
 International Journal of 

Molecular Sciences

Article

Computational Selectivity Assessment of Protease Inhibitors
against SARS-CoV-2

André Fischer 1,† , Manuel Sellner 1,† , Karolina Mitusińska 2,† , Maria Bzówka 2,† , Markus A. Lill 1,* ,
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Abstract: The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
poses a serious global health threat. Since no specific therapeutics are available, researchers around
the world screened compounds to inhibit various molecular targets of SARS-CoV-2 including its
main protease (Mpro) essential for viral replication. Due to the high urgency of these discovery efforts,
off-target binding, which is one of the major reasons for drug-induced toxicity and safety-related drug
attrition, was neglected. Here, we used molecular docking, toxicity profiling, and multiple molecular
dynamics (MD) protocols to assess the selectivity of 33 reported non-covalent inhibitors of SARS-
CoV-2 Mpro against eight proteases and 16 anti-targets. The panel of proteases included SARS-CoV
Mpro, cathepsin G, caspase-3, ubiquitin carboxy-terminal hydrolase L1 (UCHL1), thrombin, factor
Xa, chymase, and prostasin. Several of the assessed compounds presented considerable off-target
binding towards the panel of proteases, as well as the selected anti-targets. Our results further
suggest a high risk of off-target binding to chymase and cathepsin G. Thus, in future discovery
projects, experimental selectivity assessment should be directed toward these proteases. A systematic
selectivity assessment of SARS-CoV-2 Mpro inhibitors, as we report it, was not previously conducted.

Keywords: coronavirus; SARS; protease; selectivity; structure-based design

1. Introduction

In late 2019, a novel coronavirus termed SARS-CoV-2 emerged and spread around the
world causing coronavirus disease 2019 (COVID-19). Until today, over 62 million cases
were reported accounting for over a 1.46 million of fatalities (as of 1 December 2020) [1].
While pharmaceutical interventions primarily remained symptomatic, multiple clinical
trials are investigating novel treatments, mainly based on drug repurposing [2,3]. Thus,
the treatment of this infection with specific drugs constitutes an urgent and unmet medical
need. In the pharmaceutical treatment of viral infections such as human immunodeficiency
virus and hepatitis C virus, the inhibition of viral proteases is a successfully applied strat-
egy. Consequently, many computational and experimental efforts were directed toward
targeting the main protease (Mpro) of SARS-CoV-2 with small molecules leading to the
discovery of multiple promising candidates [4–9]. Due to the high urgency and the com-
petitive scientific field, off-target binding was rarely considered in the latest discovery
projects. However, a large share of drug attrition in clinical trials, especially regarding
compound safety, can be traced back to low target specificity and off-target binding [10–12].
To avoid the large cost associated with late stage drug failure, early off-target profiling,
especially with comparably economical computational methods, offers an attractive strat-
egy [12–14]. On the other hand, binding to multiple targets can be beneficial in specific
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cases, such as pan inhibition of the viral proteases of SARS-CoV-2 and SARS-CoV [15].
Similarly, the concurrent inhibition of the coagulation protein factor Xa and SARS-CoV-2
Mpro constitutes another example for a potentially synergistic effect of multi-target binding
as COVID-19 infection is associated with life-threatening coagulopathies that can be treated
with anticoagulants [16,17]. Computational methods such as molecular docking and spe-
cialized molecular dynamics (MD) protocols can be exploited to explore the selectivity
of small-molecule compounds, as it was evidenced for various targets. For example, we
previously applied docking combined with cosolvent MD simulations and determination
of hydration hot-spots to investigate the selectivity of allosteric inhibitors against eight
nuclear receptors to support targeted experimental profiling of novel compounds [18].
In general, it was discussed that cosolvent MD simulations can provide valuable insights
for the development of potent and selective compounds [19,20]. Although multiple studies
focused on the selectivity assessment among kinases using computational methods [21,22],
there were only minor efforts to establish selectivity factors for small-molecules that bind
to proteases [23,24].

Here, we examined the selectivity of 33 experimentally confirmed non-covalent SARS-
CoV-2 Mpro inhibitors against eight different proteases including SARS-CoV Mpro, factor
Xa, cathepsin G, caspase-3, prostasin, thrombin, ubiquitin carboxy-terminal hydrolase
L1 (UCHL1), and chymase by molecular docking (Table 1). The proteases were selected
based on a structural similarity search in the NCBI database, as well as considerations
regarding their pharmacological relevance. First, we compared the active sites regarding
pharmacophores and electrostatic potential. Furthermore, we performed classical as well as
cosolvent MD simulations to identify water and small-molecule hot-spots of the respective
active sites offering explanations for compound selectivity. Based on our results, exper-
imental selectivity profiling in future discovery projects can be directed toward targets
with an inherent high liability for off-target binding. Up to this date, such a comprehensive
evaluation of off-target binding of SARS-CoV-2 Mpro was not previously conducted and is
of high importance to support antiviral drug development.

Table 1. Proteins considered in this study.

Protein Function Anti-Target a Consequence of Inhibition

SARS-CoV-2 Mpro Viral replication - antiviral activity
SARS-CoV Mpro Viral replication no antiviral activity

Caspase-3 Apoptosis yes interference with development
Factor Xa Coagulation no prevention of coagulopathies

Cathepsin G Immune system yes interference with immune response
UCHL1 Protein degradation yes interference with development and homeostasis

Prostasin Sodium balance yes alters homeostasis
Thrombin Coagulation no prevention of coagulopathies
Chymase Vasoconstriction yes interference with blood pressure

a Description if the protein is regarded as anti-target.

2. Results and Discussion
2.1. Sequence and Active Site Comparison

We selected eight proteases to assess off-target binding and to structurally compare
them to SARS-CoV-2 Mpro. The proteases were selected based on their catalytic residues,
sequence and structural similarity, availability of structural information, as well as their
pharmacological and physiological relevance. Except for SARS-CoV Mpro, they exhibited
different overall folds and showed low global sequence similarity to SARS-CoV-2 Mpro

(Table 2). Furthermore, the volumes of the active site cavity (Table S1) of the SARS-CoV-2
Mpro was the smallest among all analyzed proteases, and regarding absolute values, most
similar to chymase as opposed to SARS-CoV Mpro. However, when we compared the active
sites of all analyzed proteases, they presented a remarkable degree of similarity. The root
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mean-square deviation (RMSD) of their catalytic residues did not exceed 2 Å, except for
UCHL1 with 2.8 Å. Furthermore, when using FuzCav [25] to determine the similarity
of the active site pockets of the panel of proteases, we observed that not only their catalytic
residues, but also the complete active sites are similar relative to SARS-CoV-2 Mpro (Sup-
plementary Figure S1). Actives sites exceeding a similarity value of 0.16 can be regarded
as similar [25]. We also compared the electrostatic potentials of the binding cavities of all
analyzed proteases using PIPSA [26] software. The electrostatic potentials were compared
quantitatively by calculating the Hodgkin similarity index (Table 2, Figure S2). Using the
Hodgkin similarity index it is possible to determine the correlation between the potentials
of the analysed proteases (+1 indicates that potentials are identical, 0 indicates that poten-
tials are fully uncorrelated, and -1 indicates that potentials are anti-correlated). Three out of
eight proteases (SARS-CoV Mpro, prostasin, and thrombin) presented a positive correlation,
whereas the remaining ones indicated an anti-correlation in relation to the SARS-CoV-2
Mpro binding cavity. In the case of UCHL1, the high anti-correlation was caused by a
specific binding site spot with reversed distribution of electrostatic potentials. Prostasin,
thrombin and SARS-CoV Mpro also showed high similarity relative to the active site of
SARS-CoV-2 Mpro using FuzCav. Thus, even though the substrate specificity of the panel of
proteases is diverse [27], their exceptionally similar active sites compared to SARS-CoV-2
may suggest a potential for off-target binding of small-molecules.

Table 2. Similarity of proteins and active sites.

Protein Catalytic Global AS RMSD Site Fold Similarity
Residues Identity a (Å)b Similarity c Index d

SARS-CoV Mpro H41, C145 96.1% 0.2 0.91 α/β 0.90
Caspase-3 H121, C163 11.6% 1.9 0.67 α/β −0.74
Factor Xa H57, D102, S195 11.6 % 1.8 0.71 all-β −0.67
Cathepsin G H59, D103, S196 14.5% 1.8 0.61 all-β −0.71
UCHL1 C90, H161, D176 15.7% 2.8 0.74 α/β −0.98
Prostasin H85, D134, S154 13.1% 1.6 0.69 all-β 0.26
Thrombin H57, D102, S195 12.5% 1.8 0.74 all-β 0.31
Chymase H45, D89, S182 19.0% 1.9 0.64 all-β −0.49

a Sequence identity of the catalytic unit to SARS-CoV-2 Mpro; b RMSD between histidine, cysteine/serine, and aspartic acid residues relative
to SARS-CoV-2 Mpro;c Similarity of the binding sites to SARS-CoV-2 Mpro determined by FuzCav; d Hodgkin similarity index of the binding
sites comparison relative to the SARS-CoV-2 Mpro determined by PIPSA.

2.2. Hydration and Small-Molecule Hot-Spots

In the next step, we further characterized and compared the selected proteases accord-
ing to their hydration and small-molecule hot-spots by using different molecular probes
including water, acetonitrile, isopropanol, and pyridine. The use of specific functional
groups represented by the different organic probes associating with the active sites can
be used to fine-tune the selectivity profile of protease inhibitors [18,28]. Similarly, selec-
tively targeting hydration sites occurring in one protein, but not in an anti-target, offers
potential to be exploited in structure-based design. It should however be mentioned that
whether the displacement of water molecules is favorable or not depends on the thermo-
dynamic profile of the respective hydration site [29], which was not assessed in this work.
The comparison of the hot-spots in the vicinity of the active site residues revealed distinct
similarities (Figure 1).

For SARS-CoV-2 Mpro, we identified two hydration sites located in the vicinity
of H41, as well as a small-molecule hot-spot for acetonitrile molecules at the same lo-
cation (Figure 2). While we could not detect a hydration site in the vicinity of C141,
association of pyridine and isopropanol was detected. In the case of SARS-CoV Mpro,
however, four hydration sites could be identified. Potentially, the increased flexibility of
SARS-CoV Mpro allowed for increased solvent accessibility in comparison to SARS-CoV-
2 Mpro (Table S1) [30]. Furthermore, the increased magnitude of cosolvent densities in
SARS-CoV Mpro confirmed this observation, although they mainly occupied the vicinity of
H41. Even though one hydration site between the Mpros overlapped, there were signifi-
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cant differences between the small-molecule hot-spots of the SARS-CoV proteases, which
have to be accounted for in the design of pan inhibitors against the two coronaviruses
(Figure 2). For caspase-3, two unique hydration sites were identified in the active site
cavity distant from the catalytic residues, which were not observed in the SARS-CoV-2
Mpro. One of the hydration sites overlapped with the occupancy of multiple organic probes,
which sampled a unique region not observed in any other protease besides UCHL1. Three
hydration sites were identified in the vicinity of the active site residues in UCHL1. One of
the hydration sites was located between three catalytic residues as in caspase-3, but none
of the other cysteine proteases. Thus, these proteases are similar, while presenting distinct
differences to the Mpros despite their shared catalytic mechanism using cysteine for the
nucleophilic attack of the substrate (Table 2). In the active site of factor Xa, we detected
two hydration sites matching the position in prostasin and chymase indicating that they
are conserved. As one of the sites (denoted as site B in Figure 1) could not be observed in
the SARS-CoV-2 Mpro, it might contribute to ligand specificity. Remarkably, the cosolvent
densities among factor Xa, cathepsin G, thrombin, and chymase presented a high degree
of similarity, with an additional density for acetonitrile compared to SARS-CoV-2 Mpro.
The same region was occupied by pyridine probes. A common density of pyridine in the
center of the sites, however, suggested a common preference for hydrophobic or aromatic
moieties among the aforementioned enzymes. Comparing the organic probe density of
factor Xa to SARS-CoV-2 Mpro, a common preference for acetonitrile on the distal side of the
catalytic histidine could be observed. This could guide the placement of an amphipathic
moiety in this region to inhibit both proteases with future antivirals. While cathepsin G
and thrombin shared one of the most commonly observed hydration sites, they lack the
common site observed in the viral Mpros which indicates that the displacement of this
water molecule (denoted as site A in Figure 1) could contribute to selective binding. Both
thrombin and chymase presented a high number of hydration sites within their active
sites sharing the above-mentioned hydration site B not observed in the viral proteases,
as well as the previously discussed acetonitrile density near the backbone of the catalytic
histidine residue. Thus, the inherent potential for off-target binding of novel antivirals to
these targets is small, similar to caspase-3 and UCHL1. Compared to the volume of its
active site cavity, the site of chymase seemed highly accessible to the surrounding solvent.
Overall, the highest similarity among the proteases regarding hydration sites and small-
molecule binding hot-spots, could be observed for factor Xa and chymase. Differences in
hydration site locations identified for individual simulations are most probably related
to conformational changes of the proteins, as the volumes of the active sites underlined
(Table S1).
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Figure 1. Hydration hot-spots of the selected panel of proteases in relation to the catalytic residues. To allow a direct
comparison, the protein structures were aligned according to their catalytic residues. Two most consistently occurring
hydration sites are indicated by A and B. The hot-spots are color-coded according to the occupancy of a particular region
by identified hydration hot-spots. Hydration hot-spots with highest occupancy are colored in dark red, those with low
occupancy in white.
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Figure 2. Small-molecule hot-spots of the selected panel of proteases in relation to their catalytic residues. Blue densities
correspond to isopropanol, pink densities to pyridine, and orange densities to acetonitrile.

2.3. Protease Selectivity Assessed by Molecular Docking

Binding modes obtained from molecular docking have been widely used to estab-
lish selectivity factors toward different targets [13,18,31]. Here, we compiled compound
sets comprising experimentally verified ligands of nine proteases to assess the selectiv-
ity of recently reported SARS-CoV-2 Mpro inhibitors (Figure 3) by cross-docking them
into the respective protein active sites. These known binders were either retrieved from
a set of cocrystallized ligands, the PubChem BioAssay database [32], or the literature
(Tables S2–S10, Figures S3–S18). First, to ensure accurate pose-prediction of our computa-
tional models, we retrieved numerous crystal structures from the Protein Data Bank for
each target and cross-docked their cocrystallized ligands, which is a common procedure
in virtual screening projects [33]. Based on the obtained RMSD values between predicted
and native binding poses, ensembles of protein structures that yielded best-possible pose
prediction quality for non-covalent ligands were identified. In the case of unsatisfactory per-
formance of these structures, short MD simulations were performed to enrich the proteins’
structural diversity. These procedures were performed for the Glide standard precision
(SP) and smina docking protocol, to address known differences among docking programs.
This resulted in excellent docking accuracy for most protein systems which ranged from
75% to 100% of cocrystallized ligands being predicted below an RMSD threshold of 2.5 Å.



Int. J. Mol. Sci. 2021, 22, 2065 7 of 17

The only exception was prostasin, for which we only found an accurate pose for one of
the two available ligands (Table S11). Unfortunately, no non-covalent small molecule was
cocrystallized with UCHL1 which prevented us from computing these metrics in this case.
In a next step, we evaluated the performance of the selected ensembles to distinguish
between known actives and randomly selected decoy molecules based on the Area Under
the Curve (AUC) of the Receiver Operator Characteristic (ROC) curves. Considering the
best score of each compound against the ensemble, acceptable ROC AUC values between
0.631 and 0.953 were obtained demonstrating the accuracy of our models and procedures
in both detecting the actives and predicting bioactive conformations (Table S12).

Figure 3. SARS-CoV-2 Mpro inhibitors considered in this study.

After the validation of the docking protocols, we performed the selectivity analysis
based on docking scores. In detail, the SARS-CoV-2 Mpro inhibitors were docked to
every selected protease and their docking scores were compared with those of the native
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ligands of the respective enzyme. Again, we determined the ROC AUC metrics with
the SARS-CoV-2 compounds regarded as decoys. Except for cathepsin G and chymase,
the docking calculations with SARS-CoV-2 Mpro inhibitors as decoys displayed higher
ROC AUC values compared to the docking calculations with randomly selected decoy
molecules. This indicates an overall low potential for off-target binding based on this
metric. However, in addition to the ROC AUC metric, we depicted the scores in histograms
for every target (Figure 4A). The docking scores of the SARS-CoV-2 compounds were
predicted to be comparably high in magnitude with the majority of compounds only scored
slightly better than -6.0 kcal/mol, even when docked to SARS-CoV-2 Mpro itself. This is
not surprising as the experimentally measured affinity for those compounds only reached
micromolar IC50 values. As already established by the ROC AUC values, cathepsin G
presented the highest score overlap between the compound sets suggesting a risk for
off-target inhibition of this protease involved in antigen processing. Other proteins with
a comparatively high overlap were SARS-CoV Mpro, UCHL1, and chymase. Further,
some inhibitors of caspase-3 presented an overlap with the best-scoring SARS-CoV-2 Mpro

inhibitors, while the majority of compounds were highly separated. In SARS-CoV Mpro,
thrombin, and chymase several SARS-CoV-2 Mpro inhibitors yielded a similar docking
score as some of the actives for that target, even though the peaks of the score distribution
were well separated. Especially, in the case of thrombin, concurrent binding could benefit
COVID-19 patients suffering from coagulopathies such as venous thromboembolism or
sepsis-induced coagulopathy [16,17]. In addition to caspase-3, the distribution in factor
Xa and prostasin presented a clear separation of the peaks for each compound category
indicating a low potential for concurrent binding. In order to obtain more confidence in
the results from molecular docking, we used the complexes and subjected them to MD
simulations followed by molecular mechanics-generalized Born surface area (MM/GBSA)
post-processing. This methodology is considered to be more precise as opposed to docking
scores for a multitude of biomolecular systems [34]. Even though the spread of the values
was higher using this protocol, the general trends remained highly similar, especially for
chymase, cathepsin G, and caspase-3 (Figure S19). There was a slightly higher overlap of
the scores for factor Xa and SARS-CoV-Mpro, which would indicate a higher potential for a
compound to hit both targets.

Interestingly, when the actives of each target were docked to SARS-CoV-2 Mpro, prostasin
inhibitors yielded better docking scores compared to the native ligands (Figure S20). We
noticed similar, but less pronounced trends for inhibitors of thrombin, factor Xa, chymase,
and caspase-3, while cathepsin G, SARS-CoV Mpro, and UCHL1 compounds presented
nearly identical maxima of their docking scores compared to SARS-CoV-2 Mpro inhibitors.
In conclusion, the distribution of the scores indicate promiscuity toward chymase, UCHL1,
and especially cathepsin G, even though the majority of SARS-CoV-2 Mpro inhibitors pre-
sented inferior binding scores towards all assessed proteins. Notably, empirical scoring
functions, as they were used in this project, have a known degree of inaccuracy, and thus,
the absolute numbers should be regarded only as trends.

To acquire structural insights into the selectivity factors of each protease, we visualized
binding modes of ligands presenting either low or high binding affinities for each target.
According to these complexes, compounds intended to inhibit SARS-CoV-2 Mpro should
present π-π stacking with the catalytic residue H41 as well as high complementarity with
the available subpockets of the active site (Figure 4B). To achieve potent and selective
interaction with cathepsin G, the binding modes suggest a salt bridge to K192 or H57 as
well as a deeply buried hydrophobic moiety to be optimal (Figure 4C). Similarly, ionic
interactions, especially if they were buried, seemed to play a role for selective binding
toward thrombin (Figure 4D), caspase-3 (Figure 5A), and chymase (Figure 5B). Interestingly,
compounds hitting the presumably desired off-target factor Xa also strongly relied on shape
complementarity as for SARS-CoV-2 Mpro (Figure 5C), which might explain the concurrent
binding to these targets, as we have previously detected in a virtual screening project [4].



Int. J. Mol. Sci. 2021, 22, 2065 9 of 17

Two-dimensional (2D) depictions of all discussed binding modes are presented in the
Supplementary Information (Figures S21 and S22).

Figure 4. (A) Score distribution of SARS-CoV-2 Mpro inhibitors docked to the selected panel of proteases. The compounds
designed against SARS-CoV-2 Mpro are shown in pine green, while the known actives for the remaining targets are shown
in red. ROC AUC values with the SARS-CoV-2 Mpro inhibitors regarded as decoys for every target are shown. (B) Binding
mode of compound 32 (red) and compound 14 (pine green) toward SARS-CoV-2 Mpro. (C) Binding mode of compound 199
toward cathepsin G. (D) Binding mode of compound 177 toward thrombin.

Figure 5. (A) Binding mode of compound 86 toward caspase-3. (B) Binding mode of compound 293 toward chymase. (C) Binding
mode of compounds 130 and 137 toward factor Xa. (D) SARS-CoV-2 Mpro inhibitors examined with VTL. The predicted binding
affinities of the assessed compounds 1-33 for 16 anti-targets are given.
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2.4. Toxicity Profiling

As mentioned in the introduction, affinity toward anti-targets is frequently respon-
sible for drug attrition [12]. To establish toxicologically relevant binding profiles of drug
candidates our lab has developed the VirtualToxLab (VTL) evaluating their interaction with
16 anti-targets relevant for endocrine disruption, cardiac adverse effects, and extensive
or undesired metabolism [13]. Besides estimates for binding affinities against the anti-
targets, the VTL provides a parameter referred to as toxic potential serving as a consensus
readout for potential undesired effects of the respective compound. SARS-CoV-2 Mpro

inhibitors with toxic potential significantly higher than 0.5 (Table S13) included compounds
1 ((R)-beperidil), 2 ((S)-beperidil), 29, 31 (nelfinavir), and 32 (lopinavir). While compounds
1 and 2 were predicted to interact with multiple nuclear receptors, the hERG channel,
and various cytochromes, compounds 29, 31, and 32 presented affinity toward a more nar-
row spectrum of anti-targets (Figure 5D). Compound 29, for example, almost exclusively
bound to nuclear receptors, resulting in a high estimated risk for endocrine disruption [13].
A common feature of compounds 29, 31, and 32 was their prediction as hERG binders.
The hERG potassium channel is one of the most frequently tested anti-targets in drug
development due to its involvement in fatal arrhythmias [12,13,35]. The results regarding
the HIV protease inhibitors nelfinavir and lopinavir included in our study confirmed the
predictive power of the VTL protocol, as in vitro experiments evidenced their hERG inhibi-
tion [35]. Thus, bepiridil (compounds 1 and 2) displaying a strong interaction for hERG
might be at risk to cause cardiac arrhythmia. A large share of the reported SARS-CoV-2
Mpro inhibitors have comparably low molecular weights with 26 of 33 reported compounds
below 300 g/mol (Figure S23). Since such fragment-like compounds frequently display low
specificity [36], the expansion of these scaffolds might generally decrease their potential for
off-target binding and at the same time improve their moderate potency.

2.5. Selectivity from Different Perspectives

We analyzed the selectivity of nine proteases from different perspectives including
sequence and active site similarity, the location of hydration hot-spots and preference
for certain chemical probes, as well as molecular docking and toxicological profiling.
At the first sight, the low sequence similarity among the proteases (Table 1), the different
cleavage sites, as well as the different volumes of the active sites may suggest a low risk
of off-target binding. However, all investigated off-target proteins showed a considerable
active site similarity based on 3D fingerprints and the positioning of catalytic residues
(Table 2). Based on these parameters, prostasin and factor Xa were the most similar
proteases compared to SARS-CoV-2 Mpro. In six analyzed proteases, a hydration site
indicated by water hot-spot was identified near the histidine (denoted as site A). Only for
cathepsin G, caspase-3, and thrombin, we could not identify this hydration site. Thus,
the displacement of this water molecule would not add any ligand selectivity in this regard.
Further, for five of the nine proteases, another hydration site was identified, near the
serine/cysteine residues in factor Xa, cathepsin G, prostasin, thrombin, and chymase.
Regarding the observed cosolvent densities, we detected a density of acetonitrile in factor
Xa, cathepsin G, UCHL1, thrombin, and chymase, but not SARS-CoV-2 Mpro, where this
region was explored by pyridine. Distinct placement of pharmacophores matching these
differences in density could be exploited to improve inhibitor selectivity. The similarity of
the overall densities in factor Xa, cathepsin G, and chymase coupled to the dissimilarity to
SARS-CoV-2 Mpro, indicated low potential for off-target binding toward these proteases.
A common density of pyridine in the center of multiple sites including the one of SARS-
CoV-2 Mpro, however, showed the preference of an aromatic or hydrophobic moiety in
this region. Caspase-3 and UCHL1 presented the most unique densities indicating a low
potential for off-target binding of inhibitors targeting the remaining proteases.

The docking results of 33 non-covalent SARS-CoV-2 Mpro suggested an overall high
potential for binding to factor Xa, thrombin, and cathepsin G. On the other hand, the distri-
bution of the docking scores indicated a low potential of the 33 compounds for binding
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toward UCHL1 and caspase-3 (Figure 4A). As the individual enzymes offered different
structural factors relevant for potent ligand-protein interaction, their consideration might
improve the design of selective inhibitors. Regarding individual compounds, we identified
four compounds which had the highest binding affinity toward more than a half of the
analyzed proteases: nelfinavir (31) [4,37,38], lopinavir (32) [39–41], pimozide (33) [42],
and baicalein (30) [43] (Figure S24). Similarly, the aforementioned compounds, as well as
both stereoisomers of beperidil (1-2) were predicted to interact with a large panel of known
anti-targets. Especially, interactions with the hERG potassium channel, as it was also ob-
served in laboratory experiments, raised safety concerns for several compounds (Figure 5D).
In this regard, nelfinavir (32) was not only predicted to interact with other proteases such as
factor Xa, but also towards the hERG channel indicating low selectivity of this compound.
Interestingly, when we focused on the compound with the highest predicted binding affin-
ity toward a particular enzyme, we could distinguish three groups: one in which nelfinavir
binds best (including SARS-CoV Mpro, UCHL1, thrombin, and chymase), second in which
pimozide binds best (including prostasin, factor Xa, and caspase-3), and third in which
baicalein binds best (including SARS-CoV-2 Mpro and cathepsin). A closer look into the
first group of enzymes revealed that none of them share the same cleavage site, more-
over both SARS-CoV and SARS-CoV-2 Mpros bind best to different compounds (nelfinavir
and baicalein, respectively). As we highlighted selectivity from different perspectives,
the different metrics are inherently not always consistent for a single target. To conclude,
our predictions indicate the highest potential for off-target binding of SARS-CoV-2 Mpro

inhibitors for factor Xa, SARS-CoV Mpro, and cathepsin G. Low potential was determined
for prostasin, thrombin, and to the largest degree, for caspase-3 (Table 3).

Table 3. Conclusions for selectivity of SARS-CoV-2 Mpro inhibitors.

Protein Docking Cosolvents Hydration Site Similarity a

SARS-CoV Mpro ** * ** ***
Caspase-3 none none none *
Factor Xa ** ** * *
Cathepsin G *** * none *
UCHL1 *** * * none
Prostasin ** none * **
Thrombin ** none * **
Chymase ** * * *

The potential for off-target binding of SARS-CoV-2 Mpro inhibitors against the selected panel of proteases based on
molecular docking, cosolvent MD simulations, and hydration site analysis. The potential was defined according
to asterisks from none to three. a Consensus of binding site similarity determined with FuzCav and PIPSA.

3. Materials and Methods
3.1. Selection of Proteases

The panel of proteases for this work were selected using the VAST+ tool [44] by
using the SARS-CoV-2 Mpro structure (PDB ID: 6Y2E) as input. The VAST+ protocol
determines similar macromolecules to a query structure by computing the superposition
of three dimensional protein structures relying purely on geometric measures. The re-
sults were filtered to only match only human proteases. The next criterion was the the
reaction mechanism of the selected protease, to ensure a representation of both cysteine
and serine proteases in our study. Finally, we examined the availability of crystal struc-
tures with cocrystallized ligands leading to the selection of proteases listed in Table 1.
The preprocessing of the structures is given in the Supplementary Materials.

3.2. Similarity of Proteins and Active Sites

The sequence identity was determined using FASTA sequences derived from the
UniProt database [45] (Table S14). In the case of both SARS-CoV-2 and SARS-CoV Mpro,
as well as factor Xa and thrombin, we truncated the sequences to cover the entry in the
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respective crystal structures limiting the analysis to the catalytic unit. The sequences were
aligned with the ClustalW algorithm [46] in the UGENE suite (v34.0) [47]. The sequence
identity was computed based on matches of the respective protein to SARS-CoV-2 Mpro

in respect to the length of the sequence.
The active sites of the proteases were aligned in PyMOL using the pair_fit command.

Each protease was aligned to the reference structure: the SARS-CoV-2 Mpro (PDB ID:
6Y2E), fitting the protease catalytic histidine residue with the H41 of the SARS-CoV-2 Mpro,
protease catalytic serine or cysteine residue with the C145 of the SARS-CoV-2 Mpro, and the
protease aspartic acid residue with the catalytic water molecule (ID 582) of the SARS-CoV-2
Mpro. The RMSD values were computed according to the superimposition of the catalytic
residues in PyMOL.

To determine the similarity of the active sites of the considered off-targets to SARS-
CoV-2 Mpro, we used the FuzCav [25] routine. This routine computes the similarity based
on fingerprints for each binding site incorporating pharmacophoric properties from the
coordinates of surrounding α-carbon atoms. As input, we selected residues in 5 Å around
the cocrystallized ligands in the structures.

To compare the electrostatic interaction properties of the binding cavities, we used the
PIPSA [26] software. First, we preprocessed the structures using PDB2PQR tool [48], and we
calculated the Adaptive Poisson-Boltzmann Solver (APBS) electrostatics potentials [49]
setting the grid spacing to 0.6. Then, we calculated the similarity matrix (Hodgkin index) of
the binding cavities from APBS grids. The binding pocket was set as a sphere with a radius
of 12.5 Å around the geometric centre of the catalytic amino acids after superposition.

3.3. Cosolvent MD Simulations

The cosolvent MD simulations were conducted with the Mixed Solvent MD work-
flow of the Desmond (v2019-1) simulation engine [50] with acetonitrile, isopropanol,
and pyridine as probe molecules as they are water-miscible and feature a low potential for
aggregation. The concentration of the probe molecules was selected at 5% (by volume) and,
if required for system setup, the water buffer parameter was increased from 12.0 to 15.0,
as described in the documentation of the workflow. From the above-mentioned protein
structures, monomers were retained to reduce the computational cost of the simulations.
Furthermore, the ligands were removed from the structures to sample the respective bind-
ing sites. The simulations were performed with the default specifications at a temperature
of 300 K and the OPLS_2005 force field in an NPT ensemble. After an equilibration of
15 ns, production runs of each probe were individually executed for 5 ns with 10 replica
simulations resulting in a cumulative simulation time of 600 ns per protein.

3.4. Classical MD Simulations

The H++ server [51] was used to protonate all proteins structures listed in Table S15
using standard parameters at pH 7.4. The missing 4-amino-acids-long loop of the 1Q2W
SARS-CoV Mpro model was added using the corresponding loop of the 6LU7 model (from
SARS-CoV-2 Mpro), and its quality was confirmed by comparison with another crystal
structure of SARS-CoV Mpro (PDB ID: 2H2Z). Counter ions were added to to neutralize
the systems as shown in Table S15. Water molecules were placed using the combination
of 3D-RISM [52] and the Placevent algorithm [53]. AMBER 18 LEaP [54] was used to
immerse models in a truncated octahedral box with 12 Å radius of TIP3P water molecules
and prepare the systems for simulation using the ff14SB force field [55]. The number
of added water molecules is shown in Table S15. The PMEMD CUDA package of AM-
BER 18 software [54] was used to run 10 replicas of 50 ns for each system. The starting
geometry for each system was kept, but the initial vectors were randomly assigned to
enrich conformational sampling. The minimization procedure consisted of 2000 steps,
involving 1000 steepest descent steps followed by 1000 steps of conjugate gradient en-
ergy minimization, with decreasing constraints on the protein backbone (500, 125 and
25 kcal·mol−1·Å−2) and a conjugate gradient minimization with no constraints. Next,
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the systems were gradually heated from 0 to 300 K over 20 ps using a Langevin thermostat
with a collision frequency of 1.0 ps−1 in periodic boundary conditions with constant vol-
ume. Equilibration stage was run using the periodic boundary conditions with constant
pressure for 1 ns (10 ns in the case of caspase-3 and factor Xa structures to ensure proper
equilibration) with 1 fs step using Langevin dynamics with a frequency collision of 1 ps−1

to maintain temperature. Production stage was run for 50 ns with a 2 fs time step using
Langevin dynamics with a collision frequency of 1 ps−1 to maintain constant temperature.
Long-range electrostatic interactions were treated using the particle mesh Ewald method
with a non-bonded cut-off of 10 Å and the SHAKE algorithm. The coordinates were saved
at an interval of 1 ps. The computation of the maximum available volume (MAV) is given
in the Supplementary Information.

3.5. Water Molecules Tracking, Hot-Spots Identification

AQUA-DUCT 1.0 software [56] was used to track water molecules for all proteases in
each simulation replica. Tracking of water molecules was conducted in two specific regions:
the Object, which represents the cavity of a particular interest, and the Scope representing the
whole macromolecule. The Object was defined as a 4 Å sphere around the centroid of the
active site residues of each protein (catalytic residues listed in Table 2), and the Scope was
defined as the interior of a convex hull of α-carbon atoms in all structures. AQUA-DUCT
was also used for identification of hot-spots, defined as the regions of the highest density
of traced molecules within the protein interior. AQUA-DUCT is able to calculate hot-spots
using two types of data: (i) using only the pathways of those molecules that entered the
Object to calculate local hot-spots, and (ii) using the pathways of all molecules that entered
the Scope region to calculate the global hot-spots. Both types of hot-spots were calculated
for each of the simulation replica, and then simplified using the hs_gsimplifier.py script.
The hs_simplifier.py script was used to analyze the positions of all identified hot-spots and
grouped those hot-spots which were located within a radius of 3 Å in the case of global
hot-spots, and 2 Å in the case of local hot-spots. Then it provided the information about the
particular simulation replica in which the hot-spot was identified. The information was
kept and the simplified hot-spots are colour-coded according to their occupation. Those
which were the most common were colored dark red, and those which were rare are white.

3.6. Molecular Docking and Validation

To ensure a high accuracy in pose prediction, we determined a fitting structural en-
semble for each target that was able reproduce to binding modes of a maximal portion
of non-covalent cocrystallized ligands. We evaluated the Glide standard-precision (SP) [57]
as well as the smina [58] docking protocol throughout this study. While default setting were
retained for Glide including the grid generation, an exhaustiveness of 16, a cubic search
space with a side length of 21 Å, as well as a random seed of 42 was configured for smina.
The centroids for the respective search spaces were determined by computing the mass
center of the cocrystallized ligand. The RMSD between the docked pose and the respective
cocrystallized ligand was computed using the rmsd.py script that comes with Maestro after
protein structure alignment. In the case of unsatisfying pose prediction, we created struc-
tural ensembles (Tables S16–S18) by clustering representative structures of MD simulations
as detailed in our previous work [4]. For each protein, the docking protocol combined with
the structural ensemble correctly reproducing the highest number of cocrystallized ligands
was selected to assess the potential to discriminate random decoy compounds from known
binders. Actives for each target were collected from various sources including crystal
structures, the literature, as well as the PubChem database [59]. The respective decoy
compounds were generated using the novel DUDE-Z web server [60] with SMILES strings
as input. Since LigPrep frequently generated multiple plausible protonation states and
stereoisomers of the decoys, we chose the best docking score against the ensemble of each
isomer. Together with the results from the known binders, the docking scores were submit-
ted to the Screening Explorer web server [61] to determine enrichment metrics including
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the maximal reachable enrichment as well as the ROC AUC. The following selectivity
assessment was conducted by using SARS-CoV-2 Mpro inhibitors as decoy compounds
combined with known binders as actives. The ROC AUC metric was again obtained from
the Screening Explorer web server and the scores were compared in a histogram computed
using the Matplotlib [62] python library. To compare the absolute values of the docking
scores among the different proteins, smina was used to rescore the poses obtained from
Glide SP docking in the case of SARS-CoV-2 Mpro, caspase-3, and chymase. Lastly, we
aimed on deducing the structural factors for selective binding by visual inspection of the
binding modes.

3.7. MD and MM/GBSA Post-Processing

To obtain more confidence in the results from docking, we post-processed the docking
poses with the MM/GBSA protocol. Using Desmond (v2019-1), we conducted 2 ns simula-
tions of all 576 ligand-protein complexes with different targets. We used the OPLS_2005
force field in an NPT ensemble with a temperature of 310 K maintained by the Nose-Hoover
thermostat and atmospheric pressure maintained by the Martyna-Tobias-Klein barostat.
The orthorhombic periodic boundary system was solvated with TIP3P water molecules.
Long-range interactions were treated with the u-series algorithm [63] and short-range
interactions were cut off at 9 Å, while bonds to hydrogen atoms were constrained with the
M-SHAKE algorithm. The default relaxation protcol in Desmond was applied before the
production phase. Atomic coordinates were deposited in an interval of 20 ps and the ther-
mal_mmgbsa.py script that comes with Maestro (v2019-4) was applied to obtain binding
free energies of the last 10 frames of the simulations, which were averaged thereafter.

4. Conclusions

Due to the current COVID-19 pandemic and the lack of specific therapeutics, many
small molecules that inhibit SARS-CoV-2 Mpro have been proposed. This work aims to
support further development of these compounds in order to avoid safety issues due to off-
target binding, which is one of the major reasons for late stage drug attrition. We addressed
the concern of selectivity and off-target binding of 33 published, experimentally confirmed
SARS-CoV-2 Mpro inhibitors by predicting their affinity toward eight different proteases
and profiling their active sites regarding hydration site and small-molecule hot-spots. Even
though the selected off-target proteins presented a low global sequence identity to SARS-
CoV-2 Mpro, their binding sites were considerably similar. This similarity could explain
the predicted affinities of the SARS-CoV-2 Mpro inhibitors, which presented a considerable
overlap with actives against chymase, UCHL1, and cathepsin G. Interestingly, inhibitors of
prostasin displayed higher predicted binding affinities to SARS-CoV-2 Mpro than its native
inhibitors. Refining the SARS-CoV-2 Mpro inhibitors may be necessary to achieve higher
affinities toward their designated target, as well as to improve selectivity and thereby
decrease off-target binding. Around one third of the investigated compounds presented
medium to high potential for endocrine disruption, altered drug metabolism, or cardiac
adverse events based on the prediction of binding affinities towards 16 well established
anti-targets. Our work showed that, while there are many proposed SARS-CoV-2 Mpro

inhibitors, they generally exhibit poor selectivity and may cause pharmacological undesired
effects by off-target binding. Even though the panel of proteases share a comparably low
sequence identity and different substrate specificity, enzymes such as cathepsin G, factor
Xa, as well as UCHL1 could be relevant off-targets for novel antivirals. If experimental
testing and compound optimization efforts will be guided to achieve selectivity over the
suggested anti-targets, novel antivirals could have an improved safety profile.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/4/2065/s1, Figures S1 and S2: Active site similarity, Table S1: Maximal available volumes,
Figures S3–S18: Structures of actives for each protease, Tables S2–S10: Origin of active compounds,
Figure S19: Binding free energies obtained by MM/GBSA calculations, Figure S20: Score distribution
of SARS-CoV-2 actives against every target, Figures S21 and S22: 2D depiction of discussed binding
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modes, Tables S11 and S12: metrics of docking protocol validation, Table S13: Toxic potential of
SARS-CoV-2 actives, Figure S23: Molecular weight of SARS-CoV-2 actives, Figure S24: Comparison
of docking scores, Supporting text: Model preparation, Supporting text: MAV calculation, Table
S14: UniProt identificators for all proteases, Table S15: Ions and water molecules for conventional
MD, Tables S16–S18: Crystal structures considered in docking. References [64–66] are cited in the
Supplementary Materials.
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30. Bzówka, M.; Mitusińska, K.; Raczyńska, A.; Samol, A.; Tuszyński, J.A.; Góra, A. Structural and evolutionary analysis indicate

that the sars-COV-2 mpro is a challenging target for small-molecule inhibitor design. Int. J. Mol. Sci. 2020, 21, 3099. [CrossRef]
[PubMed]

31. Ortiz, A.R.; Gomez-Puertas, P.; Leo-Macias, A.; Lopez-Romero, P.; Lopez-Viñas, E.; Morreale, A.; Murcia, M.; Wang, K. Computa-
tional approaches to model ligand selectivity in drug design. Curr. Top. Med. Chem. 2006, 6, 41–55. [CrossRef]

32. Wang, Y.; Bryant, S.H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B.A.; Thiessen, P.A.; He, S.; Zhang, J. PubChem BioAssay:
2017 update. Nucleic Acids Res. 2017, 45, D955–D963. [CrossRef]

33. Kumar, A.; Zhang, K.Y.J. A cross docking pipeline for improving pose prediction and virtual screening performance. J. Comput.-
Aided Mol. Des. 2018, 32, 163–173. [CrossRef]

34. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA
and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [CrossRef] [PubMed]

35. Anson, B.D.; Weaver, J.G.R.; Ackerman, M.J.; Akinsete, O.; Henry, K.; January, C.T.; Badley, A.D. Blockade of HERG channels by
HIV protease inhibitors. Lancet (Lond. UK) 2005, 365, 682–686. [CrossRef]

36. Chen, Y.; Shoichet, B.K. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat. Chem. Biol. 2009,
5, 358–364. [CrossRef] [PubMed]

37. Huynh, T.; Wang, H.; Luan, B. In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly
Inhibiting SARS-CoV-2’s Main Protease. J. Phys. Chem. Lett. 2020, 11, 4413–4420. [CrossRef]

38. Yamamoto, N.; Matsuyama, S.; Hoshino, T.; Yamamoto, N. Nelfinavir inhibits replication of severe acute respiratory syndrome
coronavirus 2 in vitro. bioRxiv 2020. [CrossRef]

39. Liu, X.; Wang, X.J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet.
Genom. 2020, 47, 119–121. [CrossRef]

40. Kumar, Y.; Singh, H.; Patel, C.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular
docking and dynamics simulation based drug-repurposing. J. Infect. Public Health 2020, 13, 1210–1223. [CrossRef] [PubMed]

41. Narkhede, R.; Cheke, R.; Ambhore, J.; Shinde, S. The Molecular Docking Study of Potential Drug Candidates Showing
Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian J. Med. Oncol. 2020, 4, 185–195. [CrossRef]

42. Vatansever, E.; Yang, K.; Kratch, K.; Drelich, A.; Cho, C.; Mellott, D.; Xu, S.; Tseng, C.; Liu, W. Bepridil is potent against
SARS-CoV-2 In Vitro. bioRxiv 2020. [CrossRef]

43. Eleftheriou, P.; Amanatidou, D.; Petrou, A.; Geronikaki, A. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors
against the Main Protease of the Novel SARS-CoV-2 Virus. Molecules 2020, 25, 2529. [CrossRef] [PubMed]

44. Madej, T.; Lanczycki, C.J.; Zhang, D.; Thiessen, P.A.; Geer, R.C.; Marchler-Bauer, A.; Bryant, S.H. MMDB and VAST+: Tracking
structural similarities between macromolecular complexes. Nucleic Acids Res. 2014. [CrossRef]

45. Consortium, T.U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef]

http://dx.doi.org/10.1111/jth.14817
http://www.ncbi.nlm.nih.gov/pubmed/32220112
http://dx.doi.org/10.1182/blood.2020006000
http://www.ncbi.nlm.nih.gov/pubmed/32339221
http://dx.doi.org/10.3390/ijms21020534
http://www.ncbi.nlm.nih.gov/pubmed/31947677
http://dx.doi.org/10.1021/acs.jmedchem.6b00399
http://dx.doi.org/10.1021/acs.jcim.6b00623
http://www.ncbi.nlm.nih.gov/pubmed/28537745
http://dx.doi.org/10.1038/s41598-019-48949-w
http://dx.doi.org/10.1038/nrd.2018.21
http://dx.doi.org/10.1016/j.str.2009.10.008
http://www.ncbi.nlm.nih.gov/pubmed/20004167
http://dx.doi.org/10.1109/csb.2004.1332450
http://dx.doi.org/10.1021/ci900349y
http://www.ncbi.nlm.nih.gov/pubmed/20058856
http://dx.doi.org/10.1002/(SICI)1097-0134(19991115)37:3<379::AID-PROT6>3.0.CO;2-K
http://dx.doi.org/10.1002/pro.5560040301
http://dx.doi.org/10.1021/ct5010577
http://dx.doi.org/10.1007/978-1-4939-7015-5_10
http://dx.doi.org/10.3390/ijms21093099
http://www.ncbi.nlm.nih.gov/pubmed/32353978
http://dx.doi.org/10.2174/156802606775193338
http://dx.doi.org/10.1093/nar/gkw1118
http://dx.doi.org/10.1007/s10822-017-0048-z
http://dx.doi.org/10.1021/acs.chemrev.9b00055
http://www.ncbi.nlm.nih.gov/pubmed/31244000
http://dx.doi.org/10.1016/S0140-6736(05)17950-1
http://dx.doi.org/10.1038/nchembio.155
http://www.ncbi.nlm.nih.gov/pubmed/19305397
http://dx.doi.org/10.1021/acs.jpclett.0c00994
http://dx.doi.org/10.1101/2020.04.06.026476
http://dx.doi.org/10.1016/j.jgg.2020.02.001
http://dx.doi.org/10.1016/j.jiph.2020.06.016
http://www.ncbi.nlm.nih.gov/pubmed/32561274
http://dx.doi.org/10.14744/ejmo.2020.31503
http://dx.doi.org/10.1101/2020.05.23.112235
http://dx.doi.org/10.3390/molecules25112529
http://www.ncbi.nlm.nih.gov/pubmed/32485894
http://dx.doi.org/10.1093/nar/gkt1208
http://dx.doi.org/10.1093/nar/gky1049


Int. J. Mol. Sci. 2021, 22, 2065 17 of 17

46. Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680.
[CrossRef]

47. Okonechnikov, K.; Golosova, O.; Fursov, M.; Varlamov, A.; Vaskin, Y.; Efremov, I.; German Grehov, O.G.; Kandrov, D.; Rasputin,
K.; Syabro, M.; et al. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [CrossRef] [PubMed]

48. Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann
electrostatics calculations. Nucleic Acids Res. 2004, 32, W665–W667. [CrossRef]

49. Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the
ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [CrossRef] [PubMed]

50. Bowers, K.; Chow, E.; Xu, H.; Dror, R.; Eastwood, M.; Gregersen, B.; Klepeis, J.; Kolossvary, I.; Moraes, M.; Sacerdoti, F.; et al.
Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE SC 2006
Conference (SC’06), Tampa, FL, USA,11–17 November 2006; p. 43. [CrossRef]

51. Anandakrishnan, R.; Aguilar, B.; Onufriev, A.V. H++ 3.0: Automating pK prediction and the preparation of biomolecular
structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012, 40, W537–W541. [CrossRef] [PubMed]

52. Luchko, T.; Gusarov, S.; Roe, D.R.; Simmerling, C.; Case, D.A.; Tuszynski, J.; Kovalenko, A. Three-Dimensional Molecular Theory
of Solvation Coupled with Molecular Dynamics in Amber. J. Chem. Ther. Comput. 2010, 6, 607–624. [CrossRef]

53. Sindhikara, D.J.; Yoshida, N.; Hirata, F. Placevent: An algorithm for prediction of explicit solvent atom distribution-Application
to HIV-1 protease and F-ATP synthase. J. Comput. Chem. 2012, 33, 1536–1543. [CrossRef] [PubMed]

54. Case, D.A.; Walker, R.C.; Cheatham, T.E.; Simmerling, C.; Roitberg, A.; Merz, K.M.; Luo, R.; Darden, T. Amber 18; University
of California: San Francisco, CA, USA, 2018.

55. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein
Side Chain and Backbone Parameters from ff99SB. J. Chem. Comput. 2015, 11. [CrossRef] [PubMed]
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