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Abstract: The recent development of sequencing technology and imaging methods has provided an
unprecedented understanding of the inter-phase chromatin folding in mammalian nuclei. It was
found that chromatin folds into topological-associated domains (TADs) of hundreds of kilo base pairs
(kbps), and is further divided into spatially segregated compartments (A and B). The compartment B
tends to be located near to the periphery or the nuclear center and interacts with other domains of
compartments B, while compartment A tends to be located between compartment B and interacts
inside the domains. These spatial domains are found to highly correlate with the mosaic CpG island
(CGI) density. High CGI density corresponds to compartments A and small TADs, and vice versa.
The variation of contact probability as a function of sequential distance roughly follows a power-
law decay. Different chromosomes tend to segregate to occupy different chromosome territories.
A model that can integrate these properties at multiple length scales and match many aspects is
highly desired. Here, we report a DNA-sequence based coarse-grained block copolymer model
that considers different interactions between blocks of different CGI density, interactions of TAD
formation, as well as interactions between chromatin and the nuclear envelope. This model captures
the various single-chromosome properties and partially reproduces the formation of chromosome
territories.

Keywords: chromatin; polymer model; genomic sequence

1. Introduction

People have long been interested in the folding of DNA in the nucleus. The re-
cent development of experimental techniques such as chromosome conformation capture
(especially, Hi-C) [1] and super-resolution imaging techniques [2,3] has revealed an un-
precedentedly detailed picture of the chromatin structure in the nucleus. It was found
that the chromatin takes a hierarchical folding pattern [1,4–7]. At the scale of hundreds
of kilo-base pairs (kbps), the topological associating domains (TADs) have been revealed,
which are contiguous loop-like structures along the sequence. The interactions inside
TADs are stronger than between TADs [4–6]. At the megabase scale, several characteristics
of chromatin folding and spatial organization in the nucleus have also been identified.
Firstly, the Hi-C technique reveals that the chromatin folds into two types of spatially
segregated megabase compartments in the nucleus, the compartment A and the com-
partment B [1]. Segments belonging to the same type of compartment tend to interact
with each other, while segments belonging to different types of compartments tend to
separate spatially. Interactions between B compartments are stronger than those between
A compartments [1]. However, the TADs in compartments B are large and lack strong
interactions inside, while the TADs in compartments A are small and condensed [8], in-
dicating that intra-compartment A interactions are stronger than intra-compartment B.
Secondly, a power-law decay of the contact probability P between loci with the sequential
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distance N, say, P(N)~N−α, is observed [1,9,10]. However, the value of α varies with
the genomic distance. At the scale of TADs (below several hundred kbps), α is usually
smaller than one [1,11]. The value of α typically lies in the range between 1 and 1.3 at dis-
tances of several hundred kbps to about 7 Mbps [1,9,10]. At even larger genomic distances
(7~20 Mbps), α decreases again to about 0.6~0.8 [1]. Thirdly, compartment B usually tends
to occupy the nuclear periphery and the nuclear center, while compartments A occupy
other spaces [1,3,12]. These results indicate that from the nuclear periphery to the nuclear
center, the main component of the chromatin forms roughly a B-A-B distribution pattern,
although in certain cells, such as rod cells, compartments A lie near the periphery and
compartments B locate near the nuclear center [13,14]. It was also found that chromosomes
tend to segregate and form chromosome territories [12].

Recent studies additionally revealed that chromatin folding properties are correlated
with many other biological factors, such as genomic content, epigenetic marks, gene
density and expression intensity [1,7,15,16]. At the megabase scale, compartments A
mainly correspond to the euchromatin, which is gene rich, abundant in activating histone
marks, low in DNA methylation level and actively transcribed. Compartments B mainly
correspond to heterochromatin with characteristics opposite to compartments A [1]. It was
also found that the organization of compartments B is well correlated with the lamina-
associating domains (LADs, see below), which tend to interact with the nuclear lamina and
populate near the nuclear periphery [1,5,17,18]. In our previous study we separated the
mammalian genome into two kinds of domains based on the CpG island (CGI) density,
namely the CGI-rich forest (F) domains and the CGI-poor prairie (P) domains [19]. These
domains strongly correlate with compartment formation. F domains mostly colocalize with
compartments A, while P domains mostly colocalize with compartments B [19]. Previously,
we proposed that the establishment of F-F and P-P interactions results in a segregation
between F domains and P domains, which leads to compartmentalization. Further studies
are needed to improve our physical understanding of chromatin folding principles and
test the feasibility of the proposed model.

The importance of lamina association was highlighted in chromatin spatial organiza-
tion. Lamin proteins populate mainly near the inner-surface of the nucleus (the nuclear
lamina), and the LADs are sequences interacting with these proteins. Single cell experi-
ments showed that not all LADs bind to the nuclear lamina. A fraction of them detach
from the nuclear lamina and condense into the nuclear center to form nucleolar associating
domains [20,21]. Lamin proteins play an important role in the formation of LADs. Rod cells
lack lamin B proteins and exhibit a reversed spatial organization compared to other cells,
with compartments A being close to the nuclear periphery [13,14]. These studies combined
with a recent report on the importance of heterochromatin in compartmentalization [3]
imply that condensation of heterochromatin and lamina binding are both important driving
forces in the formation of chromatin spatial organization.

Polymer modeling is widely employed to study the folding mechanism of chromatin.
In these studies, the chromatin is typically modeled as a polymer chain, while the interac-
tions are modeled by direct interactions between beads on the polymer [22–25] or mediated
by proteins [26–30] simplified as free beads. Many characteristics of chromatin folding
have been reproduced or revealed from these rather sophisticated model studies. For
example, the string and binder switch (SBS) model of Barbieri et al. used free beads to
mediate interactions between chromatin segments, and reproduced the scaling properties
of the entire chromatin, topological domain formation, as well as looping out [26]. The
loop extrusion model described a process that protein complexes slide along the chromatin,
which can be halted by TAD boundaries [11,31]. This latter model successfully explains
the formation of TADs. Furthermore, by combining the loop extrusion model with a block
copolymer model, J. Nuebler et al. studied the interplay between the formation of TADs
and compartments [32]. In recent studies, the block copolymer model and LAD formation
have been combined to illustrate the spatial organization of chromatin. These models
generally divide the chromatin into different kinds of blocks. Blocks of the same kind
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attract each other. For some blocks, attractions between blocks and nuclear periphery are
applied to mimic the LAD formation. For example, M. Falk et al. considered three kinds of
blocks, one kind of which could interact with the nuclear lamina [3]. Their results indicate
that the LAD formation plays a crucial role in forming the spatial organization pattern for
both normal cells and rod cells. M. Chiang et al. [33] and S. Sati et al. [34] used this type
of model to study the formation of senescence-associated heterochromatin foci (SAHF).
Though the criteria they used to divide blocks are different, their studies both indicate
the important roles of the interactions between related heterochromatin domains and the
nuclear lamina, as well as interactions between heterochromatin domains, in the formation
of SAHF. Although significant variations do exist between different cell types, different
(especially differentiated) cells share many common (and to a large extent conserved) fea-
tures such as those in TAD [4,5] and compartment formation [19]. A model that provides a
simple understanding of the general folding properties of chromatin, such as the formation
of TADs and compartments, decay of the contact probability with the genomic distance,
different spatial organization patterns of compartments A and B, and different intra- and
inter-domain interaction profiles of compartments A and B, and in particular, the role of
the DNA sequence, is still needed.

In this study, we established a coarse-grained polymer model taking into account the
mosaic DNA sequence property as reported before [19], the TAD formation, as well as in-
teractions between chromatin and nuclear lamina. We considered both single chromosome,
as well as several chromosomes. Based on these models we characterized the reported
chromatin folding properties at different scales and on many aspects, including TAD and
compartment formation, spatial organization, and spatial separation between chromatins.
We also studied the effects of parameters used in this model.

2. Results
2.1. General Properties of Chromatin Folding Are Reproduced by Our Model

A graphical illustration of our model is shown in Figure 1a. In our model, one
chromosome is coarse-grained into a polymer with each bead representing 100 kbps. The
information about F/P domains, TAD boundaries and LADs is then mapped to each bead.
We applied attractive Lennard-Jones (LJ) potentials between each P-P, F-F and P-F bead
pair of different intensity, marked as εPP, εFF, and εPF, respectively. To form loops between
adjacent TAD boundaries and for simplicity, we applied different harmonic potentials (εPB
and εFB) according to the genomic content of the TAD. The model chain is then placed into
a spherical container representing the nucleus, and the chromosome occupies a volume
fraction ϕ = 5% of the container volume. Between LADs and the nuclear envelope, an
attractive LJ potential of intensity εLC is applied. We first present the simulation results
on a single chromosome, human chromosome 10 (chr10), the F/P distribution and LAD
distribution along genomic sequence of which are shown in Figure 1b. In this model, the
radius of the container is 16.7σ0. A typical contact map generated from the simulation using
εPP = 4.6ε0, εFF = 4.3ε0, εPF = 3.0ε0, εPB = 0.2ε0, εFB = 0.4ε0, εLC = 6.7ε0 for chr10 is shown in
Figure 1c. A checkerboard-like pattern was obtained, consistent with compartmentalization
in chromosomal 3D structure. TAD-like structures can also be seen in Figure 1c. Due
to different interaction intensities between boundaries of TADs composed of mainly F
domains (F-TADs) and TADs composed of mainly P domains (P-TADs), and different
sizes of F-TADs (4.4 beads long in average) and P-TADs (6.6 beads long in average),
different contact patterns are observed for F and P domains in the contact map. While
the boundaries of P-TADs are sharp and clear, the boundaries of F-TADs are fuzzy and
indistinct. To quantify these different patterns, we applied a windowed Fourier transform
to the 5th diagonal of the contact matrix, with a window size 2 Mbps. The results of Fourier
transform for windows containing mainly F and P domains are averaged, respectively, and
shown in Figure 1c. The existence of two types of TADs is consistent with the Hi-C data [8].
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Figure 1. (a) A graphical illustration of the model, in which blue beads representing P domains and orange beads repre-
senting F domains; (b) The P-domain and lamina-associating domains (LAD) annotation of chr10; (c) The contact map 
generated from the simulation and the profile of P domains, and the lower left panal shows the results of windowed 
Fourier transform; (d) The blue plot is the contact probability as a function of sequential distance calculated from the 
contact map in (c), and the orange plots are experimental data from up to 20 cell types; (e) The contact probability of F and 
P domains as a function of sequential distance; (f) The ratio between the contact probability of F and P domains, with the 
blue line calculated from simulation results and orange lines calculated from experimental data; (g) The radial distribution 
for beads in F and P domains. 

We next calculated the contact probability P as a function of the genomic distance N. 
Generally, the contact probability P decays with the increase in N following a power law, 
P(N)~N-α. Our simulation shows that the value of α varies with genomic distance, which 
is about 0.8 for N < 700 kbps, ~1.3 for 700 kbps < N < 7 Mbps, and ~0.6 for N > 7 Mbps, as 
seen from Figure 1d. Such a decay pattern is in agreement with the Hi-C data up to 20 

Figure 1. (a) A graphical illustration of the model, in which blue beads representing P domains and orange beads
representing F domains; (b) The P-domain and lamina-associating domains (LAD) annotation of chr10; (c) The contact map
generated from the simulation and the profile of P domains, and the lower left panal shows the results of windowed Fourier
transform; (d) The blue plot is the contact probability as a function of sequential distance calculated from the contact map
in (c), and the orange plots are experimental data from up to 20 cell types; (e) The contact probability of F and P domains
as a function of sequential distance; (f) The ratio between the contact probability of F and P domains, with the blue line
calculated from simulation results and orange lines calculated from experimental data; (g) The radial distribution for beads
in F and P domains.

We next calculated the contact probability P as a function of the genomic distance N.
Generally, the contact probability P decays with the increase in N following a power law,
P(N)~N−α. Our simulation shows that the value of α varies with genomic distance, which
is about 0.8 for N < 700 kbps, ~1.3 for 700 kbps < N < 7 Mbps, and ~0.6 for N > 7 Mbps,
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as seen from Figure 1d. Such a decay pattern is in agreement with the Hi-C data up to
20 Mbps (Figure 1d). We further investigated the contact probability as a function of N for F
and P domains, respectively, as shown in Figure 1e. At the scale of TADs (less than 1 Mbps),
the contact probability for F domains is larger than that for P domains, indicating the
effects of stronger interactions in the former than the latter in forming TADs. Since P-TADs
are generally larger than F-TADs, a higher contact probability is observed for P domains
than for F domains at around 1 Mbps. Due to stronger P–P interactions, the higher contact
probability for P domains than F domains persists up to tens of Mbps, at distances longer
than which no obvious difference between the two types of domains was observed. The
ratio between the contact frequency for F and P domains as a function of genomic distance
is now compared with experimental data (Figure 1f), showing a reasonable agreement
except for a slight overestimation at the TAD scale. At the range of 7 Mbps to ~20 Mbps, the
slope of the decay curve for both P and F domains becomes smaller compared to that in the
range of 700 kbps to 7 Mbps, and the slope for P domains becomes obviously smaller than
that for F domains. Such a decrease in slope for both domains results in a slower decay
in the range of 7 to 20 Mbps compared to 700 kbps–7 Mbps in Figure 1d. The differences
between the slope for F and P domains are consistent with the different intensities in P–P
and F–F interactions (see below).

We next analyzed the radial distribution functions (RDFs) for F and P domains,
respectively (Figure 1g). The RDF for P domains exhibits a double-peak profile, exhibiting
a sharp peak near the nuclear periphery and a broad one near the center. The RDF for
F domains, on the other hand, has only one peak, residing at an intermediate position.
Therefore, the organization of the chromatin can be roughly characterized by a three-layered
F-P-F spatial distribution as reported in Ref. [12].

To examine the inter-chromatin interactions, we next performed simulations on a
system with two chromosomes, chr10 and chr14. The profiles of P domains and LADs
of chr14 are shown in Figure 2a. All parameters are the same as those used in the single
chromosome simulation discussed above (the radius of the container is changed to 19.8σ0 to
maintain ϕ = 5%). From the calculation of the contact map (Figure 2b), we again observed
the formation of TADs and compartments. Therefore, this latter simulation reproduces the
features of single-chromatin folding. The slow–rapid–slow decay pattern of the contact
probability as a function of sequential distance is also reproduced in this simulation of two
chromosomes (Figure 2c). At the scale of TADs (300–700 kbps), both the 2-Chr and the
1-Chr simulation systems yield α~0.8, implying the main role of TAD formation at this
scale. However, at larger scales, the α value given in the 2-Chr system becomes higher than
that in 1-Chr simulation (for example, α = 1.37 in the former vs. α = 1.32 in the latter for
700 kbps < N < 7 Mbps) as shown in Figure 2d, indicating that the conformation of chr10 in
the 2-Chr system is more open than that obtained from the single chromosome simulation.
Furthermore, the P-F-P three-layered spatial organization pattern with a double-peak RDF
pattern for P domains and a single-peak RDF pattern for F domains is also observed in the
2-Chr system (Figure 2c), though the density of P domains in the nuclear center decreases.
When the two chromosomes were analyzed separately, as shown in Figure 2e,f, we found
that the RDFs for chr10 and chr14 differ from each other. For example, the separation
between the two peaks of the P domains for chr14 is more obvious than chr10, implying
their difference in DNA sequences. Additionally, the density of P domains located near the
center in chr14 is higher than that in chr10, which might result from the fact there are fewer
LADs in the former than the latter (see below).
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(RDF) obtained for chr10+chr14 simulation; (e) the RDF of Chr10 from the 2-Chr simulation; (f) the RDF of Chr 14 in the
2-Chr system.

2.2. The Formation of Chromosome Territories Is Partially Reproduced

To examine the extent of chromosome mixing, we compared intra- and inter-chromatin
interactions in the 2-Chr system. In our model, the average long-range (>5 Mbps) contact
probability is 0.0088 for chr10 and 0.0130 for chr14, and the average contact probability
between chr10 and chr14 is 0.0079. Therefore, chr10 and chr14 in the 2-Chr system show
a slight tendency to separate. To further examine whether the DNA sequence difference
plays a role in the spatial organization of different chromatins, we also used chr18 and
chr19 as examples. These two chromosomes have very different sequential properties:
chr18 is rich in P domains and LADs (Figure 3d), while chr19 is rich in F domains and
lacks LADs (Figure 3e). We simulated a 3-Chr system containing chr14, chr18 and chr19,
in which all parameters are the same as those used in the 2-Chr model as the amounts of
beads are almost identical in these two models. The average long-range contact frequencies
for chr14, chr18 and chr19 are 0.0122, 0.0101 and 0.0146, respectively. These intra-chromatin
contact frequencies are again slightly higher than the average long-range contact frequency
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between chr14 and chr18 (0.0083) and that between chr14 and chr19 (0.0097), but are
significantly higher than the average long-range contact frequency between chr18 and
chr19 (0.0053). Therefore, the large sequence difference between chr18 and chr19 does
result in a large extent of separation between them. The high separation tendency between
chr18 and chr19 is also reflected from their very different RDFs. As shown in Figure 3b,
P domains in chr18 exhibit very high tendency to populate near the periphery and very
few beads of chr18 populates in the center, while chr19 is excluded from the periphery
(Figure 3c). This high tendency of isolation between chr18 and chr19 is again in line with
their large differences in sequence.
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only chr19 taken into account.

2.3. Bonding between TAD Boundaries Affects the Decay of Contact Probability with
Genomic Distance

We also examined how different interaction parameters used in the models affect the
simulation results. Firstly, we varied the bonding intensity between TAD boundaries to test
how this affects the folding patterns. In this series of simulations, we fixed εFB to 0.4ε0, and
changed εPB from 0.1ε0 to 0.4ε0. Such a change in bonding intensity was shown to strongly
affect the α values, especially for N < 7 Mbps, as shown in Figure 4a. With the increase in
εPB, the decay in contact probability at the scale of TADs becomes less steep, with α = 0.86
at εPB = 0.1ε0 and α = 0.74 at εPB = 0.4ε0 for 300 kbps < N < 700 kbps. On the other hand,
the decay becomes more rapid in the region 700 kbps < N < 7 Mbps, with α changing from
1.21 at εPB = 0.1ε0 to 1.37 at εPB = 0.4ε0. In contrast, the contact probability at long distances
does not change significantly with εPB. As for the RDF, all εPB values tested here result in a
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similar P-F-P three-layered spatial distribution (Figure A1), suggesting that interactions at
the scale of TADs do not affect strongly the large-scale chromatin spatial distribution.
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2.4. F–F, P–P Interactions and LAD Formation Mainly Affect Spatial Organization of Chromatin

The other important factors affecting chromatin organization, especially compartment
formation, are the intra-domain interactions, characterized in the current model by εFF
and εPP. In a series of simulations, we fixed εPP to 4.6ε0, and systematically changed εFF
from 4.1ε0 to 4.5ε0. The simulation results show that such changes in εFF have little effect
on the relationship between the contact probability and the genomic distance (Figure 4b).
Similarly, the changes in εPP from 4.4ε0 to 4.8ε0 (with εFF being fixed to 4.3ε0) also have a very
small effect on how the contact probability varies with the genomic distance (Figure 4c).
In contrast, the increase in εFF and(or) εPP does result in an increase in both P-P and F-F
contact probability (Figures A2 and A3). In addition, similar values of εFF and εPP also
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result in similar decay patterns of the contact probability of P domains and F domains
as a function of the sequential distance at all distance ranges examined. As a result,
εFF and εPP affect the relative intensities in F-F, P-P and F-P contact and thus the spatial
organization (Figure 4d,e). With increasing εFF and decreasing εPP, the P domains exhibit a
higher tendency to populate near the nuclear periphery but a lower tendency to populate
near the nuclear center. The observation that a large εPP facilitates P domains to condense
in the nuclear center implies a competition between εPP and εLC, as large values of εLC
induce P domains to move towards the periphery.

We next examined the effects of the LAD-container interaction strength, εLC, on
chromatin folding. In the corresponding simulations, we fixed all other parameters except
for εLC which takes the value of 6.5, 6.7, 6.9, or 7.2ε0. The decay pattern of contact probability
is found to be insensitive to the change of εLC (Figure 5a). However, as expected, εLC
significantly affects the radial distribution (Figure 5b). At large εLC, LADs tend to be
attached tightly near the periphery, and consistently one observes a high tendency for P
domains to populate near the periphery. When a small εLC is used, LADs tend to detach
from the periphery and condense in the nuclear center (Figure 5b), which is also noted
in Refs. [3,33,34]. For an intermediate εLC (such as 6.7ε0), a P-F-P three-layered spatial
organization is obtained, with more P domains residing near the nuclear periphery than at
the center, as shown in Figure 5b.
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To evaluate the effects of LAD pattern, we finally considered two more LAD samples
of chr10, the profiles of which are shown in Figure 6a,b. The LADs in Figure 6a are of
relative low population and concentrated, while the LADs in Figure 6b are more abundant
and dispersed. We concentrated mainly on the RDF. As shown in Figure 6c, the P domains
of the sample in Figure 6a condense into the nuclear center. In contrast, the P domains of
the sample in Figure 6b are drawn to the periphery (Figure 6d), and neither P nor F domains
exhibit a preference for the central location. These results indicate that the abundance and
distribution of LADs strongly affect the spatial organization of the interphase chromatin.
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3. Discussion

In this study, we tested how DNA-sequence based chromatin models can be used to
reproduce general properties of chromatin folding, such as the formation of TADs and
compartments, the decay pattern of the contact probability as a function of the genomic
distance, and the spatial organization of inter-phase chromatin. When more than one
chromatin is used in the simulation, we partially reproduced the formation of chromosome
territories. We investigated the effects of a number of factors that might influence the
folding of chromatin, including bonding interactions between TAD boundaries, the inter-
block interactions, and the interactions between LADs and the nuclear envelope.

Our simulation reproduces the contact probability decay pattern, in agreement with
Ref. [1] and many other samples [35,36], for genomic distances up to 20 Mbps. Generally,
the decay follows a power law, P(N)~N−α. In short distances (<700 kbps), a slow decay
is observed with α~0.8. At the intermediate region of 700 kbps~7 Mbps, the contact
probability decays rapidly, with α generally being in the range 1.0~1.3. Finally, at long
distances (>7 Mbps), a slow decay is again observed (α~0.6). At the short range, our
simulation showed that the slow decay is due to the formation of TADs. TAD formation
has been the focus of a number of models of different levels, such as the loop extrusion
model [11,31] and the self-returning random walk model [37]. These models satisfactorily
captured the TAD formation, and thus, the slow decay pattern in this distance range. The
intermediate distance region was originally described by a fractal globule model, although
it has also been reproduced by other models, such as the SBS model [26] and the dynamic-
loop model [38]. The long-distance behavior of the decay curve has been reproduced by
the SBS model [26,30]. In our model, the fast and then slow decay at distances longer than
the TAD size appear to result from the heterogenous nature of the block copolymer. For a
block copolymer with blocks of equal length, a periodically oscillating contact probability is
observed as a function of the sequential distance [39]. Our model presented here reproduces
the decay curve covering all three regions. In addition, we compared the decay pattern of
the contact probability as a function of N for F and P domains, respectively. With stronger
εPP and εFB, our model reproduced the intense F–F interactions in short distances (less than
1 Mbps), and strong P–P interactions in long distances, respectively [19]. Due to different
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interaction profiles between F and P domains, the decay patterns of contact probability for
F and P domains differ from each other. Although the α value is not sensitive to εFF and εPP,
P (F) domains contact more frequently with the increase in these parameters, indicating
more condensed P domains and F domains and a higher segregation level between P and
F domains. Therefore, the current modeling study provides further support for the role
of F-P domain segregation in chromatin structure formation [19]. With development and
senescence, the heterochromatin and repressive histone modifications accumulate along
the genomic sequence [40–43], increasing the strength of interactions among P domains
(εPP in our model) and with proteins such as HP1α mediating interactions among the
heterochromatin [44]. As predicted in our model, the phase-separation extent increases
with the increase in εPP, which is in line with our previous observations that chromatin
compartmentalization increases with the development and senescence of the cell [19].

The spatial organization of the F and P domains is affected by the complex interplay
among εLC, LAD pattern, εPP, and εFF. We investigated the effects of the interactions
between the polymer beads and the container wall (εLC), which are used in the model
to mimic the interactions between chromatin and the nuclear envelope. It was reported
that the heterochromatin (compartment B) tends to populate near the nuclear periphery
and near the nuclear center, while the euchromatin (compartment A) tends to populate
in between [1,3,12]. By adjusting the interaction strength between the chromatin and
the nuclear envelope, we successfully reproduced this experimental observation. Due to
their stronger inter-block interactions and weaker interactions to form TADs, compared
to F domains, P domains tend to condense into a globule and reside in the container
center when εLC is small. However, a large εLC can disrupt this spatial organization
pattern, and serve as a force to pull P domains to the periphery. P domains without
this interaction tend to remain near the nuclear center, and such a tendency is enhanced
when large εPP and/or small εFF are used. These results imply the important role of LADs
in forming the spatial distribution and organization of chromatin. Consistently, it was
reported that the heterochromatin of rod cells, which lack lamin, tends to populate in
the nuclear center [13,14]. In addition, knockout of lamin could result in the dislocation
of heterochromatin [45,46]. Recent experimental studies proposed that the competition
between the lamin B1, which tethers heterochromatin to the nuclear periphery, and the
nuclear matrix, which pulls the heterochromatin to the nuclear interior, regulates the 3D
chromatin structure [47], which is also consistent with our simulation results. Such an
effect of lamin was also investigated in some recent simulation studies [3,33,34]. The three-
layered spatial organization can be observed in Refs. [3,34]. However, to study the effects
of LAD formation, a plane (Refs. [33,34]) or the inner surface of a sphere (Ref. [3] and in
the current study) is usually used to mimic the nuclear membrane. While the confinement
effects of the nucleus are ignored with a plane, the usage of a sphere tends to overestimate
the confinement effects when a smaller spherical container than the real nucleus is used
in the model. Besides, the small sphere has a higher ratio between the surface and the
volume than the real nuclear. To avoid these effects due to the plane and the small container,
a whole-genome model with a container, whose size is comparable to a real nucleus, is
desired.

During interphase, chromatins tend to segregate to form chromosome territories,
which result in significantly higher intra-chromatin contact frequencies than inter-chromatin
ones [12]. The positions of different chromatins are highly correlated with the content of
the chromatin: CG-rich chromatins tend to populate inside the nucleus while CG-poor
chromatins tend to populate near the nuclear periphery [48]. Our model system including
chr18 and chr19 reproduced this relationship between chromatin positioning and genomic
contents. In our model, since P domains are mostly C/G poor and colocalize with LADs,
they show a higher tendency to populate near the periphery, and as a result, chromatins
dominated by P domains such as chr18 show an obvious preference for the nuclear periph-
ery, while chr19, with few P domains, is characterized by an interior positioning. However,
different from experimental observations, chromatins in our model are only moderately
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separated, characterized by the slightly lower inter-chromatin contact frequencies com-
pared to long-range intra-chromatin contact frequencies. These results might be relevant to
the attractive nature of the domain interactions used in our model. In addition, there are
studies suggesting that the chromosome territories form due to structural memory effects
(kinetic effects) of unknotted, topologically-constrained and long polymers [49]. It was
reported that the chromatin condensation begins from forming small globules locally [50]
and during which, intra-chromosome topological constraints might be established. Our
model with relatively short chains and no topological constraints is expected to equilibrate
fast without extensively exhibiting the memory effects.

To understand the general and common folding principles of chromatins, our model
only takes the sequence properties into consideration, as an indicator of the TAD property,
the compartment boundary and the LAD boundary. It is interesting that our simple model
has largely reproduced the overall properties of chromatin folding. However, though
the sequence plays the most fundamental role, it is only part of the story and chromatin
folding exhibits significant cell specificity. For example, compartment boundaries can vary
from cell to cell [19]. When parameters based on cell specificity are added, we expect
the model can be used to investigate the chromatin structure variation between cells, and
obtain a better understanding on the roles of sequence and cell-specific factors in affecting
chromatin organization and function.

4. Materials and Methods

To establish the coarse-grained model of chromatin, we divided the chromatin into
segments of 100 kbps and represented each segment by one bead. If more than 50% base
pairs of one segment belong to forests (prairies), the bead corresponding to this segment
was assigned to the F domains (P domains), so that the chromatin was coarse-grained into
a block copolymer with alternating blocks of F and P domains. If most beads in a domain
(more than 50%) were detected with signals of lamina association (samples of single-cell
lamina-associating data reported in Ref. [21] were used), the whole domain was recognized
as an LAD. Due to the lack of sequence information, we omitted the centromere regions in
our model. If there are TAD boundaries in one segment (the data of TAD boundaries were
adapted from Ref. [35]), the corresponding bead was recognized as a TAD boundary.

Firstly, we applied a finite extensible nonlinear elastic (FENE) bonding potential
between adjacent beads to form a polymer with the form

UFENE(r) =

 −0.5KR2
0 ln
[

1 −
(

r
R0

)2
]

r < R0

+∞ r ≥ R0

(1)

with R0 set to 1.5σ0 and K set to 30.0ε0/σ2
0 , where σ0 is the length unit corresponding to

the diameter of one bead and ε0 is the energy unit corresponding to kBT0, which is about
2.6 kJ/mol when T0 = 308 K (the body temperature). To evaluate the value of σ0, we simply
treated one 100-kbp segment as a 500-nucleosome random-walk chain, and calculated the
mean square gyration radius (~75 nm). Therefore, in our model σ0 is taken as 150 nm.
Secondly, we applied a Lennard-Jones (LJ) potential with the form

ULJ(r) =

 4εFF/PP/FP

[
σ12

0
r12 − σ6

0
r6 − σ12

0
r12

c
+

σ6
0

r6
c

]
r < rc

0 r ≥ rc

(2)

to every non-bonding pair of beads (Figure 1a). We choose the cutoff rc = 1.3σ0 because we
assume that the interactions between beads are established only when they are contacted.
Additionally, the values of εFF/PP/FP vary from 3.0ε0 to 5.0ε0, to make the energy difference,
ULJ(rc)–ULJ(21/6σ0), in the range of 1.0ε0~2.0ε0, a scale corresponding to the Van der
Wall’s interactions and have been widely used in previous studies, e.g., Refs. [25,26]. In
Equation (1), εPP is set to be larger than εFF considering the higher contact frequency
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between segments in compartments B. The F–P interactions (εFP) are the weakest among
the three. Thirdly, we adopted a harmonic bonding potential between adjacent TAD
boundaries with the form ε = εFB/PBr2 to mimic the formation of TADs, which are
loop-like structures. εFB/PB is set weak (less than 0.5ε0) as the bonding between TAD
boundaries is not permanent. Since interactions inside TADs observed in F domains are
generally stronger than those in P domains [8,19], stronger interactions are employed
between boundaries of F-TADs than those of P-TADs, therefore εFB > εPB. Finally, the
model chromatin is placed into a spherical container with a volume 20 times that of
the chromatin, calculated from the total volume of nucleosomes and the volume of the
cell nucleus. Interactions between LADs and the container (εLC) are described with a LJ
potential cutoff 1.3σ0. We assume LADs could bind to the nuclear envelop relatively tightly.
Thus, we assigned the value of εLC in the range between 1.5εPP/FF/FP and 2.0εPP/FF/FP,
which is 6.0ε0~8.0ε0. The interactions between other beads and the nuclear envelope are
described by an LJ potential cutoff 21/6σ0.

We used the open-source LAMMPS code (version: 7 Aug 2019) [51] to run our simula-
tions. We initiated the simulation by annealing a random self-avoiding chain by decreasing
the temperature from 5.0T0 to 1.0T0 gradually, and ran the simulation for 2.0 × 108 steps
with a 0.01τ0 time step corresponding to about 10 ns under 1.0T0 to avoid exceeding 1/10
of the time scale of the motion with the highest frequency in this system, and therefore one
trajectory corresponds to about 40 min in the real world. Each simulation was repeated
4 times from independent initial conformations and velocities. The conformation was
saved every 10,000 steps for further analysis.

Two beads are considered to be in contact if their center-to-center distance is less
than 2.5σ0, and the contact probability between two beads was calculated by counting
the frequency for them to contact in an ensemble. By averaging the contact probability of
the beads with the same sequential distance, we obtained plots of the variation of contact
probability (P) as a function of the sequential distance (N). To compare the simulation
results with experiments, we obtained the plots of the contact probability as a function of
genomic distance using data adapted from Refs. [35,36], and aligned these plots so that P
at N = 300 kbps in each plot equals to the simulation value.

To calculate the density distribution along the radius of the container, we divided
the container into 200 shells with the same thickness, and calculated the density of F and
P beads in each shell. The density values obtained from all conformations are averaged
to yield the RDF for F and P domains, respectively. We used a relative radial position
(normalized radius) as the abscissa of the RDF plots, say r/R with R representing the radius
of the container.

5. Conclusions

In conclusion, we constructed a block copolymer model which takes into account
loop formation, interactions among different polymer domains, and interactions between
the polymer and the container, to simulate the chromatin in a cell nucleus. Using this
simple model, we were able to reproduce several features of chromatin folding that are
observed at various length scales, including the TAD formation, compartmentalization,
the power-law decay property of the contact probability as a function of genomic distance,
different contact behaviors between compartments A and B, spatial distribution, and the
formation of chromosome territories. In this model, loop formation results in the TAD-like
structure in the contact map and compartmentalization mainly arises from the mosaic
properties of the genome content. These interactions result in the complex decay pattern
of contact probability as a function of the linear genomic distance. The loop formation
affects both the decay pattern at the scale of TADs and between several Mbps to 20 Mbps.
The probability decay pattern is weakly affected by F–F and P–P interactions, though
the segregation tendency of F domains and P domains is enhanced with the increase
in these interactions. Due to a strong tendency to form TADs in F domains and strong
inter-domain P–P interactions, the contact probability inside compartments A is higher
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than that inside compartments B, while the contact probability between compartments
A is lower than that between compartments B. The simulation results suggest that LAD
formation is an important driving force in forming different spatial distribution patterns of
different compartments. The LADs tend to populate near the nuclear membrane, while P
domains not forming LADs tend to condense near the nuclear center. This condensation
is also affected by interactions inside P and F domains. Partly due to their difference in
genomic contents such as F-P and LAD distributions, different chromatins exhibit different
spatial distribution patterns, with chr18 and chr19 being two typical examples. However,
segregation between chromatins in our model is limited and the formation of chromosome
territories is only partially reproduced in our model. Therefore, more efforts are needed
to reveal the mechanism, including both thermodynamic and kinetic factors, behind the
chromosome territory formation. We note here, that this study focuses on general properties
of chromatin folding given the genomic information which is common to all cells of the
same species, cell-specific properties such as epigenetics should be included in the future
studies. In addition, the nucleus is a complex and dynamical system, in which many
environmental factors, such as temperature [52], mechanical forces/pressure, binding of
proteins, and, especially, non-equilibrium effects, are expected to play important roles. The
interplay between these complex factors is all worth careful analysis and study. With the
improved understanding of the different roles of and interplay between sequence and
environments, such a model might be useful to predict environmental effects by adding
related parameters, which might be beneficial in understanding the mechanism of many
diseases, such as cancer and neurodegenerative disorders.
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