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Therapeutic Advances in 
Hematology

Chromosomal abnormalities are frequently 
observed in hematological disorders. For example, 
myelodysplastic syndrome (MDS) is frequently 
accompanied by chromosomal aneuploidies, as in 
chromosomes 5−, 7−, 8+, 17−, or 20−.1–3 These 
chromosomal aneuploidies are worth identifying 
and monitoring since they provide information 
regarding disease status or indicate poor progno-
sis.4,5 Cytogenetic methods, such as fluorescence 
in situ hybridization or G-banding, are widely used 
to detect chromosomal copy numbers.6 However, 
because they are low-throughput methods that 
require numerous steps and may not be welcomed 
in routine laboratory workflows. Therefore, in this 
study, we developed a novel high-throughput and 
sensitive assay for aneuploidy detection using 
droplet polymerase chain reaction (PCR). A PCR-
based method would facilitate more rapid and 
more frequent monitoring of chromosomal status. 
Generally speaking, PCR is not suitable for count-
ing just one or two copies, although this technique 
works as a powerful tool for detecting a novel 

genetic marker, such as BCR-ABL,7 which is fre-
quently present in cells of patients with chronic 
myelogenous leukemia and acute lymphoblastic 
leukemia, but not in cells from healthy patients. In 
a general real-time PCR, the information of the 
template molecules is retained during the expo-
nential amplification phase and is reflected as the 
difference in Ct values. However, the sensitivity is 
not high enough to determine the ratio of abnor-
mal cells if a sample is a mixture of normal karyo-
type and aneuploid cells. In digital PCR, where 
DNA is amplified in a nanoliter-sized compart-
ment, the reaction is efficient enough for the ampli-
fication of only one molecule of DNA.8 At the 
endpoint, however, the high efficiency makes it 
impossible to preserve information regarding the 
number of template molecules. The results only 
provide information as to whether or not the DNA 
of interest was amplified, that is, whether the target 
DNA was present or absent. We speculated that 
information on the number of template molecules 
might be retained before the reaction reaches its 
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plateau in a compartmented droplet. Therefore, 
we attempted to convert the information on the 
amount of template molecules into other signals, 
such as fluorescence intensity.

First, we performed nanoliter-scale PCR using 
cells as templates. The number of cells was 
adjusted to approximately 5000 so that the simul-
taneously generated 20,000 droplets would con-
tain single cells. The cells were then mixed with 
PCR enzymes, buffer (ddPCR Multiplex 
Supermix; Bio-Rad) and specific probes/primers 
(IDT), and subsequently loaded on a cartridge 
with oil to create droplets using a specialized 
instrument (QX200 Droplet Generator; Bio-Rad). 
The droplets were transferred to a PCR tube to 
conduct the PCR [85°C 60 min, 95°C 10 min, 
(94°C 30 s, and 62°C 2 min) × 23, 98°C 10 min, 
10°C hold, ramp rate = 1°C/s] using a thermal 
cycler (C1000 Touch; Bio-Rad). The fluorescence 
was analyzed by the droplet reader, and the manu-
facturer’s software displayed the 2D readout. The 
GM22948 normal karyotype without 1q deletion 
cell line and the GM13721 aneuploidy (deletion) 
of chromosome 13 cell line (Coriell Institute for 
Medical Research) were used in the experiments. 
A few dozen probes were designed and used in a 
multiplex reaction to cover a predominant region 
of a chromosome, with FAM probes targeting 
chromosome 13 and HEX probes for a reference 
chromosome. In the preliminary consideration, we 
examined the most suitable conditions for ddPCR. 

Samples were reacted with various cycles, and 
HEX/FAM fluorescence was measured to search 
for optimal conditions that could distinguish 
between positive and negative cells and copy num-
ber differences. Finally, positive droplets were 
selected by Ct 23 of ddPCR, as shown in Figure 1; 
the intensities of FAM on the 2D readouts dif-
fered, while HEX signals gave the same range of 
intensities. Compared to the FAM signal obtained 
from GM22948, GM13721 gave a reduced FAM 
signal. It should be noted that the signal dots were 
surely derived from cell templates and not from 
cell-free DNA because the dots appearing at the 
diagonal on the 2D readout were both positive for 
FAM and HEX. In our method, when cell-free 
DNA is amplified, it is depicted in the FAM-only 
and HEX-only positive populations, which means 
that it is theoretically not represented in the double 
positive HEX-positive FAM-positive cell popula-
tion. Cell-free DNA contaminating a sample9 
might also give some nonspecific signals, but the 
possibility that one droplet contained cell-free 
DNA responding to both FAM and HEX probes 
simultaneously was considered to be quite low.10

Next, we applied the technology to patients’ 
materials and compared the results to conven-
tional methods as a pilot study. We examined the 
clinical availability by analyzing chromosomes 5, 
7, 8, 17, and 20, using peripheral blood or bone 
marrow samples from 15 patients diagnosed with 
MDS (Supplemental Table 1). Patients with 

Figure 1.  (a) GM22948 cells, which have a normal karyotype, were counted and the number of cells was adjusted to approximately 
5000. The cells were then mixed with PCR enzymes, buffer (ddPCR Multiplex Supermix; Bio-Rad), and specific probes/primers 
(IDT), and subsequently loaded on a cartridge with oil to create droplets using a specialized instrument (QX200 Droplet Generator; 
Bio-Rad). In the 2D readout, (1) indicates the dots obtained from these droplets, which contained one cell with enzymes and probe/
primers, and (2) indicates there were more than two cells in each droplet. The droplets were transferred to a PCR tube to conduct the 
PCR [85°C 60 min, 95°C 10 min, (94°C 30 s, and 62°C 2 min) × 23, 98°C 10 min, 10°C hold, ramp rate = 1°C/s] using a thermal cycler 
(C1000 Touch; Bio-Rad). The fluorescence was analyzed by the droplet reader, and the manufacturer’s software displayed the 2D 
readout. (b) The same experiment was conducted using GM13721 cells with the deletion of chromosome 13. (c). The results from 
both cell line experiments were merged. FAM signals obtained from the GM13721 cells were reduced on the 2D readout (arrows).
PCR, polymerase chain reaction.
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MDS often exhibit copy number abnormalities of 
these chromosomes. As with the results of cell lines, 
the new assay detected chromosomal copy number 
abnormalities in clinical samples (Figure 2). As 
summarized in Supplemental Table 2, the results 
obtained by the new assay showed a qualitative 
concordance with those obtained by cytogenetical 
methods [see also Figure 2(a) and (b)]. In one 
case, with regard to chromosome 20, the new 
assay detected a small population of cells (0.3%) 
with the deletion [Figure 2(c)], while G-Banding 
did not detect such an abnormality. Since 
G-Banding usually examines 20 cells in each test, 
a small population of less than 5% is theoretically 
overlooked in this test. Although the results 
obtained using the new assay were not verified by 
another method, it is possible that the discrep-
ancy in detecting the small population was due to 
the higher sensitivity of the new assay.

In another case, the new assay did not detect the 
deletion of chromosome 20, which was detected 
by G-Banding. Considering that this patient had 
a very complicated karyotype with eight marker 
chromosomes11 (58<2n>, XY, +2, der(3)t(1;3)
(q25;p13)ins(3;?)(p13;?), +del(6)(q?), +8, 
add(9)(p11), +add(11)(p11.2), +14, −16, +18, 
+19, −20, −20, +8mar), some part of chromo-
some 20 could have been integrated into marker 
chromosomes to give the impression of a normal 
amount of that chromosome. It should be noted 
that, unlike G-Banding, the new assay does not 
provide visual information, but does provide 
objective molecular information. Taken together, 
the correspondence with the cytogenetic results 

demonstrates that the new assay could be clini-
cally useful for the qualitative assessment of chro-
mosome copy numbers.

PCR is reportedly unsuitable for counting a small 
number of template molecules. The newly devel-
oped assay could be a breakthrough in the field of 
chromosomal tests, where cytological methods 
have been predominantly applied for several dec-
ades. As a rapid, high-throughput method with 
high sensitivity, the new assay is expected to 
become a new standard for counting chromo-
somes in the near future. Considering the molec-
ular mechanism, this new assay should not be 
applied for detecting translocations. For exam-
ple, t(4;14) and t(14;16) are frequently observed 
in patients with multiple myeloma.12 For many 
such translocation-type genetic abnormalities, 
specific primers for the responsible gene are used, 
and quantitative PCR is performed. The new test 
method we have developed is more suitable for 
detecting numerical chromosomal aberrations 
than for detecting translocation-type genetic 
abnormalities. It can also perform these chromo-
somal numerical aberrations more quickly and 
inexpensively than previous methods and can 
assist in clinical decision-making.

Declarations

Ethics approval and consent to participate
The clinical study was conducted at the National 
Cancer Center East Hospital, Osaka University 
Graduate School of Medicine, and Tokyo 
Medical University Hospital with the approval of 

Figure 2.  Peripheral blood was collected from a patient with MDS. The blood cells were hemolyzed and then used in the new assay 
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