss the main results of this work and the new insights
obtained about the physics of systems with size and energy polydispersity.

2. Methods

We performed Langevin dynamics simulations in Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) of two-dimensional systems of N = 2422 particles in a square
box of dimensions Lx = Ly = L = 55 (this corresponds to number density ρ = N/L2 = 0.80),
with periodic boundary conditions in x and y directions (in NVT ensemble). Particles i and j interact
via Lennard–Jones (LJ) potential:

Vij(r) = 4εij[(σij/r)12 − (σij/r)6] (1)

where r is the interparticle distance between particles i and j and σij = (σi + σj)/2. The potential is
truncated and shifted to zero at r = 2.5σij (the discontinuity of the force at the cutoff distance does not
affect our results since its magnitude is very small compared to the thermal force). The motion of the
particles is described by the Langevin equation:

m
d2ri
dt2 + ζ

dri
dt

= −∂V
∂ri

+ fi (2)

in which we accounted for non-hydrodynamic interactions between the particles, random thermal
forces and friction against the solvent. Here ζ is the friction coefficient which we assumed to be the
same for all particles independent of their size (strictly speaking, the Stokes friction coefficient increases
linearly with particle radius, but since friction against the solvent is negligible compared to that due to
interparticle interactions, this assumption does not significantly affect our results), V the sum of all the
pair potentials Vij and fi a random force with zero mean and second moment proportional to Tζ (the
temperature T is given in energy units, with Boltzmann constant kB = 1). All physical quantities are
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expressed in LJ reduced units and the simulation timestep is 0.005τLJ where τLJ = (mσ2/ε)1/2 (in the
following we take σ = ε = τLJ = 1). The friction coefficient is taken to be ζ = 0.02 which corresponds
to viscous damping time τd = 1/ζ = 50τLJ that determines the characteristic transition time from
inertial to overdamped motion (due to collisions with molecules of the implicit “solvent”).

In all the models studied in this work we consider a mixture of two particle sizes (effective
diameters), σb = 1.3 and σs = 0.87 (b stands for big and s stands for small). We verified that taking the
same mass (mb = ms = 1) or the same mass density (mb = 2.25, ms = 1.00) of big and small particles
does not affect the statistical properties of our results (not shown) and took mb = ms = 1. The numbers
of particles are chosen such that each type of particles has the same surface fraction; this corresponds
to Nb = 745 and Ns = 1677. The total surface fraction is φ = 0.66 and therefore the partial surface
fraction of each component in the mixture is φb = φs = φ/2 = 0.33.

The difference between the models is in the assignment of the interaction parameters. In our
reference system, model R, particles of both sizes have the same interaction parameter independent
of their size, εbb = εss = 2. In model A big particles have a higher interaction parameter than small
particles, εbb = 3, εss = 1. In model B big particles have lower interaction parameters than small ones,
εbb = 1, εss = 3. The values are chosen so that the unweighted average of bb and ss interactions is the
same (2) in all the models. The mixing parameter εmix = εbs that controls the interaction between big
and small particles takes the same value (in the range 1 ≤ εmix ≤ 3) in the three models. Note that
large values of εmix are expected to promote mixing and conversely, small values of this parameter
promote demixing.

The models were simulated as follows: first, particles were placed on a square lattice and the
system was equilibrated at high temperature (T = 10) compared to the largest value (3) of the
interaction parameter during a sufficiently long time (2000τLJ) in order to ensure that the fluid
is completely disordered (particle positions are randomized). Then, the fluid was cooled in two
steps: (1) at rate 10−41/τLJ from T = 10 to T = 2, (2) at rate 10−61/τLJ from T = 2 to T = 0,
and measurements were performed at intermediate temperatures (this 2-step cooling was used in
order to ensure structural relaxation of the system in the range T = 2 to T = 0).

3. Results

In order to study the behavior of the systems for different mixing parameters in the range
1 ≤ εmix ≤ 3, we begin with the upper limit of this range, εmix = 3, for which strong mixing of big and
small particles is expected.

The R, A and B systems with εmix = 3 undergo a transition from a homogeneous (on length scales
larger than molecular size) fluid mixture (at T = 10) to a homogenous glass (at T = 0) that contains
large voids (see the top panels in Figure 1 and movies S1–S3 in Supplementary Materials). In agreement
with the expectation that the shape and composition of the interface between the condensed and the
gas (void) phases are determined by surface tension minimization, in systems A and B the interfaces
are enriched in weakly interacting components, i.e., small particles in the A system and big ones in
the B system. Visual inspection of snapshots of the three systems taken during the process of cooling
shows that the transition from a homogeneous fluid to a homogeneous glass can be characterized by
the appearance of large voids that must accompany the increase of the density as the system solidifies
at constant volume (not shown). Based on this criterion and on the observed change of slopes in the
potential energy vs. temperature curves in Figure 2 (for εmix = 3), the glass transition temperature
falls in the range 0.5–0.6 in the three systems.
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Figure 1. Snapshots of systems R, A and B with εmix = 3.0, 2.5, 2.0 and 1.0, at T = 0, produced by
2-step cooling. The potential energy per particle is presented on each snapshot.

Figure 2. Plots of the potential energy per particle as a function of temperature, for systems R, A and
B, obtained by 2-step cooling, from T = 2 to T = 0 at rate 10−61/τLJ .
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Inspection of other T = 0 snapshots in Figure 1 shows that as εmix is decreased below 3, a gradual
transition from a homogeneous glass to a solid phase in which big and small particles are progressively
segregated, is observed in the 3 systems. Demixing via formation of nanocrystals of small particles,
embedded in a percolating disordered network of big particles is observed at εmix = 2.5 in system
B and at εmix = 2 in system R (see Figure 1). At yet lower values of the mixing parameter, this
partially-ordered state is replaced by a completely ordered mosaic of big and small particle crystals
(see snapshots corresponding to εmix = 2, system B and to εmix = 1, system R). The A system remains
a homogeneous glass at εmix = 2 and forms a mosaic crystal at εmix = 1.

In order to understand the low temperature behavior of the three systems we note that since
entropy plays no role at T = 0, the above structures minimize the potential energy of the system. Thus,
for sufficiently high values of εmix, the system minimizes its energy by maximizing the number of
contacts between big and small particles; conversely, for small values of εmix energy minimization
favors maximizing the number of big-big and small-small particle contacts. A more quantitative
demonstration of this effect is shown in Figure 3 where we plot the interfacial (ebs) and pure system
(ebb + ess) contributions to the total potential energy (ep = ebs + ebb + ess) as a function of εmix, for each of
the 3 systems (the ep value of each configuration is indicated on the snapshots in Figure 1). As expected,
|ebs| decreases and |ebb + ess| increases with decreasing εmix, as the system changes from homogeneous
glass to mosaic crystal. The transition between the two states can be defined as the value of mixing
parameter at which the two curves cross; this corresponds to εmix slightly higher (slightly lower) than
2 for R (A) systems and to εmix ≈ 2.5 for the B system. This explains the sequence of transitions in the
different systems observed in Figure 1. Note that the higher value of |ebb + ess| in system B compared
to system A results from our choice of equal volume fraction of big and small particles and from the
definition of systems A and B (consequently, the number of particles with higher value of interaction
parameter is larger in the B system than in the A system).

Figure 3. The potential energy per particle components (mixed and single-size interactions) in systems
R, A and B as a function of εmix at T = 0.

We proceed to examine the εmix = 1 case where in all systems there is a gradual demixing process
from a homogenous liquid into liquid-like clusters of small and big particles that begins already
during the first step of cooling at rate 10−4 to T = 2 (not shown). As temperature is further decreased
(see movies S4–S6 in Supplementary Materials), these clusters grow in size and eventually only two
segregated large clusters of big and of small particles remain. At yet lower temperature, the three
systems undergo partial freezing in which one of the components freezes while the other component
remains in the liquid phase and freezes upon further cooling (complete freezing). As shown in Figure 4,
in systems A and B partial freezing (of big and of small particles, respectively) takes place at T∗ = 1.15,
which is the freezing temperature of a one-component system with εij = 3. Complete freezing of
both components (freezing of small and of big particles in systems A and B, respectively) occurs at
T∗ = 0.35 which is the freezing temperature of a one-component system with εij = 1 [20].
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While the origin or partial freezing in systems A and B is clear (particles with higher value of
the interaction parameter freeze at a higher temperature), the observation that big particles freeze
before small ones in the R system is surprising since both types of particles have εij = 2. A possible
explanation may be related to the fact that system R contains more than 2 times small particles than
big ones. Since entropy is proportional to the number of particles, we expect the entropy of smaller
particles to dominate and to favor condensation of large particles since the resulting decrease of the
entropy of the large particles is more than compensated by the increase of free space and, therefore,
the entropy of the small ones. Similar entropic mechanisms are responsible for the appearance of
depletion forces between colloids in colloid–polymer mixtures [25] and were shown to lead to phase
separation in lattice models of hard-core binary mixtures of small and large particles [26,27]. Complete
freezing in the R system takes place at the freezing temperature of a one-component system of small
particles with εij = 2 (T∗b = 0.75) [20].

Figure 4. Snapshots of systems R, A and B with εmix = 1 at their partial (upper panels) and complete
(lower panels) freezing temperatures. The transition temperatures are shown on the snapshots.

In addition, we checked the dependence of the low temperature configurations of the three
systems on the cooling method by comparing our two step cooling to fast single step cooling from
T = 10 to T = 0 (at a rate 10−31/τLJ). As shown in Figure 5, fast cooling results in low temperature
configurations with ramified interfaces between big and small particle crystals. The crystals contain
defects i.e., isolated big particles or nanocrystals of big particles inside crystals of small particles,
and vice versa. This concurs with the expectation that relaxation on length scales comparable to the
size of the system is suppressed during fast cooling and that the systems become kinetically trapped in
high energy states (compare the potential energy values in Figure 5 to those in Figure 1).

Figure 5. Snapshots of systems R, A and B with εmix = 1 at T = 0 produced by fast cooling (10−31/τLJ).
The potential energy per particle is presented on each snapshot.

4. Discussion

In this work we used computer simulations to study dense 2d systems of particles with both size
and energy polydispersity, using a simple model of a mixture of equal surface fractions of particles of
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two sizes, big and small, and three interaction parameters that characterize the strength of big-big,
small-small and big-small interactions. We considered three representative cases: system A in which
the interaction between big particles is stronger than between small particles, system B in which this
situation is reversed and a reference (R) system in which there is only size but no energy polydispersity.
Our goal was to find out (a) what types of phases and structures appear in those systems as they are
cooled from a high temperature homogeneous fluid state down to low temperatures, and (b) how
these results depend on the mixing parameter (strength of interaction between big and small particles).

In agreement with previous studies [22–24], we found that at high values of the mixing parameter,
the three systems remain homogeneous at all temperatures and undergo a direct liquid to glass
transition. At small values of the mixing parameter, lowering the temperature resulted in segregation
between the two components (big and small particles), first into two liquid phases, then into one
solid and one liquid phase (partial freezing) and eventually into a mosaic crystal (complete freezing).
Surprisingly, all the above mentioned transitions, including partial freezing, take place not only in
A and B systems where partial freezing is energy-driven (the component with larger interaction
parameter freezes first), but also in system R where it is controlled by entropy. The transition between
complete mixing and demixing behavior takes place at at εmix ' 2 in systems R and A and at εmix ' 2.5
in system B.

Finally, we would like to address some of the limitations of our work. The present study
was carried out on a relatively small (periodic) system (2422 particles) whose size was chosen as
a compromise between finite size and run time considerations. This choice of system size allowed us
to do relatively short runs (10–15 h) and to explore the qualitative features of the low temperature
configurations and of the different phases of the three systems, for different values of the mixing
parameter. Another limitation of the present study is that we only considered attractive big-big and
small-small interactions between the particles and did not observe mixed (b, s) crystals reported in
ref. [28].

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/5/570/s1.
See movies: (S1). R system εmix = 3 from T = 0.7 to T = 0; (S2). A system εmix = 3 from T = 0.7 to T = 0; (S3).
B system εmix = 3 from T = 0.7 to T = 0; (S4). R system εmix = 1 from T = 1.4 to T = 0; (S5). A system εmix = 1
from T = 1.4 to T = 0. (S6). B system εmix = 1 from T = 1.4 to T = 0.
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