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Emotion judgments and five channels of physiological data were obtained from 60
participants listening to 60 music excerpts. Various machine learning (ML) methods were
used to model the emotion judgments inclusive of neural networks, linear regression,
and random forests. Input for models of perceived emotion consisted of audio features
extracted from the music recordings. Input for models of felt emotion consisted of
physiological features extracted from the physiological recordings. Models were trained
and interpreted with consideration of the classic debate in music emotion between
cognitivists and emotivists. Our models supported a hybrid position wherein emotion
judgments were influenced by a combination of perceived and felt emotions. In
comparing the different ML approaches that were used for modeling, we conclude that
neural networks were optimal, yielding models that were flexible as well as interpretable.
Inspection of a committee machine, encompassing an ensemble of networks, revealed
that arousal judgments were predominantly influenced by felt emotion, whereas valence
judgments were predominantly influenced by perceived emotion.

Keywords: music cognition, music emotion, physiological responses, computational modeling, neural networks,
machine learning, random forests

INTRODUCTION

The classic philosophical debate on music emotion pits a “cognitivist” view of music emotion
against an “emotivist” view (see e.g., Kivy, 1989). The cognitivist view recognizes music as
expressing emotion without inducing it in the listener (Konečni, 2008). The emotivist view
supposes that music achieves its emotional ends by inducing genuine emotion in the listener. That
is to say that the listener not only perceives but also feels the emotion expressed by the music.
These feelings may give rise to or be the consequence of physiological responses. Meyer (1956)
concedes that while music may on occasion induce a genuine emotional response in the listener,
the accompanying physiological responses are likely too undifferentiated to be meaningful.

The debate is far from reconciled, and has been further complicated by the observation that
emotion that is perceived in music can in some instances be distinct from emotion that is felt
[Gabrielsson, 2002; see Schubert (2014) for a review]. Moreover, Juslin and Västfjäll (2008) argue
convincingly that there are likely multiple mechanisms that give rise to felt emotion, ranging from
brainstem reflexes to evaluative conditioning. Nonetheless, numerous studies have documented
interpretable physiological responses elicited during music listening (Krumhansl, 1997; Nyklicek
et al., 1997; Rainville et al., 2006; Lundqvist et al., 2009). Scherer and Zentner (2001) have
characterized the cognitivist and emotivist views as complementary, arguing that a fulsome view
of music emotion needs to consider both perspectives and the factors that give rise to their
dominance.
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To the best of our knowledge, the emotivist–cognitivist debate
has not been considered from a computational perspective.
In the current study, we obtained judgments about emotion
conveyed by the music as well as physiological responses. To
minimize biasing judgments in favor of one view of music
emotion, we told participants that we were interested in
judgments of emotion for each excerpt without being explicit
regarding “perceived” or “felt” emotion. Judgments were made
using a two-dimensional model of emotion encompassing
valence and arousal (VA; Russell, 1980). Valence was defined
as the hedonic dimension of emotion, ranging from pleasant
to unpleasant. Arousal was defined as the mobilization of
energy, ranging from calm to excited. In contrast with the
discrete view of emotions that argues independent processes for
distinct emotions (e.g., Ekman, 1992, 1999), the dimensional
approach proposes that all affective states may be characterized
on the basis of underlying dimensions of emotion. This
approach is in widespread use in music cognition research
(e.g., Schubert, 1999; Gomez and Danuser, 2004; Witvliet and
Vrana, 2007), and has been found to be particularly effective
in characterizing emotionally ambiguous stimuli (Eerola and
Vuoskoski, 2011).

We assumed that if the cognitivist position were true, we
should be able to model emotion judgments on the basis of deep
and surface-level features obtained from the music. Likewise, we
assumed that if the emotivist positions were true, we should be
able to model emotion judgments on the basis of physiological
responses. Another possibility that we considered is that emotion
judgments are the result of a meta-level cognitive decision-
making process that combines output from a perception module
and a feeling module (Figure 1). In this scenario, the perception
module would take its input from features drawn from the
music and the feeling module would take its input from features
drawn from physiology. While we acknowledge that this account
of emotion judgments is skeletal and reliant on some crude
assumptions, it provides a framework to guide our modeling
exercise.

We had two main objectives in this study. The first was
to develop computational models of emotion judgments. We
begin by modeling cognitivist and emotivist positions separately
using multilayer perceptrons. We then extend these models
to reflect a hybrid position in which both expert networks
are considered. We refer to this hybrid, meta-level cognitive
framework, as a committee machine1. Previous studies have
modeled emotion recognition (a) exclusively using audio features
[see Kim et al. (2010), for an extensive review; Coutinho and
Cangelosi, 2009], (b) exclusively using physiological features
(Kim and André, 2008), and (c) using a combination of audio
and physiological features in a common network (Coutinho and
Cangelosi, 2010). However, none of these studies have modeled
emotion recognition as a combination of felt and perceived
emotion using a meta-level framework.

1A preliminary version of the committee machine described here was reported in
Vempala and Russo (2013). Although this prior work was informed by the same
theoretical framework, the computational model was based on only 12 excerpts of
classical music. Given this small number of excerpts and the lack of genre diversity,
the generalizability of the model was extremely limited.

FIGURE 1 | A meta-cognitive network of emotion judgment combining
perceived and felt emotion.

Our second objective in this study was more methodological
in nature. With the current advent of machine learning (ML),
availability and accessibility of ML toolkits, application of ML
methods has become more viable for researchers interested in
music cognition. While this accessibility to ML methods has
opened up new avenues for research, the justification for using
specific ML methods is often unclear. In this study, we compared
the success of our committee machine with two other ML
approaches with the intent of highlighting the relative merits of
the different approaches.

MATERIALS AND METHODS

Participants
Our experiment was designed such that it required obtaining
emotion judgments and physiological response data from 60
participants. On the basis of previous physiological studies
involving testing sessions lasting more than 1 h we were expecting
several sources of data loss (e.g., electrodes recording facial
muscle activity losing contact due to perspiration). Therefore, we
recruited more than the necessary number of participants on an
ongoing basis, 110 in total, through our departmental participant
pool, until we obtained a complete data set from 60 participants.
On average, the final 60 participants (40 females, 15 males, 5
undeclared) were 22.9 years of age (SD = 7.2) with 4.0 years of
music training (SD= 3.9).

Stimuli and Apparatus
Our stimuli consisted of 60 excerpts of high-quality MIDI music
drawn from across four genres – Blues, Metal, Pop, and R&B (15
excerpts per genre). Each excerpt spanned approximately 32 bars
in duration. We chose to use MIDI music because of the broad
range of meta-level information that may be precisely extracted,
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consisting of both musical features (e.g., pitch and tempo) and
event-related features (e.g., velocity and event onset times), which
we plan to use in a separate project.

All 60 excerpts, listed in Appendix 1, were selected such
that audio renderings of these MIDI files were representative of
their respective genres, and were reasonably consistent with the
original versions released commercially. We used MIRtoolbox
(Lartillot and Toiviainen, 2007; Lartillot et al., 2008) to extract
12 low-level acoustic to mid-level musical features. These
features captured information corresponding to rhythm, timbre,
dynamics, pitch, and tonality, and were used in several previous
studies on music and emotion (MacDorman et al., 2007; Mion
and de Poli, 2008; Laurier et al., 2009; Eerola and Vuoskoski,
2011). The 12 features – rms, lowenergy, eventdensity, tempo,
pulseclarity, centroid, spread, rolloff, brightness, irregularity,
inharmonicity, and mode – were obtained for each bar of each
excerpt (technical descriptions are available in Lartillot, 2014).

Participants used their dominant hand for providing
continuous emotion ratings, while their non-dominant hand
was connected to the Biopac MP150 data acquisition system
for measurement of physiological responses2. The five channels
of physiological data included heart rate (HR), respiration
rate (Resp), skin conductance level (SCL), and facial muscle
activity from zygomaticus major (Zyg) and corrugator supercilii
(Corr). HR was collected by attaching a photoplethysmogram
transducer, using a Velcro strap, to the distal phalange of the
middle finger of the non-dominant hand. The transducer was
connected to a PPG100C amplifier which measured capillary
expansion through an infrared sensor. Resp was measured
using a TSD201 respiration belt tightened around the abdomen
and attached to an RSP100C amplifier that recorded changes
in abdominal circumference. SCL was measured by attaching
two TSD203 Ag–AgCl electrodes to the distal phalanges of
the index and ring fingers of the non-dominant hand using
Velcro straps, connected to a GSR100C amplifier. Facial
muscle activity was measured by placing two electrodes over
Zyg and two electrodes over corrugator supercilii muscle
regions, separated by 25 mm and attached to an EMG100C
amplifier.

Physiological data were subjected to feature analysis in order
to extract features that have previously been associated with the
VA dimensions of emotion. Physiological correlates of valence
include Zyg and Corr activity (e.g., Witvliet and Vrana, 2007;
Lundqvist et al., 2009; Russo and Liskovoi, 2014). Physiological
correlates of arousal include autonomic measures such as HR,
respiration, and galvanic skin response (e.g., Iwanaga et al., 1996;
Krumhansl, 1997; Baumgartner et al., 2005; Etzel et al., 2006;
Sandstrom and Russo, 2010; Russo and Liskovoi, 2014).

Experimental Design and Data Collection
Our experiment was designed such that (a) each participant
listened to 12 of the 60 excerpts (i.e., three from each of four
genres) and (b) each excerpt was heard by 12 unique participants.
Participants received a listening order that was independently

2The current study utilizes mean responses (emotion judgments and physiological
responses); continuous ratings will be modeled in a separate study.

randomized to minimize the influence of presentation order.
Each excerpt was preceded by 30 s of white noise and followed
by 50 s of silence. The root-mean-square (RMS) level of white
noise was equalized with the mean RMS level across all 60
excerpts. White noise was used as our baseline for physiological
measurements on the basis of previous studies suggesting the
appropriate use of RMS-matched white noise as an emotionally
neutral baseline for isolating the effects of emotion on physiology
(Nyklicek et al., 1997; Sokhadze, 2007; Sandstrom and Russo,
2010).

Each participant heard a stimulus file with 12 excerpts in
randomized order, white noise, and silence in the following
sequence:

WN → Ex → S → WN → Ex → S . . .

Here, WN indicates white noise, Ex indicates excerpt, and S
indicates silence. During the silence phase, participants provided
familiarity and preference ratings on the excerpt they heard last.
All excerpts were presented at approximately 75 dB SPL over
Sennheiser HD 580 Precision Headphones. We used the EMuJoy
Software (Nagel et al., 2007) for continuous data collection of
emotion ratings on the two-dimensional axes of VA (Russell,
1980).

The experimenter provided participants with a description
of the two-dimensional model prior to data collection. It
was explained that the x-axis conveyed emotion ranging from
negative to positive (i.e., valence) and the y-axis conveyed
emotion ranging from calm to excited (i.e., arousal). Participants
were asked to continuously rate each excerpt on a two-
dimensional grid while listening. Before commencing, listeners
familiarized themselves with the EMuJoy interface while
listening to two test excerpts that were not included in
the formal experiment. After completion of data collection
from all 60 participants, mean VA ratings were computed
for each participant, for 32 bar-length segments and for the
entire excerpt (i.e., the data were averaged per track for
each participant). These values were then averaged across
the 12 participants to obtain a mean emotion rating profile
for that excerpt. This procedure was repeated for all 60
excerpts.

Data Preparation
Similar to emotion ratings, audio features were extracted for each
bar of the excerpt and then aggregated.

Filtering and baseline subtraction for physiological data were
performed using FeatureFinder (Andrews et al., 2014), a free
Matlab toolbox for physiological signal analysis. The following
high-pass (HP) and/or low-pass (LP) filters were applied to
raw physiological data: HR (LP = 4 Hz; HP = 0.5 Hz), Resp
(LP = 1 Hz; HP = 0.05 Hz), GSR (LP = 10 Hz; HP = 0.5 Hz),
Zyg, and Corr (LP = 500 Hz; HP = 5 Hz). Features were
obtained for each excerpt and baseline corrected by subtracting
the equivalent feature obtained in the final 20 s of 30 s white
noise that preceded the excerpt. Similar to audio features and
their corresponding emotion ratings, physiological features were
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FIGURE 2 | A conceptual visualization of ML methods with respect to interpretability and flexibility, adapted from James et al. (2013).

computed for each bar of the excerpt and then averaged for its
entire duration.

Machine Learning Models
There exists a multitude of ML methods for both classification
and regression. Figure 2 provides a conceptual visualization that
plots flexibility of methods against interpretability of methods.
Since our problem involves predicting emotion ratings as
opposed to identifying emotion classes, it is a regression problem.
There is no single perfectly suited method for a regression
problem. In general, models that are developed with methods

that are flexible tend to be powerful in terms of fitting the
training data (Hastie et al., 2009; James et al., 2013). However,
the ability to interpret the salience of features tends to be better
in models that have been developed using methods with less
flexibility.

Another related issue is that while flexible models can
outperform simpler models as regards to reducing training error,
they tend to overfit the regression function to the training set.
Hence, the performance of models on a given test set can
vary dramatically, making their predictions less generalizable.
There are two typical ways of addressing this generalizability
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problem. Option 1 involves starting with methods with
low flexibility and then moving toward methods with more
flexibility until arriving at a model with good performance
and generalizability. Option 2 involves starting with a flexible
method that improves the likelihood of arriving at a model
with good performance, and then moving toward a simpler
method that performs relatively well (Kuhn and Johnson, 2013).
We chose to adopt a hybrid approach, starting with a method
that typically yields intermediate flexibility (i.e., artificial neural
networks), and then progressing to methods with lower or
higher flexibility – linear regression and random forests (RFs),
respectively.

Feature Reduction
When dealing with a high-dimensional dataset, feature reduction
by PCA or other means is typically an important step,
reducing the storage and computational space while increasing
interpretability. In our case, since we were dealing with only 12
audio features, our intention was on the removal of confounding
variables. These 12 features serve as independent variables used
by our models for predicting the dependent variable – valence
or arousal. Although a feature may be strongly correlated with
the dependent variable when assessed in isolation, its correlation
with the dependent variable may be suppressed when assessed
in a model involving numerous features that share common
variance. Hence, we computed a correlation matrix of all 12
features. We used a threshold of r = |0.8| to remove features
that were strongly correlated with each other. Among the four
features – spectral centroid, spectral spread, rolloff, and brightness,
our results (Figure 3) showed that spectral centroid was strongly
correlated with all three features – spectral spread, rolloff, and
brightness (r > |0.8| , p < 0.001) whereas spectral spread and rolloff
were correlated only with two of the remaining three features.
Brightness was strongly correlated only with spectral centroid. As
a result, we chose to remove spectral centroid and rolloff from our
set of features. We also computed a correlation matrix of the five
physiological features for all 60 excerpts, with the same threshold
of r= |0.8| for feature removal. None of the features were strongly
correlated with each other. Hence, all five features were retained
in our models.

Initial Analyses
As a first step in our exploration of the data, we checked to see
how well the independent variables accounted for the dependent
variables, by examining correlations between the features and the
mean VA ratings for the 60 excerpts. We examined correlations
for the audio features and physiological features separately since
they were being used for separate prediction models.

We observed positive correlations with arousal ratings for
eventdensity, r(58)= 0.48, p < 0.005 and brightness, r(58)= 0.27,
p < 0.05. We observed negative correlations with valence ratings
for eventdensity (r(58) = −0.33, p < 0.05), spectral centroid
(r(58)=−0.3, p < 0.05), and brightness (r(58)=−0.34, p < 0.05).
Among the five physiological features, there were no significant
correlations with arousal ratings but several with valence. In
particular, we observed a negative correlation with valence ratings
for Corr, r(58) = −0.26, p < 0.05, and a positive correlation

FIGURE 3 | Correlations of the 12 audio features.

with valence ratings for Resp, although the latter only reached
marginal significance, r(58)=−0.24, p= 0.06.

Artificial Neural Networks
Our objective in modeling was not to merely provide a
prediction method for emotion judgments, but to also provide a
theoretical explanation for music emotion judgments. Multilayer
perceptrons (i.e., a type of artificial neural network) (Rumelhart
et al., 1986; Haykin, 2008) have been known to serve as useful
connectionist models for exploring theories in cognitive science
(see McClelland and Rumelhart, 1989; Vempala, 2014). Our
previous work (Vempala and Russo, 2012, 2013; Russo et al.,
2013) has shown that multilayer perceptrons with a single hidden
layer can lead to nonlinear regression functions for emotion
prediction with good explanatory power. Importantly, these
models also lend themselves to interpretation.

We implemented three different types of artificial neural
network ensembles for predicting emotion judgments of
listeners – one that used only audio features from music to model
emotion perceived by a listener (perception model), another that
used only physiological responses as features to model emotion
felt by a listener (feeling model), and a hybrid ensemble that
combined outputs from both these network ensembles (hybrid
model), henceforth referred to as a committee machine. All the
networks were implemented in Matlab. For all three models
(i.e., perception model, feeling model, and hybrid model), the
dependent variables were the same – VA. The independent
variables were audio features for the perception model, and
physiological features for the feeling model. Since the hybrid
model was a meta-level network that combined outputs from
both these models, its independent variables were both audio and
physiological features.

We built two networks with audio features as input – one for
predicting valence and one for predicting arousal. Each network
was a supervised, feedforward network that consisted of 10 input
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units (i.e., one unit for each feature), one hidden layer, and
one output unit for either valence or arousal. One important
consideration in the use of neural networks is the propensity
to overfit to training data, leading to underperformance when
exposed to new data. To make our neural networks more robust,
we adopted the following training and testing procedure.

Dataset preparation for training and testing
For testing a neural network’s performance, the dataset is usually
split into a training set consisting of approximately 70–90% of the
data, and a test set consisting of 10–30% of the data, respectively.
Some decrease in the network’s performance is expected from
the training set to the test set. Poor performance on the test
set indicates that the network has either not fully converged
while training (i.e., has been under-trained) or has been over-
trained. Hence, the network is retrained accordingly. While
this is a widely accepted method for validating performance,
problems tend to arise because of idiosyncrasies associated with
partitioning. In general, some partitions will lead to overfitting
while other partitions will lead to underfitting.

To mitigate problems associated with partitioning the dataset,
we used k-fold cross-validation. Here, the dataset is split into
k equal-sized partitions called folds. k is typically 5 or 10.
This allows us to use each of the k-folds as a test set with
the remaining k−1-folds as the training set. The procedure is
repeated k times. Performance results on all k-folds are then
averaged. We used fivefold cross-validation, which enabled us to
come up with five different trained networks. We separated our
dataset of 60 excerpts such that 44 were used for training the
models and the remaining 16 were used for testing the models.
Forty of the 44 excerpts were partitioned into fivefolds for cross-
validation. So, each fold consisted of eight excerpts with two
excerpts from each of the four genres. Each of the five networks
was trained on 36 excerpts – 32 from the remaining fourfolds
along with the additional four excerpts that were not used for
cross-validation.

Network architecture
For methodological reasons, we used separate networks for
predicting VA. This architectural decision enabled us to train
networks individually without letting convergence for one
dependent variable affect the other. It also allowed us to examine
feature salience separately for VA.

The networks had to predict VA ratings based on 10 audio
features and/or five physiological features (Figures 4, 5). As
such, the training set for each of the networks predicting valence
consisted of 36 input vectors and 36 corresponding output values
for valence, representing the 36 excerpts. Likewise, the training
set for each of the networks predicting arousal consisted of 36
input vectors and 36 corresponding outputs for arousal. For
the perception networks, each input vector had 10 values, one
for each feature. For the feeling networks, each input vector
had five values, one for each physiological feature, collapsed
across participants. The corresponding outputs with VA values
were again collapsed across participants. To maximize network
learning (within and across channels), all of the audio and
physiological inputs were scaled to a value between 0 and 1

FIGURE 4 | Perception network with 10 features, 3 hidden units, and 1
output.

FIGURE 5 | Feeling network with five features, three hidden units, and one
output.

(Bishop, 1995) for each feature. VA values for all excerpts were
obtained on a scale ranging from −1 to 1. To make these values
compatible across the networks, we scaled them to a range
between 0 and 1. We chose to reduce the number of hidden
units to a number that offered us a flexible non-linear solution
while minimizing the likelihood of overfitting. To do so, we used
an iterative process of trial and error where we started with the
number of hidden units equal to the number of input units, then
reduced this number by one at each step, while checking to see if
the network’s performance remained consistent. Following this
process, we decided to keep the number of hidden units to 3.
Thus, the network architecture consisted of either 10 input units
(one for each audio feature) or five input units (one for each
physiological feature), a single hidden layer with three units, and
one output unit (either for valence or for arousal).

The following procedure was used to train the network:

(1) Connection weights Whi (input units to hidden units)
and Woh (hidden units to output units) were initialized
to random numbers between −0.05 and 0.05. Input
vectors were fed to the network from the training set
in a randomized order. Inputs were multiplied with the
connection weights Whi, and summed at each hidden unit.

(2) Hidden unit values were obtained by passing the summed
value at each hidden unit through a sigmoid function. These
values were multiplied with the connection weights Woh,
summed at each output unit, and passed through a sigmoid
function to arrive at the final output value between 0 and 1.
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(3) Squared errors between the network’s output and the
mean valence or arousal rating were computed. The
backpropagation algorithm using gradient descent was
applied and changes in connection weights were stored.
At the end of the entire epoch, connection weights were
updated with the sum of all stored weight changes.

The perception networks were trained for approximately
2000–3000 epochs by repeating step (2) to reduce the mean-
squared error to less than 0.045. The feeling networks took
longer to train than the perception networks, and required
approximately 15,000–30,000 epochs of training in order to
reduce the mean-squared error to less than 0.045. The learning
rate parameter was set to 0.1.

After training, each network was tested on its fold and the
root mean-squared error (RMSE) was computed. RMSE values
for the audio and physiological networks are shown in Tables 1, 2,
respectively. The mean and standard errors for perception and
feeling networks, for VA, indicate that both types of networks
were more-or-less similar in their averaged performance across
the fivefolds.

Performance of perception and feeling networks
After completing network training, we tested the trained
networks on the remaining 16 excerpts. We used all five
perception networks together as an ensemble and averaged their
outputs to give the final output for each test excerpt, for VA. We
used the same procedure to compute outputs from the feeling
networks. For valence, RMSE values for the perception network
ensemble and the feeling network ensemble were 0.27 and 0.34,
respectively, suggesting that the perception networks performed
better than the feeling networks in predicting valence. For
arousal, RMSE values for the perception network ensemble and

TABLE 1 | RMSE values of the five perception networks.

Fold Valence RMSE Arousal RMSE

1 0.27 0.18

2 0.21 0.34

3 0.16 0.33

4 0.26 0.14

5 0.16 0.15

Mean 0.21 0.23

SE 0.03 0.05

SE indicates standard error.

TABLE 2 | RMSE values of the five feeling networks.

Fold Valence RMSE Arousal RMSE

1 0.26 0.25

2 0.24 0.33

3 0.19 0.29

4 0.23 0.24

5 0.24 0.35

Mean 0.23 0.29

SE 0.01 0.02

SE indicates standard error.

FIGURE 6 | Committee machine – a hybrid network combining results from
the perception and feeling network ensembles.

the feeling network ensemble were 0.24 and 0.23, respectively,
suggesting that both networks performed similarly.

Committee machine
Our next step was to build a model under the assumption
that (a) listeners make separate emotion assessments based on
what they perceive from the music and what they feel when
listening, and (b) their final appraisal of emotion is based on a
weighted judgment that takes contributions from both sources
into account. This led us to implement our final hybrid model –
a committee machine (Haykin, 2008). The committee machine
is a meta-level network, as shown in Figure 6, which combines
outputs from each individual ensemble to arrive at its final
output.

First, we implemented a basic committee machine, which
merely averaged the outputs from both network ensembles.
Specifically, when predicting either the valence or the arousal
of an excerpt, outputs from the perception network ensemble
and the feeling network ensemble were combined with equal
weight contributions of 0.5. RMSE values for the committee
machine with ensemble averaged weights (CMEA) were 0.28
for valence and 0.21 for arousal. These results indicate that for
valence, the basic committee machine performed about as well
as the perception networks and better than the feeling networks.
However, for arousal, the basic committee machine performed
better than both perception and feeling networks.

Next, we implemented a committee machine that was
consistent with our hybrid framework where weights from each
of these network ensembles contributed to the final emotion
judgment in a way that illustrated meta-level decisions based
on emotion conveyed by perception and feeling. To obtain
an optimal linear combination of the weights (Hashem, 1997)
from each of these individual network ensembles, we performed
multiple linear regression such that outputs from these individual
ensembles were used as independent variables and mean VA
ratings were used as dependent variables. Linear regression was
performed on the entire set of 60 excerpts. The models for VA are
provided in Equations (1) and (2), respectively.

yV = 0.757x1V + 0.164x2V + 0.056 (1)

yA = 0.813x1A + 0.968x2A − 0.396 (2)
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Here, yV and yA refer to the VA outputs of the committee
machine on a scale from 0 to 1. x1V and x1A refer to the VA
outputs from the perception network ensemble on a scale from
0 to 1. Likewise, x2V and x2A refer to the VA outputs from the
feeling network ensemble on a scale from 0 to 1.

Based on Equation (1), for valence, the meta-level network
applies a weight of 0.757 to the perception ensemble output,
1.164 to the feeling ensemble output, and has a bias unit
of weight 0.056. Likewise, for arousal, based on Equation
(2) the meta-level network applies a weight of 0.813 to the
perception ensemble output, 0.968 to the feeling network output,
and has a bias unit of weight −0.396. To understand the
salience of each individual network’s contribution to the overall
prediction, we computed their proportion contributions while
ignoring the intercepts. For valence, the weight contributions
were 82.2% from the perception ensemble and 17.8% from
the feeling ensemble. For arousal, the weight contributions
were 45.6% from the perception ensemble and 54.4% from
the feeling ensemble. As expected, this committee machine
(CMLR) performed better than the individual ensembles, and
the CMEA, with RMSE values of 0.26 for valence, and 0.2 for
arousal.

Linear Regression
Although neural networks helped us from the perspective of
cognitive modeling, we wanted to ensure from the perspective
of ML that neural networks were not too powerful for our
needs. Perhaps a simpler and more interpretable approach could
predict VA ratings just as well. To mitigate the possibility of
overfitting and to allow for a consistent comparison between
models obtained from different ML methods, we again used
fivefold cross-validation with the same 44 excerpts that were
used for our neural networks. We performed stepwise forward
regression to examine which of the 10 audio features were
strongly correlated with the VA ratings. The stepwise criteria
in our regression models included variables which increased
probability of F by at least 0.05, and excluded variables which
decreased probability of F by less than 0.1. This led to four
derived regression models that predicted valence, and five
derived regression models that predicted arousal, using audio
features.

For valence, the first model accounted for 17.9% of the
variance in ratings, F(1,34) = 7.39, p < 0.05. The model
contained only brightness as its predictor variable (p < 0.05).
The second model accounted for 18.3% of the variance in ratings,
F(1,34) = 7.63, p < 0.01. Again, the model contained only
brightness as its predictor variable (p < 0.01). The third model
accounted for 25.4% of the variance in ratings, F(2,33) = 5.62,
p < 0.01. The model contained brightness and lowenergy as
its predictor variables (p < 0.01, p < 0.05, respectively). The
fourth model accounted for 36.9% of the variance in ratings,
F(3,32) = 6.24, p < 0.01. The model contained brightness,
lowenergy, and mode as its predictor variables (p < 0.01, p < 0.05,
and p < 0.05, respectively).

For arousal, the first model accounted for 33.4% of the
variance in ratings, F(1,34) = 17.02, p < 0.001. The model

contained only eventdensity as its predictor variable (p < 0.001).
The second model accounted for 43.9% of the variance in
ratings, F(1,34) = 26.6, p < 0.001. The model contained only
eventdensity as its predictor variable (p < 0.001). The third model
accounted for 39.0% of the variance in ratings, F(2,33) = 10.6,
p < 0.001. The model contained eventdensity and mode as its
predictor variables (p < 0.01 and p < 0.05, respectively). The
fourth model accounted for 23.6% of the variance in ratings,
F(1,34)= 10.5, p < 0.01. The model contained only eventdensity
as its predictor variable (p < 0.01). The fifth model accounted for
28.5% of the variance in ratings, F(1,34) = 13.6, p < 0.01. Again,
the model contained only eventdensity as its predictor variable
(p < 0.01).

We performed stepwise forward regression with the same
criteria as before, using the five physiological features as
our predictors. This led to three derived regression models
that predicted valence. No significant model emerged for
arousal.

For valence, the first model accounted for 12.8% of the
variance in ratings, F(1,34) = 5.01, p < 0.05. The model
contained only Corr as its predictor variable (p < 0.05). The
second model accounted for 14.4% of the variance in ratings,
F(1,34) = 5.72, p < 0.05. The model contained only Corr as
its predictor variable (p < 0.05). The third model accounted
for 24.9% of the variance in ratings, F(1,34) = 11.28, p < 0.01.
Again, the model contained only Corr as its predictor variable
(p < 0.01).

We tested these linear regression models on the 16 excerpts,
which the networks had previously not been exposed to. We used
all four perception models for valence and all five perception
models for arousal as ensembles by averaging their outputs to
give the final output for each test excerpt. We used the same
procedure for averaging outputs from the three feeling models for
valence. For valence, RMSE values for the perception ensemble
and the feeling ensemble were 0.25 and 0.66, respectively, clearly
showing that the perception ensemble performed much better
than the feeling ensemble in predicting valence. For arousal, a
comparison between perception and feeling ensembles could not
be made since no significant model emerged using physiological
features. RMSE for the perception ensemble was 0.23. These
results indicate that with audio features, a linear model was
sufficient to achieve prediction performance similar to a more
flexible model such as a neural network; however, with physiology
features, a flexible, nonlinear ML model was necessary to capture
the predictive capacity of the independent variables.

Random Forests
Our next step was to see if an approach to modeling with greater
flexibility than neural networks could lead to better performance.
To reiterate, we were interested in whether a different ML model
could offer better prediction, ignoring its suitability as a cognitive
computational model. We used RFs (Hastie et al., 2009; James
et al., 2013) for this purpose, and implemented them using the
caret (Kuhn et al., 2016) and mlbench (Leisch and Dimitriadou,
2010) packages in R. Random forests create an ensemble of
decision trees. Features from the available list are randomly
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selected with replacement to first construct individual decision
trees using the training data. After several such decision trees are
constructed, whenever a new sample is fed to the random forest,
predictions are made by these trees. The mean of all predictions
is used as the bagged final prediction of the random forest. So,
RFs, by nature, are an ensemble method, and are therefore useful
for reducing error due to overfitting. An additional aspect of
RFs is that they repeatedly take bootstrapped samples from the
training data, with replacement, to construct decision trees. This
process also helps in reducing error due to overfitting. As such,
splitting the data using k-fold cross-validation is considered to be
unnecessary.

Again, we trained separate random forest models for VA
using audio features and physiology features and tested these
trained models on the 16 test excerpts. For valence, RMSE values
for the perception model and the feeling model were 0.25 and
0.28, respectively, displaying the same pattern as before, with
perception features enabling better performance than feeling
features. For arousal, RMSE values for the perception model and
the feeling model were 0.2 and 0.26, respectively, suggesting that
the perception model had an advantage.

As seen in Table 3, the Random Forest models obtained
using audio features or physiological features were comparable
in performance to the committee machine derived using an
ensemble of neural networks.

DISCUSSION

In this study, we revisited the classic debate on music
and emotion involving the cognitivists and the emotivists.
We approached the debate from a computational modeling
perspective by using neural networks (multilayer perceptrons).
We modeled emotion judgments from the cognitivist perspective
using deep and surface-level audio features obtained from the
music alone. Likewise, we modeled emotion judgments from the
emotivists perspective using features that relate to felt emotion
(i.e., physiological responses). Both networks performed similarly
for arousal. However, for valence, the perception networks (i.e.,
cognitivist) performed better than the feeling networks (i.e.,
emotivist).

We also proposed another possibility that emotion judgments
can be modeled as a meta-level cognitive decision-making
process that combines output from a perception module and
a feeling module (Figure 1) – a hybrid of the cognitivist
and emotivist positions. In this scenario, a perception module
takes its input from features drawn from the music, while a
feeling module takes its input from features drawn from listener
physiology. We modeled this possibility using a committee
machine that combined VA contributions from two separate
network ensembles – a perception network ensemble and a
feeling network ensemble. The committee machine performed
better than the individual ensembles.

The committee machine enabled us to understand the
contribution of each individual network ensemble. For valence,
the weight contributions were 82.2% from the perception
ensemble and 17.8% from the feeling ensemble. For arousal, the TA
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weight contributions were 45.6% from the perception ensemble
and 54.4% from the feeling ensemble. From a theoretical
perspective, these findings suggest that felt emotion is more
salient in arousal judgments and that perceived emotion is more
salient in valence judgments. Given that the feeling ensemble
consists of physiological features, and contributed more toward
arousal than the perception ensemble, these findings also support
the current view in the field about the tight correspondence
between physiological features and the arousal dimension of
emotion.

We also assessed the validity of our ML method (i.e.,
neural networks) used for building the committee machine, by
comparing it with two other ML methods – multiple linear
regression and RFs. To keep comparisons between ML methods
consistent, we used the same partitioning of data for training and
testing with fivefold cross-validation. This comparison allowed
us to ensure that we found the right balance between feature
interpretability and model flexibility with neural networks.
Multiple linear regression while being less flexible than neural
networks as a regression method afforded us the ability to
interpret features better. However, this approach revealed its
own limitations associated with lack of flexibility. We found
that linear methods were not sufficient for deriving a robust,
generalizable regression function, using physiological features.
When physiological features were used individually as predictors,
they were not able to yield a regression model with significant
predictors. We refer to these cases as “no model,” indicating that
none of the features satisfied the inclusion criteria as predictors
in a regression model. However, when the features were used in
combination with each other as a nonlinear regression function
within neural networks, they performed as well or better than
audio features in predicting arousal. We chose RFs as our third
method, since they are a highly flexible ML method offering
various benefits (i.e., building decision trees through binary
recursion, repeated subsampling of features and training data
to create variance, and ensemble averaging of trees to avoid
overfitting). Despite these advantages, the RF approach did not
lead to models with greater explanatory power than that which
was obtained using neural networks.

There are several important limitations to this work. First,
it is important to acknowledge that we cannot fully isolate
features that reflect felt emotion as distinct from those that
reflect perceived emotion. In all likelihood, the perception of
emotion influences the feeling of emotion, independent of the
way in which these two networks eventually combine at the
level of cognition. Future work should attempt to reconcile
this important detail. As we noted at the outset, the models
considered here are skeletal and built upon some rather crude
assumptions. Second, we have no way of assessing the quality
of the features that we provided to the models. The audio
features considered as input in the perception models may or

may not have been a subset of the full profile of features that
were actually processed by listeners. Similarly, although the
physiological features we extracted are clearly associated with
felt emotion, they do not likely represent the full profile of
neurobiological features underlying felt emotion. Accordingly,
the power of all of the networks considered here should be
considered as bounded by the decisions that were made regarding
inputs. Finally, our modeling attempts were handicapped by the
size of our dataset. We noticed correlations between some of
the physiological features and arousal in some of the genres
considered. However, the size of these correlations was reduced
when the entire dataset was modeled. Since each genre was
limited to 15 excerpts, models derived at the genre level should be
interpreted with caution due to concerns about generalizability.
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Konečni, V. J. (2008). Does music induce emotion? A theoretical and
methodological analysis. Psychol. Aesthet. Creat. Arts 2, 115–129. doi: 10.1037/
1931-3896.2.2.115

Krumhansl, C. (1997). An exploratory study of musical emotions and
psychophysiology. Can. J. Exp. Psychol. 51, 336–352. doi: 10.1037/1196-1961.
51.4.336

Kuhn, M., and Johnson, K. (2013). Applied Predictive Modeling. New York, NY:
Springer.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., et al.
(2016). Caret: Classification and Regression Training, R package version 6.0–64.
Available at: https://github.com/topepo/caret/

Lartillot, O. (2014). MIRtoolbox 1.6.1 User’s Manual. Technical report, Aalborg:
Aalborg University.

Lartillot, O., and Toiviainen, P. (2007). “A Matlab toolbox for musical feature
extraction from audio,” in Proceedings of the 10th International Conference on
Digital Audio Effects, Bordeaux, 237–244.

Lartillot, O., Toiviainen, P., and Eerola, T. (2008). “A matlab toolbox for music
information retrieval,” in Data Analysis, Machine Learning and Applications.
Studies in Classification, Data Analysis, and Knowledge Organization, eds C.
Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker (Berlin: Springer),
261–268.

Laurier, C., Lartillot, O., Eerola, T., and Toiviainen, P. (2009). “Exploring
relationships between audio features and emotion in music,” in Proceedings of
the 7th Triennial Conference of European Society for the Cognitive Sciences of
Music (ESCOM 2009), Jyväskylä.

Leisch, F., and Dimitriadou, E. (2010). Mlbench: Machine Learning Benchmark. R
package version 2.1–1.

Lundqvist, L., Carlsson, F., Hilmersson, P., and Juslin, P. N. (2009). Emotional
responses to music: experience, expression, and physiology. Psychol. Music 37,
61–90. doi: 10.1177/0305735607086048

MacDorman, K. F., Ough, S., and Ho, C. C. (2007). Automatic emotion prediction
of song excerpts: index construction, algorithm design, and empirical
comparison. J. New Music Res. 36, 281–299. doi: 10.1080/092982108019
27846

McClelland, J. L., and Rumelhart, D. E. (1989). Explorations in Parallel Distributed
Processing: A Handbook of Models, Programs, and Exercises. Cambridge, MA:
MIT press.

Meyer, L. (1956). Emotion and Meaning in Music. Chicago, IL: University of
Chicago Press.

Mion, L., and de Poli, G. (2008). Score-independent audio features for description
of music expression. IEEE Trans. Audio Speech Lang. Process. 16, 458–466.
doi: 10.1109/TASL.2007.913743

Nagel, F., Kopiez, R., Grewe, O., and Altenmüller, E. (2007). EMuJoy: software for
continuous measurement of perceived emotions in music. Behav. Res. Methods
39, 283–290. doi: 10.3758/BF03193159

Nyklicek, I., Thayer, J. F., and Van Doornen, L. J. P. (1997). Cardiorespiratory
differentiation of musically-induced emotions. J. Psychophysiol. 11,
304–321.

Rainville, P., Bechara, A., Naqvi, N., and Damasio, A. R. (2006). Basic emotions
are associated with distinct patterns of cardiorespiratory activity. Int. J.
Psychophysiol. 61, 5–18. doi: 10.1016/j.ijpsycho.2005.10.024

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature 323, 533–536. doi: 10.1038/
323533a0

Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39,
1161–1178. doi: 10.1037/h0077714

Russo, F. A., and Liskovoi, L. (2014). “Physiological responses,” in Music in the
Social and Behavioral Sciences: An Encyclopedia, ed. W. F. Thompson (London:
SAGE Publications), 862–865.

Russo, F. A., Vempala, N. N., and Sandstrom, G. M. (2013). Predicting
musically induced emotions from physiological inputs: linear and
neural network models. Front. Psychol. 4:168. doi: 10.3389/fpsyg.2013.
00468

Sandstrom, G. M., and Russo, F. A. (2010). Music hath charms: the effects
of valence and arousal on the regulation of stress. Music Med. 2, 137–143.
doi: 10.1177/1943862110371486

Scherer, K. R., and Zentner, M. R. (2001). “Emotional effects of music: production
rules,” in Series in Affective Science. Music and Emotion: Theory and Research,
eds P. N. Juslin and J. A. Sloboda (New York, NY: Oxford University Press).

Schubert, E. (1999). Measurement and Time-Series Analysis of Emotion in Music.
Ph.D. thesis, University of New South Wales, Sydney, NSW.

Schubert, E. (2014). Emotion felt by the listener and expressed by the
music: literature review and theoretical perspectives. Front. Psychol. 4:837.
doi: 10.3389/fpsyg.2013.00837

Sokhadze, T. (2007). Effects of music on the recovery of autonomic and
electrocortical activity after stress induced by aversive visual stimuli.
Appl. Psychophysiol. Biofeedback 32, 31–50. doi: 10.1007/s10484-007-
9033-y

Vempala, N. N. (2014). “Neural network models,” in Music in the Social and
Behavioral Sciences: An Encyclopedia, ed. W. F. Thompson (London: SAGE
Publications), 805–807.

Vempala, N. N., and Russo, F. A. (2012). “Predicting emotion from music audio
features using neural networks,” in Proceedings of the 9th International
Symposium on Computer Music Modeling and Retrieval (CMMR),
London.

Vempala, N. N., and Russo, F. A. (2013). “Exploring cognitivist and emotivist
positions of musical emotion using neural network models,” in Proceedings
of the 12th International Conference on Cognitive Modeling (ICCM),
Ottawa, ON.

Frontiers in Psychology | www.frontiersin.org 11 January 2018 | Volume 8 | Article 2239

https://doi.org/10.1525/mp.2009.27.1.1
https://doi.org/10.1049/pbce071e_ch12
https://doi.org/10.1177/0305735610362821
https://doi.org/10.1037/0033-295X.99.3.550
https://doi.org/10.1016/j.ijpsycho.2005.10.025
https://doi.org/10.1016/j.ijpsycho.2005.10.025
https://doi.org/10.1016/j.ijpsycho.2004.02.002
https://doi.org/10.1016/j.ijpsycho.2004.02.002
https://doi.org/10.1016/S0893-6080(96)00098-6
https://doi.org/10.1093/jmt/33.3.219
https://doi.org/10.1017/S0140525X08005293
https://doi.org/10.1017/S0140525X08005293
https://doi.org/10.1109/TPAMI.2008.26
https://doi.org/10.1037/1931-3896.2.2.115
https://doi.org/10.1037/1931-3896.2.2.115
https://doi.org/10.1037/1196-1961.51.4.336
https://doi.org/10.1037/1196-1961.51.4.336
https://github.com/topepo/caret/
https://doi.org/10.1177/0305735607086048
https://doi.org/10.1080/09298210801927846
https://doi.org/10.1080/09298210801927846
https://doi.org/10.1109/TASL.2007.913743
https://doi.org/10.3758/BF03193159
https://doi.org/10.1016/j.ijpsycho.2005.10.024
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1037/h0077714
https://doi.org/10.3389/fpsyg.2013.00468
https://doi.org/10.3389/fpsyg.2013.00468
https://doi.org/10.1177/1943862110371486
https://doi.org/10.3389/fpsyg.2013.00837
https://doi.org/10.1007/s10484-007-9033-y
https://doi.org/10.1007/s10484-007-9033-y
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-02239 January 4, 2018 Time: 15:51 # 12

Vempala and Russo Modeling Emotion Judgments

Witvliet, C. V., and Vrana, S. R. (2007). Play it again Sam: repeated exposure
to emotionally evocative music polarises liking and smiling responses, and
influences other affective reports, facial EMG, and heart rate. Cogn. Emot. 21,
3–25. doi: 10.1080/02699930601000672

Conflict of Interest Statement: The research was co-sponsored by WaveDNA,
an industry partner. Although the manuscript presents no opportunity for
commercial promotion (there was no use or evaluation of commercial products),
it is possible that some version of the computational models described here will be
integrated into future releases of WaveDNA’s commercial software.

The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict
of interest.

Copyright © 2018 Vempala and Russo. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 12 January 2018 | Volume 8 | Article 2239

https://doi.org/10.1080/02699930601000672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Modeling Music Emotion Judgments Using Machine Learning Methods
	Introduction
	Materials And Methods
	Participants
	Stimuli and Apparatus
	Experimental Design and Data Collection
	Data Preparation
	Machine Learning Models
	Feature Reduction
	Initial Analyses
	Artificial Neural Networks
	Dataset preparation for training and testing
	Network architecture
	Performance of perception and feeling networks
	Committee machine

	Linear Regression
	Random Forests


	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


