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Objective: The mechanism of CD4+ T-cell dysfunction in systemic lupus erythematosus
(SLE) has not been fully understood. Increasing evidence show that long noncoding RNAs
(lncRNAs) can regulate immune responses and take part in some autoimmune diseases,
while little is known about the lncRNA expression and function in CD4+ T of SLE. Here, we
aimed to detect the expression profile of lncRNAs in lupus CD4+ T cells and explore the
mechanism that how lincRNA00892 in CD4+ T cells is involved in the pathogenesis of SLE.

Methods: The expression profiles of lncRNAs and mRNAs in CD4+ T cells from SLE
patients and healthy controls were detected by microarray. LincRNA00892 and CD40L
were chosen for validation by quantitative real-time PCR (qRT-PCR). Coexpression
network was conducted to predict the potential target genes of lincRNA00892. Then
lincRNA00892 was overexpressed in normal CD4+ T cells via lentivirus transfection. The
expression of lincRNA00892 was detected by qRT-PCR. The expression of CD40L was
detected by qRT-PCR, western blotting, and flow cytometry, respectively. The expression
of CD69 and CD23wasmeasured by flow cytometry. The secretion of IgGwas determined
by enzyme-linked immunosorbent assay (ELISA). The proteins targeted by lincRNA00892
were measured by RNA pulldown and subsequent mass spectrometry (MS). The
interaction between heterogeneous nuclear ribonucleoprotein K (hnRNP K) and
lincRNA00892 or CD40L was detected by RNA immunoprecipitation (RIP) assay.

Results: A total of 1887 lncRNAs and 3375 mRNAs were found to be aberrantly
expressed in CD4+ T cells of SLE patients compared to healthy controls.
LincRNA00892 and CD40L were confirmed to be upregulated in CD4+ T cells of SLE
patients by qRT-PCR. The lncRNA–mRNA coexpression network analysis indicated that
CD40L was a potential target of lincRNA00892. Overexpression of lincRNA00892
enhanced CD40L protein levels while exerting little influence on CD40L mRNA levels in
CD4+ T cells. In addition, lincRNA00892 could induce the activation of CD4+ T cells.
Furthermore, lincRNA00892 led to the activation of B cells and subsequent secretion of
IgG in a CD4+ T-cell–dependent manner. Finally, hnRNP K was found to be among the
proteins pulled down by lincRNA00892, and hnRNP K could bind to lincRNA00892 or
CD40L directly.
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Conclusion: Our results showed that the lncRNA expression profile was altered in CD4+

T cells of SLE. LincRNA00892 possibly contributed to the pathogenesis of SLE by
targeting hnRNP K and subsequently upregulating CD40L expression to activate CD4+

T and B cells. These provided us a potential target for further mechanistic studies of SLE
pathogenesis.

Keywords: systemic lupus erythematosus, CD4+ T cells, B cells, long noncoding RNA, CD40L, heterogeneous
nuclear ribonucleoprotein K

INTRODUCTION

Systemic lupus erythematosus (SLE) is a systemic autoimmune
disease, characterized by the production of autoantibodies against
a wide range of self-antigens, resulting in inflammation and organ
damage (Rahman and Isenberg, 2008). Although the etiology of
SLE remains to be elucidated, accumulating studies have
indicated that dysfunction of CD4+ T cells is crucial in the
onset and development of SLE by facilitating lymphocytic
organ infiltration and promoting B cells in producing
autoantibodies that eventually lead to tissue injury (Enghard
et al., 2009; Engler et al., 2011; Weinstein et al., 2012).

CD40L (also known as CD154), a member of the tumor
necrosis factor superfamily, is a co-stimulator primarily
expressed on activated CD4+ T cells (Lederman et al., 1992). It
interacts with CD40, which is expressed on antigen-presenting
cells (APCs), such as B cells, to provide the co-stimulatory signal
of T-cell activation, thus facilitating the activation of T cells. In
addition, the interaction between CD40L and CD40 can promote
CD4+ T-cell–dependent B-cell maturation, activation, and
function (Lederman et al., 1994; Cleary et al., 1995). Multiple
research studies have revealed that the dysregulation of CD40L
was associated with many diseases, including inflammatory
responses, autoimmune diseases, and immune deficiency
diseases (Elgueta et al., 2009; Liao et al., 2012). As a
characteristic autoimmune disease, the pathogenesis of SLE is
associated with the dysregulation of CD40L as well, since CD40L
was reported to be overexpressed on T cells from both lupus-
prone mice and SLE patients. In addition, CD40L-transfected
normal T cells were found to induce B-cell activation, plasma cell
differentiation, and subsequent IgG production, and such
induction can be reversed by anti-CD40L antibody (Lettesjo
et al., 2000; Lu et al., 2007; Zhou et al., 2009). Moreover, the
CD40L−/−New Zealand black (NZB)mice showed a significantly
decreased level of IgG autoantibodies and attenuated kidney
injury (Pau et al., 2011). Therefore, CD40L serves as a
potential target for SLE therapy. Dapirolizumab, a newly
developed anti-CD40L antibody, showed a trend to ameliorate
disease activity, such as hematuria, proteinuria, complement and
dsDNA antibody levels. It is being evaluated in phase II clinical
trials for SLE treatment (Narain and Furie, 2016; Touma and
Gladman, 2017).

Long noncoding RNAs (lncRNAs) are a new mechanism of
epigenetic regulation, which has attracted great interest in recent
years. LncRNAs are more than 200 nucleotides in length and are
involved in diverse biological processes. Dysregulation of
lncRNAs was found to have relevance to many human

diseases ranging from neurological disorders to various
cancers (Faghihi et al., 2008; Gupta et al., 2010; Johnson, 2012;
Pan et al., 2016). LncRNAs were also found to play important
roles in regulating immune responses, including immune cell
development, such as T lymphocytes (Sigdel et al., 2015).
Emerging evidence suggested that lncRNA dysregulation might
play a key role in autoimmune diseases such as SLE. Growth
arrest–specific transcript, also known as Gas5, was found to link
with increased susceptibility to SLE in mouse models (Haywood
et al., 2006). LincRNA0949 and LincRNA0597 were identified to
be significantly decreased in peripheral blood mononuclear cells
(PBMCs) from SLE patients compared to those from rheumatoid
arthritis patients and healthy controls (Wu et al., 2015). In
addition, lncRNA NEAT1 was shown to be involved in the
TLR4-mediated inflammatory process and contribute to the
production of a number of cytokines and chemokines by
regulating the MAPK signaling pathway in SLE patients
(Zhang et al., 2016). However, little is known about the
expression and function of lncRNAs in CD4+ T of SLE.
LincRNA00892, a long intergenic noncoding RNA that locates
in Xq26.3, contains 2886 nucleotides and 3 exons. It has not been
reported to be associated with any diseases yet.

In our present study, we aimed to identify differentially
expressed lncRNAs and mRNAs between CD4+ T cells of SLE
patients and healthy controls by lncRNA and mRNA
coexpression microarray. In addition, we aimed to detect how
lincRNA00892 contributes to the pathogenesis of SLE by
regulating the expression of CD40L in CD4+ T cells.

MATERIALS AND METHODS

Subjects
In the lncRNA and mRNA coexpression microarray, peripheral
blood samples were from 6 female patients (mean age 32 ±
9.8 years, range from 24 to 45 years) diagnosed with SLE
according to the classification criteria of the American College
of Rheumatology (Hochberg, 1997), and 6 female age-matched
healthy controls. Disease activity of SLE patients was determined
by the systemic lupus erythematosus disease activity index
(SLEDAI) score, and the median score was 15 (range from 9
to 19). In the subsequent validation experiment, peripheral blood
samples were taken from 36 SLE patients (32 females and 4males,
mean age 30 ± 12.6 years, range from 13 to 66 years), with a
median SLEDAI score of 10.7 (range from 2 to 22) and 28 age-
and sex-matched healthy controls. In the mechanism study,
peripheral blood samples were taken from healthy controls,
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which were different from microarray and qRT-PCR validation
experiments. This study was approved by the Independent Ethics
Committee of Huashan Hospital, and written informed consents
were obtained from all subjects ((2014) ethical review (No.025)).

Separation of CD4+ T Cells and B Cells
PBMCs were isolated from peripheral blood samples by Ficoll-
Hypaque (Sigma Aldrich, United States) density gradient
centrifugation (Eppendorf, Germany). CD4+ T or B cells were
isolated by positive selection using CD4 or CD19 magnetic beads
(Miltenyi Biotec, Germany) according to the manufacturer’s
instructions. Purity was evaluated by flow cytometry (purity≥
90%, data not shown; Life technology, United States).

RNA Extraction and Purification
Total cellular RNA was extracted using TRIzol reagent (Life
technologies, United States) following the manufacturer’s
instructions. The integration was checked by an Agilent
Bioanalyzer 2100 (Agilent technologies, United States).
Qualified total RNA was further purified by an RNeasy micro
kit (QIAGEN, Germany) and RNase-Free DNase Set (QIAGEN)
according to the manufacturer’s instructions.

LncRNA and mRNA Microarray
The human 4x180k long noncoding RNA array (Agilent
technologies) that included 63431 lncRNA and 39887 mRNA
probes was used to determine the expression profiles of both
lncRNAs and mRNAs in CD4+ T cells of both healthy controls
and SLE patients. Each array represented all long transcripts, both
protein coding mRNAs and lncRNAs in the human genome.
LncRNAs were collected from the authoritative data sources
including NCBI RefSeq, UCSC, RNAdb, lncRNAs from the
literature, and UCRs. Each transcript was represented by 1–5
probes to improve statistical confidence.

RNA Labeling and Array Hybridization
Microarray hybridization was performed by Shanghai
Biotechnology Corporation (Shanghai, China). In brief, total
RNA was amplified and labeled by a Low Input Quick Amp
Labeling Kit with one color (Agilent technologies) following the
manufacturer’s instructions. The labeled cRNAs were hybridized
onto the human LncRNA array slides in a hybridization oven.
After hybridization, the slides were washed in stain dishes
(Thermo Shandon, United States). Then the arrays were
scanned by the Agilent Scanner (Agilent technologies) with
default settings. Data were extracted with Agilent Feature
Extraction Software v10.7.3.1, and quantile normalization and
subsequent data processing were carried out using the
GeneSpring GX v11.5.1 software package (Agilent
Technologies). Differentially expressed lncRNAs and mRNAs
were identified through filtering with the threshold setting of
fold change ≥2.0 or ≤0.5 and p value <0.5. Hierarchically
clustering analysis was conducted to show the differently
expressed lncRNAs or mRNAs and the relationships between
these transcripts. The expression data of both lncRNAs and
mRNAs have been uploaded onto the Gene Expression
Omnibus (GEO), with the accession number GSE181500.

Analysis of lncRNA–mRNA Regulatory
Network
To show that the lncRNAs directly regulated the expression of
targeted mRNAs, we superimposed lncRNA target predictions
onto the lncRNA–mRNA correlation network. Pearson
correlation analysis was conducted to estimate the significance
of the correlation between each pair of lncRNA and mRNA. The
paired lncRNA andmRNAwas included in the network when the
Pearson correlation coefficient between themwas more than 0.95,
and the p value was less than 0.05. The resulting network was
defined as an lncRNA–mRNA regulatory network and visually
presented with Cytoscape v3.1.0 software. A direct connection
was placed from an lncRNA to an mRNA using the solid line.

Quantitative Real-Time PCR Validation
Total RNA was extracted from CD4+ T cells of SLE patients (n �
36) and healthy controls (n � 28) using TRIzol reagent, as
indicated before, and subsequently reverse-transcribed into
complementary DNA (cDNA) via a PrimeScript® RT reagent
kit (Takara, Japan) on an S1000™ Thermal Cycler (BioRad,
United States). Then the qRT-PCR was performed via an
SYBR® Premix Ex TaqTM (Takara) on a QuantStudio™ 6 Flex
Real-Time PCR System (Life technology). The used primers were
listed in Supplementary Table S2. All primers were purchased
from BioTNT (China). The relative fold change was calculated
using the 2−ΔΔCt method normalized to β-actin.

Lentivirus Preparation
The plasmid FUGW-GRK5-IRES-EGFP was used as the vector to
construct the lentivirus vector containing lincRNA00892. The
human genomic lincRNA00892 fragment, which was synthesized
in vitro, was digested with XbaI and BamHI (NEB, United States)
and then was ligated with T4 ligase (Takara). The reconstructed
plasmid containing lincRNA00892 was verified with Sanger
sequencing. After that, 293T cells were cotransfected with the
control vector or reconstructed vector containing lincRNA00892
fragment. After 24 h or 48 h, the collected culture medium was
filtered through the 0.45-um filter and subsequently incubated
with PEG8000 overnight, followed by centrifugation at 4000 g at
4°C for 20 min. Finally, the lentiviruses were titrated by a Quick
Titer™ Lentivirus Titer Kit (Cell Biolabs, United States)
according to the manufacturer’s instruction.

Cell Culture and Lentivirus Transfection
The Jurkat cells were purchased from ATCC and cultured in
RPMI 1640 medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (all from Life
Technologies) at 37°C in a 5% CO2 humidified incubator. For
lentivirus transfection, the Jurkat cells were incubated with 5ug/
ml polybrene (Sigma Aldrich) and previously prepared
lentiviruses with control vector or reconstructed vector
containing lincRNA00892 fragment (MOI � 50) in 1 ml of
RPMI 1640 medium without FBS and penicillin/streptomycin
at 37°C in a 5% CO2 humidified incubator for 12–24 h; then the
culture medium with lentiviruses and polybrene was replaced by
RPMI 1640 medium with 10% FBS and 1% penicillin/
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streptomycin. Another 48–60 h later, the Jurkat cells transfected
with lentiviruses were harvested for western blotting, qRT-PCR,
and flow cytometry.

The CD4+ T cells isolated from healthy controls with a purity of
over 90%were cultured in 6-well plates (1×106/well) or 96-well plates
(1×104/well) in OpTmizer™ CTS™ T-Cell Expansion SFM
supplemented with 1% penicillin/streptomycin and 1×
GlutaMAX™ Supplement (all from Life Technologies) at 37°C in
a 5% CO2 humidified incubator. For lentivirus transfection, the
isolated CD4+ T cells were incubated with 5 ug/ml polybrene and
previously prepared lentiviruses with control vector or reconstructed
vector containing lincRNA00892 fragment (MOI � 50) in 1ml of
OpTmizer™ CTS™ T-Cell Expansion SFM supplemented with 1×
GlutaMAX™ Supplement at 37°C in a 5% CO2 humidified incubator
for 12–24 h; then the culturemediumwith lentiviruses and polybrene
was replaced by fresh medium (OpTmizer™ CTS™ T-Cell
Expansion SFM supplemented with 1% penicillin/streptomycin
and 1× GlutaMAX™ Supplement). Another 48–60 h later, the
CD4+ T cells transfected with lentiviruses were harvested for
western blotting, qRT-PCR, flow cytometry, and coculturing with
B cells.

T-Cell and B-Cell Coculture
The B cells isolated from healthy controls with a purity of over
90% were cocultured with lentivirus-transfected CD4+ T cells in
OpTmizer™ CTS™ T-Cell Expansion SFM supplemented with
1% penicillin/streptomycin and 1× GlutaMAX™ Supplement in
both 6-well and 96-well plates at a ratio of 1:4 or 1:1 for 3 days.
Finally, the cells in the 6-well plate were harvested for flow
cytometry, and the supernatants in the 96-well plate were
harvested for ELISA.

Western Blotting
The Jurkat and CD4+ T cells, transfected with lentiviruses, were
lysed into RIPA lysis buffer (Beyotime biotechnology, China) and
then centrifuged at 4°C at a speed of 14000 rpm for 15 min. Total
amounts of 30 μg of cellular proteins were separated via
electrophoresing on 10% SDS-PAGE (Beyotime biotechnology)
and transferred to the polyvinylidene difluoride (PVDF)
membranes (Millipore, United States). After that, the PVDF
membranes were blocked with 5% nonfat milk for 1 h at room
temperature, followed by an incubating step with primary
antibody against CD40L (Abcam, United States) or β-actin
(Abcam) overnight at 4°C. On the second day, the membranes
were incubated with secondary antibody from rabbits or mice
conjugated with horseradish peroxidase (HRP) at room
temperature for 1 h. In the end, the bands were detected by
ECL technology (Fujifilm LAS-3000, Japan). The band intensities
were quantified by Quantity One Software (BioRad). β-actin was
regarded as reference, and the relative expression levels were
therefore calculated.

Flow Cytometry
The lentivirus transfected Jurkat cells and CD4+ T cells or cocultured
CD4+ T and B cells were harvested by centrifuging at 4°C, 300 g for
10min and subsequently washing with phosphate-buffered saline
(PBS) PH7.4. Then the lentivirus-transfected Jurkat cells and CD4+

T cells were incubated with phycoerythrin (PE)-conjugated anti-
human CD40L (BD Pharmingen, United States) and
allophycocyanin (APC)-conjugated anti-human CD69 (BD
Pharmingen) in staining buffer (PBS supplemented with 1%
bovine serum albumin (BSA)) for 30min at 4°C in the dark. The
cocultured CD4+ T and B cells were incubated with APC-conjugated
anti-human CD23 (BD Pharmingen) and PerCP-Cy5.5-conjugated
anti-human CD19 (BD Pharmingen) for 30min at 4°C in the dark.
Next, the labeled cells were washed three times with staining buffer
and resuspended in staining buffer at 1×105/200 ul. Finally, the data
were obtained by a FACS system (Life technology). The data were
analyzed by FlowJo software version 6.0 (Tree Star, Inc.).

Enzyme-Linked Immunosorbent Assay
The IgG levels in the supernatants of CD4+ T- and B-cell
coculture system were measured using a RayBio Human IgG
ELISA Kit (RayBiotech, United States), according to the
instructions of the manufacturer. The antibody specific for
human IgG was coated onto the 96-well plate overnight; then
100 ul of standard or sample diluted 5 times was directly added to
the corresponding wells, followed by 2.5-h incubation at room
temperature with gentle shaking. After 4-time washing with 1×
wash solution, 100 ul of prepared biotinylated antibody was
added to each well and incubated at room temperature for 1 h
with gentle shaking, followed by 4-time washing. In the next step,
100 ul of the prepared streptavidin solution was added and
incubated at room temperature for 45 min with gentle
shaking, followed by 4-time washing. After that, 100 ul of
TMB One-Step Substrate Reagent was added to each well and
incubated at room temperature in the dark with gentle shaking
for 30 min. Finally, 50 ul of stop solution was added to each well.
The absorbance was read at 450 nm immediately by the Infinite
F200 Pro microplate reader (TECAN, Switzerland).

RNA Pulldown and Mass Spectrometry
The sense and anti-sense lincRNA00892–containing T7
promoters were developed using pGEM-T Easy Vector
Systems (Promega, United States) following the manufacturer’s
instruction. The primers used were listed in Supplementary
Table S2. The lincRNA00892 was transcribed in vitro with the
help of T7 RNA polymerase (Roche, Switzerland) and labeled
with biotin using Biotin RNA labeling Mix (Roche) according to
the manufacturer’s instruction. Then the biotin-labeled
lincRNA00892 was incubated with streptavidin magnetic beads
at 4°C overnight. The biotinylated lincRNA00892–streptavidin
magnetic beads mixture was incubated with the cell lysates
containing about 1 mg of protein at room temperature for 1 h
to capture the proteins. After 3-time washing, the
RNA–bead–protein mixture was electrophoresed on SDS-
PAGE and stained in Janesen. The gels showed significant
differences in silver staining were took out and subjected to MS.

RNA-Binding Protein Immunoprecipitation
RIP assay was conducted to determine the interaction between
heterogeneous nuclear ribonucleoprotein K (hnRNP K) and
lincRNA00892 or CD40L using an EZ-Magna RIP Kit
(Millipore) following the manufacturer’s instruction. In brief,
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1×107 CD4+ T cells isolated from healthy controls were lysed in
RIPA buffer overnight and centrifuged at 14000 rpm at 4°C for
10 min to collect the supernatants. The beads were incubated with
5 μg of anti-hnRNP K, anti-SNRNP70 (positive control), or IgG
(negative control) antibodies at room temperature for 30 min.
Then the mixtures were washed with RIP wash buffer and
resuspended in 860 μL of RIP wash buffer, 35 μL of 0.5 M
EDTA, 5 μL of RNase inhibitor, and 100 μL of protein
supernatants. Next, the protein–bead–antibody mixtures were
incubated at 4°C overnight followed by 6-time washing with RIP
wash buffer. The RNA was eluted from the
protein–bead–antibody mixtures and reverse-transferred into
cDNA. Finally, the coprecipitated lincRNA00892 or CD40L
from the protein–bead–antibody mixtures was measured by
qRT-PCR. The primers used were listed in Supplementary
Table S2.

Statistical Analysis
All the results were expressed as mean ± standard deviation.
Statistical analysis was done with Student’s t-test for comparison
of two groups, and analysis of variance for multiple comparisons.
Differences with p < 0.05 were considered statistically significant.
The statistical significance of microarray result was analyzed by
fold change and Student’s t-test. The threshold value we used to
screen differentially expressed lncRNAs and mRNAs is set as a
fold change ≥2.0 or ≤0.5 (p < 0.05).

RESULTS

Differentially Expressed lncRNAs and
mRNAs in CD4+ T Cells of SLE Patients
To profile differentially expressed lncRNAs, we performed a
genome-wide analysis of lncRNA and mRNA expressions in
CD4+ T cells from 6 SLE patients and 6 healthy controls and
found that 1887 lncRNAs were differentially expressed between
SLE patients and healthy controls (Supplementary Figure S1A).
Among them, 1083 lncRNAs were upregulated, and 804 lncRNAs
were downregulated in CD4+ T cells from SLE patients as
compared to those from healthy controls (Supplementary
Figure S1B).

Using the same data as before, we identified 3375 mRNAs to
be significantly and differentially expressed in CD4+ T cells from
SLE patients as compared to healthy controls (Supplementary
Figure S1C), of which 1438 mRNAs were upregulated and 1937
mRNAs were downregulated (Supplementary Figure S1D).

LincRNA00892 and CD40L were both upregulated in CD4+

T cells from SLE patients. Among the 1887 lncRNAs identified by
our genome-wide analysis, we chose lncRNACUST124090 which
was then proved to be lincRNA00892 to further investigate the
molecular mechanisms that how it contributes to the
pathogenesis of SLE. As revealed in the genome-wide analysis
and subsequent qRT-PCR validation, we found that the
expression of lincRNA00892 was much higher in SLE patients
(n � 36) than healthy controls (n � 28) (p < 0.05, Figures 1A,B).
Coexpression network analysis indicated that CD40L was a
potential target of lincRNA00892 (Figure 1E). Moreover,

lincRNA00892 was shown to be closely located with CD40L in
chromosome X (Figure 1F). In addition, the expression levels of
CD40L were proved to be upregulated in CD4+ T cells of SLE
patients by our microarray and qRT-PCR validation in samples
from 36 SLE patients and 28 healthy controls as well (p < 0.05,
Figures 1C,D). Therefore, we hypothesized that lincRNA00892
contributed to the pathogenesis of SLE via mediating the
expression of CD40L and subsequently activating CD4+ T and
B cells.

LincRNA00892 Promoted the Expression of
CD40L in Both Jurkat and Primary CD4+

T Cells
As shown in Figure 2A, lentiviruses with control vector or
reconstructed vector containing lincRNA00892 fragment were
successfully transfected into both Jurkat and primary normal
CD4+ T cells, since the expression of lincRNA00892 in both
Jurkat and primary CD4+ T cells transfected with lentivirus with
lincRNA00892 fragment was proved to be much higher than
expression of those transfected with control vectors by qRT-PCR
(p < 0.05, Figure 2A). Then we found significantly increased
protein levels of CD40L when lincRNA00892 was overexpressed
in both Jurkat and primary CD4+ T cells (p < 0.05, Figures 2C,D),
while no significant difference was found in the mRNA levels of
CD40L between control and lincRNA00892 overexpression
groups (p > 0.05, Figure 2B). These results indicated that
lincRNA00892 might mediate CD40L expression in a
posttranscriptional way.

LincRNA00892 Activated CD4+ T Cells and
Subsequently Activated Primary B Cells in a
CD4+ T-Cell–Dependent Manner
As we know, CD40L is a co-stimulator mainly expressed on active
T cells and promotes T-cell activation and T-cell–dependent
B-cell maturation, activation, and function. Since
overexpression of lincRNA00892 in normal CD4+ T cells was
revealed before to increase the expression of CD40L, we decided
to determine whether overexpression of lincRNA00892 could
activate T cells. We examined the expression levels of CD69 (a
marker of T-cell activation) on the surface of both Jurkat and
primary normal CD4+ T cells by flow cytometry and found that
CD69 levels were much higher in the lincRNA00892
overexpression group than in the control group (p < 0.05,
Figure 3A). Next, we explored whether lincRNA00892 could
promote the activation and secretion of IgG by B cells in a CD4+

T–B-cell coculture system.We found that the expression of CD23
(a marker of B cell activation) on the surface of B cells was much
higher in normal B cells, which were cocultured with CD4+ T cells
transfected with lentivirus with lincRNA00892 fragment at a ratio
of 1:1 or 1:4 for 3 days (p < 0.05, Figure 3B). Furthermore, the
IgG levels secreted by B cells cocultured with lincRNA00892-
overexpressed CD4+ T cells were much higher than those from
B cells cocultured with control vector–transfected CD4+ T cells
(p < 0.05, Figure 3C). Thus, we concluded that overexpression of
lincRNA00892 was able to activate CD4+ T cells and subsequently
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FIGURE 1 | LncRNA CUST124090 (lincRNA00892) and CD40L were upregulated in CD4+ T cells of SLE patients. (A) Hierarchically clustered heatmaps of some
lncRNAs that were upregulated in CD4+ T cells in SLE patients (n � 6) as compared to healthy controls (n � 6). (B) qRT-PCR was used to verify the expression of
lincRNA00892 in CD4+ T cells of SLE patients (n � 36) and healthy controls (n � 28). (C) Hierarchically clustered heatmaps of some mRNAs that were upregulated in
CD4+ T cells of SLE patients (n � 6) as compared to healthy controls (n � 6). (D) qRT-PCR was performed to detect the expression of CD40L in CD4+ T cells of SLE
patients (n � 36) and healthy controls (n � 28). (E) Coexpression network analysis of some lncRNAs and predicted targeted mRNAs. (F) The location of both
lincRNA00892 and CD40L in chromosome X. **p < 0.01, *p < 0.05. The results are expressed asmean ± standard deviation. Student’s t-test was used for comparison of
two groups.
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FIGURE 2 | LincRNA00892 enhanced CD40L expression in Jurkat and primary CD4+ T cells. (A), (B): The expression of lincRNA00892 (A) and CD40L (B) in Jurkat
and primary CD4+ T cells transfected with lentiviruses with control vector or vector containing the lincRNA00892 fragment was defined by qRT-PCR. (C) The protein
levels of CD40L in the negative control and lincRNA00892 overexpression group in both Jurkat and primary CD4+ T cells were confirmed by western blotting. (D) The
level of CD40L expressed on the surface of both Jurkat and primary CD4+ T cells in both negative control and lincRNA00892 overexpression groupwere performed
by flow cytometry. NC � negative control, OE � overexpression, NS � no statistical difference. **p < 0.01, *p < 0.05. The results are expressed as mean ± standard
deviation. Student’s t-test was used for comparison of two groups.
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promote the activation and IgG secretion of B cells in a CD4+

T-cell–dependent manner.

LincRNA00892 Mediated CD40L Expression
by Directly Binding to Heterogeneous
Nuclear Ribonucleoprotein K in CD4+

T Cells
Given that lncRNAs could function by recruiting and interacting
with RNA-binding proteins (Zhang et al., 2017), we tried to

identify lincRNA00892-interacting proteins by the RNA
pulldown assay and subsequent MS. As shown in Figure 4A,
distinct bands were found between sense and anti-sense
lincRNA00892. The differently expressed proteins were
identified by MS (Supplementary Table S1). HnRNP K is an
RNA-binding protein (RBP) that plays an important role in
posttranscriptional regulation which lncRNAs are usually
involved in (Pereira et al., 2017). We hypothesized that
lincRNA00892 regulated CD40L expression by recruiting and
binding to hnRNP K. We confirmed the distinct hnRNP K
expression in sense and anti-sense lincRNA00892 by western
blotting (Figure 4B). In order to further verify our hypothesis,
RIP was conducted to confirm the interaction between hnRNP K
and lincRNA00892 or CD40L. As shown in Figure 4C, both
lincRNA00892 and CD40L mRNA were enriched by hnRNP K
antibody as compared to negative control (IgG) in primary
normal CD4+ T cells, indicating that lincRNA00892 recruited
hnRNP K to regulate CD40L expression through a
posttranscription way.

DISCUSSION

Increasing evidence has pointed to the critical regulatory roles of
lncRNAs in immune cellular biological processes including T
lymphocyte differentiation and activation in recent years.
Genome-wide expression analyses revealed the presence of
hundreds of lncRNAs in CD8+ T cells from human and
mouse spleens (Pang et al., 2009). T-cell–expressed
lncRNA–Tmevpg1 has antiviral activity by promoting the
release of IFN-γ (Mourtada-Maarabouni et al., 2008). LncRNA
GAS5 can regulate T-cell growth (Jones and Flavell, 2005). After
activation, CD4+ T cells can express lncRNA-NTT (Vigneau
et al., 2003) or lncRNA-BI (Liu et al., 1997). It has also been
demonstrated that Lnc-DC, a specific regulator of dendritic cell
(DC) differentiation and function, may have a potential role in
clinical diseases involving DC dysfunction and may have an
influence on the activation of the CD4+ T-cell response
(Shirasawa et al., 2004). In addition to the biological
regulation of lncRNAs on immune systems, several studies
have also shown that abnormal expressions of lncRNAs may
play a pivotal role in some autoimmune diseases, including SLE
(Haywood et al., 2006; Wu et al., 2015; Zhang et al., 2016).

In our present work, we first explored the lncRNA and mRNA
expression profiles in CD4+ T cells of SLE patients and healthy
controls using microarray technology. From these microarray
data, we found that 1887 lncRNAs and 3375 mRNAs were
differentially expressed in lupus CD4+ T cells compared to the
healthy controls. Among these lncRNAs, 1083 lncRNAs were
upregulated, and 804 lncRNAs were downregulated.

LincRNA00892 is a long intergenic noncoding RNA that is
located in Xq26.3. It has not been reported to be associated with
any physiological or pathological processes yet. In our present
study, we first found that lincRNA00892 was upregulated in SLE
patients as compared to healthy controls, indicating that it might
participate in the pathogenesis of SLE. CD40L is a co-stimulator
expressed on active T cells which facilitates T-cell–dependent

FIGURE 3 | LincRNA00892 promoted the activation of CD4+ T cells and
subsequent activation of B cells. (A) The CD69 levels expressed on the
surface of both Jurkat and primary CD4+ T cells in negative control and
lincRNA00892 overexpression groups were measured by flow
cytometry. (B) The CD23 levels expressed on the surface of B cells cocultured
with primary CD4+ T cells transfected with control vector or vector containing
lincRNA00892 fragment were confirmed by flow cytometry. (C) The primary
CD4+ T cells that transfected with control vector or vector that containing
lincRNA00892 fragment were cocultured with B cells at a ratio of 1:1 or 4:1 for
3 days. The levels of IgG secreted by B cells were determined by ELISA. NC �
negative control, OE � overexpression. **p < 0.01, *p < 0.05. The results are
expressed as mean ± standard deviation. Student’s t-test was used for
comparison of two groups.
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B-cell activation, maturation, and function. It has been reported
to contribute to the onset and development of SLE. In accordance
with these findings, our genome-wide analysis of mRNA
expressions in CD4+ T cells and subsequent qRT-PCR
validation of microarray results both revealed that CD40L was
significantly upregulated in SLE patients, indicating it as a
pathogenic factor in SLE. In addition, in the coexpression
network analysis, CD40L was predicted to be a potential direct
target of lincRNA00892. It is highly possible that lincRNA00892
contributes to the pathogenesis of SLE via upregulating CD40L
and subsequently activating T cells and B cells. In accordance
with this hypothesis, we revealed that overexpression of
lincRNA00892 could upregulate the expression of CD40L and
activate CD4+ T cells. In addition, lincRNA00892 overexpression
activated B cells and promoted the IgG secretion in a CD4+

T-cell–dependent manner. Therefore, we came to the conclusion
that lincRNA00892 might be involved in SLE through inducing
the expression of CD40L and subsequently activating CD4+ T and
B cells.

As indicated before, lncRNA is a newly discovered mechanism
of epigenetic regulation with a length of over 200 bp and cannot
code any protein (Curtale and Citarella, 2013). Some lncRNAs are
reported to play an important role in gene imprinting, activation,
and repression (Ponting et al., 2009; Engreitz et al., 2013; Maass
et al., 2014; Yang et al., 2015). Some lncRNAs are revealed to play a
pivotal role in the transcription level via binding to certain DNA or

protein to regulate the localization of transcription factors and
subsequent transcript elongation (Ponting et al., 2009; Wang et al.,
2011; Vance and Ponting, 2014). In addition, some lncRNAs play
an essential role in the posttranscriptional processes, such as
alternative splicing, RNA editing, transport, degradation, and
translation (Tripathi et al., 2010; Mourtada-Maarabouni and
Williams, 2013; Shi et al., 2013). In our present study, we found
that the protein levels of CD40L were significantly upregulated in
both Jurkat and primary normal CD4+ T cells that overexpressed
lincRNA00892, while the mRNA levels of CD40L showed no
difference. Therefore, we deduced that lincRNA00892 played an
important role in the posttranscriptional regulation of CD40L. To
further confirm the regulation of lincRNA00892 on CD40L
expression, the RNA pulldown assay and subsequent MS were
conducted. However, CD40L was not among the proteins bound to
lincRNA00892 directly. Therefore, other factors might be involved
in the regulation of CD40L expression by lincRNA00892.

HnRNPs are a series of RBPs that bind to newly formed
transcripts in the nucleus to assist the transcription, stabilization,
and translation of mRNA, thus regulating gene expression
(Dreyfuss et al., 1993; Geuens et al., 2016). Recently, they have
been reported to interact with lncRNAs to contribute to various
pathogenic disorders, such as tumorigenesis (Zhu et al., 2019).
Geng et al. revealed that lncRNA PSTAR could bind to hnRNP K
to enhance its SUMOylation, thus strengthening the interaction
between hnRNP K and p53 to promote the accumulation and

FIGURE 4 | LincRNA00892 mediates CD40L expression by targeting hnRNP K in primary CD4+ T cells. (A) RNA pulldown assay was used to identify the proteins
interacted with lincRNA00892. Silver staining of the proteins pulled down by lincRNA00892. (B) The expression of hnRNP K in the gel pulled down by control, sense, and
anti-sense lincRNA00892 was confirmed by western blotting. (C) The interaction between hnRNP K and lincRNA00892 (up) and CD40L (down) was identified by RIP.
IgG was used as the negative control. **p < 0.01, *p < 0.05. The results are expressed as mean ± standard deviation. Student’s t-test was used for comparison of
two groups.
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transactivation of p53 (Qin et al., 2020). LncRNA CASC11 was
demonstrated to target hnRNP K to activate WNT/β-catenin
signaling in colorectal cancer cells (Zhang et al., 2016). In
accordance with these findings, we found that lincRNA00892
could bind to hnRNP K directly. CD40L was also reported to be
regulated by different hnRNPs, such as hnRNP L, at the
translational level (Hamilton et al., 2008; La Porta et al., 2016).
As an important member of the hnRNP family, hnRNP K has
multiple roles in mediating the transcription, splicing, mRNA
silencing, mRNA stabilization, and translation (Habelhah et al.,
2001; Stains et al., 2005; Fukuda et al., 2009; Cao et al., 2012; Fan
et al., 2015). However, the role of hnRNP K in the regulation of
CD40L expression remains unclear. In our present study, we
revealed that hnRNP K could bind to CD40L directly. Therefore,
we concluded that lincRNA00892mediated CD40L expression by
enrolling hnRNP K to bind to CD40L and subsequently mediate
CD40L expression at the posttranscriptional level in primary
CD4+ T cells. Sincerely, more research studies are needed to
further figure out how hnRNP K regulates CD40L expression at
the posttranscription level.

In conclusion, we identified a series of new SLE-associated
lncRNAs, including lincRNA00892. Our mechanism study
demonstrated that lincRNA00892 was involved in the
pathogenesis of SLE via mediating the expression of CD40L
and subsequent activation of CD4+ T and B cells. In addition,
we found that lincRNA00892 mediated CD40L expression
through enrolling hnRNP K to bind to CD40L, thus regulating
the translation of CD40L.
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