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Abstract

Resource patchiness and aqueous phase fragmentation in soil may induce large differences

local growth conditions at submillimeter scales. These are translated to vast differences in

bacterial age from cells dividing every thirty minutes in close proximity to plant roots to very

old cells experiencing negligible growth in adjacent nutrient poor patches. In this study, we

link bacterial population demographics with localized soil and hydration conditions to predict

emerging generation time distributions and estimate mean bacterial cell ages using mecha-

nistic and heuristic models of bacterial life in soil. Results show heavy-tailed distributions of

generation times that resemble a power law for certain conditions, suggesting that we may

find bacterial cells of vastly different ages living side by side within small soil volumes. Our

results imply that individual bacteria may exist concurrently with all of their ancestors, result-

ing in an archive of bacterial cells with traits that have been gained (and lost) throughout

time–a feature unique to microbial life. This reservoir of bacterial strains and the potential for

the reemergence of rare strains with specific functions may be critical for ecosystem stability

and function.

Author summary

The study addresses the simple question: “What is the average age of bacterial cells in

soil”. Limitations of current experimental methods in resolving g cell age distributions in

soil samples, motivated the use of modeling approaches for linking soil physical and

hydration conditions with localized bacterial cell demographics. In contrast with other life

forms, bacterial cells may persist for long periods at subsistence state close to starvation.

Kin cells in close proximity on the other hand may divide frequently due to high availabil-

ity of nutrients, resulting in numerous daughter cells and an ever-growing generational

gap. In human terms, we would be living concurrently with relatives from medieval times

or even earlier. Our results suggest that although the majority of generation times of the

order of hours and days, the age distribution shows a heavy tail with long generation

times and very old cells persisting in proximal soil volumes. The variation in localized
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growth rates provides a living soil bacterial reservoir with the potential for the reemer-

gence of rare strains that may contribute to ecosystem stability and function.

Introduction

Notwithstanding the harsh and dynamic environmental conditions, soil microbial life thrives

at all scales–with a single gram of fertile soil may contain up to 1010 prokaryotic cells [1]. Even

with such high potential abundance, soil bacteria inhabit less than 1% of the available soil sur-

face [2] and are largely associated with patchy and nutrient-rich soil volumes that may support

densely populated hotspots of biological activity (the rhizosphere or the detritusphere within

soil aggregates [3]). Within these hotspots, availability of nutrients results in high cell growth

rates (similar to the growth of copiotrophic bacteria grown in laboratory settings [4]). In con-

trast, the remaining 99% of soil surfaces and volumes support act as biological “cold spots”

with very little to no bacterial activity due to a lack of nutrients [5] and unfavorable hydration

conditions [6]. Soil hydration status has been shown to be a key variable that governs multiple

functions of microbial life such as community structure [7], horizontal gene transfer rate [8],

cell dispersal [9–11] and nutrient diffusion (both aqueous and gaseous) [6]. From a nutrient

flux perspective, too wet or too dry soil conditions are generally unfavorable for bacterial activ-

ity, due to either a lack of oxygen when saturated or limited aqueous nutrient diffusion in dry

soil. Optimal nutrient and gaseous fluxes, and related high growth rates, are often supported at

intermediate hydration levels [12]. Hydration conditions also dictate bacterial dispersal, where

water saturated conditions often facilitate convection or motility through the pore network

thus enabling relocation over large distances and introduction of bacterial cells to more favor-

able locations. In contrast, drier conditions and associated thin water films restrict bacterial

cell motility and result in a fragmented habitat where pinned bacterial cells are restricted to

diminishing diffusive nutrient fluxes and limited prospects for proliferation. In addition, the

nature of different hotspots (e.g. degradation of recalcitrant carbon in the form of root detritus

versus growth on root exudates in the rhizosphere) further broadens the growth rate distribu-

tion and community composition [13]. These contrasting conditions concerning bacterial

growth rates may occur within small soil volumes and result in significant generation time dis-

parity, with rapid cell proliferation coexisting next to nearly dormant bacterial cells that sup-

port their maintenance with limited prospects for growth and cell division. Even after episodic

wetting events that reconnect bacterial habitats and permit temporary infusion of nutrients,

subsequent internal drainage fragments the aqueous phase and growth rates drop following

diminishing accessibility and availability of nutrients. This results in a scenario unique to the

microbial world where the dynamics of a population is a function of localized conditions and

the development stages of the population as a whole are preserved in bacterial cold spots–cre-

ating an accessible library of species-specific functional traits through time. In this study, we

seek to understand the consequences of this common disparity in local bacterial growth rates

in soil and impacts on cell lineage propagation and average bacterial cell ages in soil.

At present, there are no direct methods for inferring the ages of individual bacterial cells

within a natural soil sample. We define cell age as the elapsed time since last cell division, and

generation time as the cell age at division (also known as the interdivision time, doubling time

or cell-cycle time [14]). Experimentally, cell age and related generation time distributions are

deduced indirectly from average growth rates or microbial activity data. Multiple techniques

have been used for measuring growth rates in situ, such as direct cell counts, radioactively

labeled thymidine/leucine incorporation rates [15,16] or using observed and expected
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mutation accumulation rates [17]. More recently, omics-based methods, such as quantitative

stable isotope probing (qSIP) using H2O18, have emerged as a novel technique to measure

growth rates in environmental samples [18] and have even enabled the quantification of

growth rates at the taxon level [19]. Using these techniques, mean generation times of soil

microbial communities have been determined for a wide range of conditions (Fig 1).

A critical drawback of the above-mentioned experimental techniques is that the estimated

growth rates in soil are sample mean values that do not resolve the within sample age distribu-

tion [15]. Additionally, most methods suffer from poorly resolved detection limits that favor

identification of rapid growth, thereby biasing the demographic picture in favor of younger

cells. Theoretically, we expect bacterial life in patchy soil microenvironments to produce far

broader age distributions than could be resolved by current measurement methods. While

direct experimental evidence from soil is scarce, we can gain insights from analogous patchy

environments such as bacterial age in the phyllosphere [27]. Studies have tracked the repro-

ductive success (the total number of offspring produced by an individual) of isogenic bacterial

cells by linking these to leaf patchy nutrient distribution and overall local carrying capacity

[27]. These experiments have shown a broad distribution of reproductive success (and thus

generation times) for individual cell lineages despite their isogenic characteristics, which sup-

ports the role of contrasting growth conditions in soil. We hypothesize that microscale spatial

variations in soil hydration state or nutrient distributions would shape the age and generation

time distribution of bacterial cells with broader distributions emerging in drier conditions due

to habitat fragmentation and nutrient flux limitations. To test this hypothesis, we employ a

previously published modeling framework that combines the salient features of soil aqueous

phase configurations with individual-based bacterial cell growth and dispersal [28]. The simu-

lations consider a simple scenario of a motile (by means of a chemotactically biased run-and-

tumble flagellated motion), obligate aerobic bacterial species growing on a single carbon

source and oxygen following Monod kinetics (see details in the Modeling section). The model

tracks the life history of each bacterial cell within the simulation domain, and its lineage with

Fig 1. Distribution of experimentally measured bacterial generation times in topsoil and the rhizosphere compared to computationally obtained,

generation time distributions. a) Comparison of literature values [4,20–26] and mean generations times in the simulations for different hydration

conditions. Further information on the soil samples and quantification techniques of the literature values can be found in S1 Table. b) Probability

distribution of generation times within a single simulation under different hydration conditions. Drier conditions (-7 kPa) promote a broader distribution

with a more pronounced tail of bacterial generation times compared to intermediate hydration conditions (-3 kPa) where rapid growth is enabled due to

optimal gaseous and aqueous diffusion rates.

https://doi.org/10.1371/journal.pcbi.1009857.g001
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reference to the localized nutrient conditions experienced (Fig 2). This enables attribution of

the (simulated) life history of each cell to local conditions and to its age and generation time,

thus providing estimates of community age and generation time distributions by integrating

across the bacterial population. The soil-like landscape and the aqueous phase distribution

within it vary with hydration state, giving rise to limited diffusive fluxes imposed by thin water

films that support survival of bacterial cells near their maintenance rate whilst neighboring

cells close to nutrient sources may proliferate at near maximum growth rates (Fig 2). While

the numerical and analytical models are instrumental in providing insights into drivers and

modifiers of bacterial population age and generation time distributions, their short time scales

Fig 2. Bacterial population demographics shaped by diffusion and dispersal limitations around soil hot spot as affected by hydration conditions. a)

Spatial visualization of simulated bacterial cell ages in the whole simulated domain of 20 mm diameter for -3 kPa and -7 kPa representing wet and dry

conditions, respectively. Diffusion and dispersal restrictions in dry conditions expose individual lineages to harsh conditions resulting in older cells growing

close to their maintenance rate. b) The model imitates a soil bacterial hotspot with a central carbon source and peripheral oxygen. Bacterial cells are represented

as individual agents inhabiting an angular pore network with varying pore sizes. Diffusion of aqueous substrates and cell dispersal is dictated by thin water

films within the angular pores, resulting in a patchy nutrient landscape and localized growth conditions. c) The spatially patchy resource landscape gives rise to

bacterial “hotspots” (nutrient rich and accessible by a well-connected aqueous phase) and “cold spots” reflecting nutrient limitations and fragmentation. Cell

lineages inhabiting hotspots proliferate and attain high reproductive success whereas (kin) isogenic lineages in cold spots persist with minimal prospects for

growth and dispersal.

https://doi.org/10.1371/journal.pcbi.1009857.g002
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and numerous simplifying assumptions regarding bacterial traits, diversity and gene flow pre-

clude their use for making inferences regarding potential evolutionary processes or shifts in

population diversity, and we thus treat such potential generalizations as mere speculations. In

addition to mechanistic modeling of emerging bacterial generation time distributions in a soil-

like system, we capitalize on a heuristic analytical formulation for linking local heterogeneity

in bacterial growth conditions (nutrients and hydration) to the resulting bacterial age

distribution.

Results

Fig 3A depicts the population size at the end of the simulation as a function of hydration state

when simulated using the IndiMeSH model (details of the simulation conditions and parame-

ters are found in the methods section and S2 Table). In this study, we use the soil water matric

potential that represents the energy state of soil water to represent prevailing hydration condi-

tions (more negative values imply drier soil). The matric potential is not only linked to the

amount of water in soil pores, it also controls its organization in soil pores and film thicknesses

that support diffusive fluxes of nutrients. For saturated conditions (matric potential of 0 kPa

and -1 kPa), growth of the obligate aerobic bacterial community is restricted by low oxygen

diffusion through the water saturated pores limiting growth of the obligate aerobic bacteria.

Intermediate hydration conditions (-2 kPa and -3 kPa) create an optimal balance of aqueous

and gaseous nutrient diffusion that enables rapid growth. As drier conditions set in, thin water

films limit aqueous nutrient diffusion thereby reducing bacterial community size. Fig 3B

shows the empirical cumulative distribution function of the cell generation times during the

simulation. On average, the shortest generation times were realized at -2 kPa to -3 kPa (opti-

mal balance between gaseous and aqueous nutrient diffusion) and diverged towards longer

mean generation times for wetter or drier conditions (Fig 3B and S3 Table).

For simplicity, we focus in this study on isogenic bacterial populations and their spatially

distributed responses to conditions similar to a soil microbial hotspot and its surroundings

where high nutrient concentrations support rapid cell proliferation near the nutrient source.

The majority of bacterial cell generation times realized in a simulated hotspot are in the order

of hours to days for most hydration conditions (prescribed maximum growth rate results in a

shortest generation time at optimal conditions of 0.5 h). However, the generation time distri-

butions are characterized by persistence of very long generation times (a heavy tail), as shown

in Fig 3B. Interestingly, we find that under wet conditions (Fig 3C), the tail of the distribution

is truncated (i.e. fewer long generation times) due to bacterial motility through the water-satu-

rated pore spaces that enable them to relocate towards more favorable conditions [29]. On the

other hand, low oxygen diffusion rates restricted by saturated pore spaces result in anoxic con-

ditions that shift the distribution towards longer generation times as shown be the lower fre-

quency of very short generation times in Fig 3C. Intermediate conditions (-3 kPa, Fig 3D)

support rapid proliferation of the bacterial community due to optimal nutrient fluxes. Under

drier conditions (Fig 3E), cell motility is greatly reduced and the dispersal range is restricted

[11] with concurrent reduction in nutrient diffusion rates that result in a wide distribution of

generation times. S1 Fig shows the original and extrapolated simulation data in relation to

multiple heavy-tailed distributions (power law distribution, exponentially truncated power law

distribution, exponential distribution, gamma distribution and lognormal distribution) for all

hydration conditions. The distributions of generation times in Figs 3C, 3D, and S1 were

extrapolated by calculating the time required to complete a life cycle (generate the necessary

biomass to cell division) based on observed individual growth rates at the end of the simula-

tions. More precisely, we calculated the time required to assimilate the difference from current
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cell biomass to the biomass at division for each cell using localized growth rate of each cell at

the end of the simulation. These estimated times are then added to the current cell age for pre-

dicting the most likely generation time under present and local conditions. We find that the

main influence of hydration conditions lies in promoting the emergence of a more pro-

nounced tail of the distribution (following diminishing nutrient conditions in drier condi-

tions). The choice of obligate aerobe as model bacterium implies sensitivity to saturated

conditions with oxygen diffusion limitations irrespective of location and the resulting age dis-

tribution under these conditions must be interpreted with caution.

Fig 3. Variations in simulated bacterial population sizes and generation time distributions as a function of hydration conditions. a) Final simulated

population size depending on hydration conditions where optimal growth conditions occur at intermediate hydration conditions that support sufficient

diffusion of both gaseous and aqueous nutrients. b) Empirical cumulative distributions of observed generation times during the simulated time. On

average, the shortest generation times were obtained at -2 and -3 kPa due to optimal growth conditions. The cumulative density function curves for

generation times at 0 kPa and -1 kPa are congruent. Log-log visualization of the extrapolated simulation data with fitted power law and exponentially

truncated power law distributions for the wet (c), intermediate (d) and drier (e) scenarios. In saturated conditions (0 and -1 kPa), bacterial motility enables

cells to relocate towards more favorable conditions, resulting in a more truncated tail of the distribution that is better described by the exponentially

truncated power law distribution. In addition, emerging anoxic conditions restrict rapid proliferation of the simulated obligate aerobes, skewing the

distribution towards a longer average generation time. Intermediate conditions (-2 kPa and -3 kPa) still enable relocation of bacterial cells whilst permitting

optimal aqueous and gaseous diffusion, resulting in rapid proliferation of the population. In drier conditions (-4 kPa and higher), bacterial motility is

restricted and habitat fragmentation results in spatially isolated subpopulations growing at vastly different growth rates giving rise to the wide distribution

in generation times and a more pronounced tail of the distribution that is captured by a power law.

https://doi.org/10.1371/journal.pcbi.1009857.g003
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A heavy-tailed generation time distribution suggests a broad range of reproductive success

where a few lineages dominate the total bacterial biomass due to rapid proliferation whereas

lineages with long generation times contribute little to the total biomass of a population. In

this context, a cell lineage is defined as the inoculated cell at the simulation initialization and

all of its progeny with the reproductive success being the maximum generation achieved by a

single lineage during the simulated time. Lineages with high reproductive success are those

very few inoculated cells and their progeny that contribute disproportionally to the final popu-

lation biomass, and are further defined as the dominant fraction. In contrast, a large propor-

tion of the inoculated cells are incapable of proliferating and only contribute a minute fraction

to the final biomass (rare fraction). To classify lineages into dominant and rare, we use a mini-

mum cross-entropy algorithm originally developed for image thresholding [30]. Fig 4A shows

the fraction of the initial inoculum classified as either dominant or rare lineage. Interestingly,

motility under wet conditions plays an important role as it enables individual cells to relocate

towards favorable conditions, thereby equilibrating reproductive success between lineages ren-

dering most of lineages as dominant. Under dry conditions, the combination of diffusion-lim-

iting thin water films with pinning forces that limit cell dispersal ranges [6,11] result in

proliferation of only a few lineages that are close to the carbon source. More generally, condi-

tions that support motion and migration equalize the contribution of lineages whereas restric-

tive conditions that limit dispersal and resources patchiness favor a few rare lineages. For all

hydration conditions, the summed contribution of the rare lineages is less than 3% of the final

population biomass (Fig 4A). This stark difference in reproductive success between the rare

and dominant lineages results from equally prominent differences in their mean age distribu-

tion (Fig 4B) and mean generation times (Fig 4C) of these lineages. The mean cell age of indi-

vidual lineages diverges towards older cells for rare lineages and younger cells for dominant

lineages with increasing matric potential (drier conditions) (Fig 4B). The observed mean

young cell age for rare lineages primarily stem from lineages that divided very late in the simu-

lation due to growth close to the maintenance rate. Thus, these results suggest a bimodal distri-

bution of bacterial age distributions in soil for bacterial cells growing close to a carbon source

(hotspot) and within the bulk soil (cold spots) especially for drier conditions (S2 Fig). Simi-

larly, there is a relationship between the average generation time and the relative abundance of

individual lineages (Fig 4C). Overall, rare lineages have a longer average generation time com-

pared to dominant lineages, which is expected theoretically when considering the different

reproductive success of the two groups.

Finally, we derive a mathematical description of how the heavy-tailed distribution of cell

ages in a soil community may arise from a diversity in growth rates of individual populations.

For a single isogenic population growing under steady state conditions, the cell age distribu-

tion is expected to follow a modified exponential decay distribution [31]:

uðaÞ ¼ 2 � k � e� ka �
R1
a oðaÞ � da ð1Þ

where u(a) is the probability of a cell having age a, k is the growth rate and ω(a) is the probabil-

ity distribution of generation times with the integral
R1
a oðaÞda the survival function. This

derivation assumes that steady state conditions have prevailed for at least as the oldest

observed cell age within the population [31], a symmetric division of the bacterial cells (i.e.

equal daughter cells) [32] and that death is negligible in the bacterial population [31]. These

assumptions delineate an important upper boundary for the subsequent interpretation of the

emerging cell age distributions.

Frequently, the observed generation time distribution for a population grown in homoge-

neous environments is best described by a Gamma distribution [32–34] with shape parameter
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α and scale parameter β. The two parameters can be related to the mean generation time of the

population by assuming a constant coefficient of variation CV (that is, the standard deviation

(σ) around the mean generation time (μ = τ) grows proportionally with the generation time

CV ¼ s=
m
). For the Gamma distribution where μ = αβ and σ = αβ2, this results in a constant

shape factor a ¼ 1=CV2 and a scale parameter that is linked to the mean generation time

b ¼ t=
a
. We can express the mean generation time in terms of the growth rate k ¼ ln ð2Þ=

t
to

derive an expression for cell age distribution in an isogenic population using Gamma distrib-

uted generation times that is only a function of the growth rate k:

uðaÞ ¼ 2 � k � e� ka � Sða; kÞ ð2Þ

where S(a, k) is the survival function of the Gamma distribution and acts to erode the tail of

the exponential distribution as shown for different coefficients of variation in Fig 5A. When

Fig 4. Characteristics of dominant (highest reproductive success) and rare lineages vary with hydration conditions. a) Percentage of lineages from the

inoculum classified as dominant and rare. With a decline in bacterial motility towards drier conditions, most inoculated lineages cannot proliferate and

contribute to the rare fraction of the community. Above numbers (in red) report the contribution (in percentage) of the dominant lineages to the final

community biomass. b) Mean lineage cell age depending on their classification into rare and dominant shows an overall older cell population for the rare

fraction due to their lower reproductive success. c) Mean lineage generation time in relation to their relative abundance (log) for three hydration

conditions. The rare fraction is typically associated with longer mean generation times and only occurs in drier conditions where aqueous nutrient

diffusion is limited to thin water films and capillary pinning forces immobilize bacterial cells.

https://doi.org/10.1371/journal.pcbi.1009857.g004
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the CV becomes very small (i.e. where all bacterial cells have exactly the same generation time)

the survival function is 1 for a< τ and 0 for a>τ and Eq (2) can be modified to:

uðaÞ ¼ 2 � k � expð� k � aÞ for a < t

0 for a > t
ð3Þ

Finally, in contrast to the derivation above for a single population growing in homogeneous

conditions, bacterial communities in a soil volume may experience a broad spectrum of

growth rates. To obtain the cell age distribution of a soil bacterial community, we integrate Eq

(3) with respect to the growth rate k which results in a power law distribution of cell ages for

the entire community.

�u að Þ ¼
2

a2
ð4Þ

The derivation of Eq (4) assumes equal generation times for all cells (CV!0) and integrates

across all possible growth rates but make the assumption that the growth rates are equally pres-

ent within the habitat–an assumption that does not reflect conditions within soil. To assess

how heterogeneous growth rate distributions may shape the resulting cell age distribution, we

numerically integrate Eq (3) using a CV of 0.1 (i.e. the standard deviation equals 10% of the

mean generation time) and lognormally distributed weights for the growth rates from a mini-

mum value representing a division once a year to a maximum growth rate that reflects a cell

division every 30 minutes (Fig 5B). The three parameterizations were chosen to reflect differ-

ent potential regimes ranging from predominantly slow growth (red line) via a more balanced

growth (green line) to predominantly rapid growth (blue line). We use the homogeneous

weights (black line) to compare the numerical integration to the analytical solution (dashed

line in Fig 5B assuming a CV of 0). Fig 5C shows the numerically integrated community cell

age distributions when taking into account the weights from Fig 5B. Evidently, the weighted

growth rates result in a general erosion of the tail of the cell age distribution.

Fig 5. Numerical integration of the heuristic model to obtain bacterial community cell age distributions. a) Visualization of the components in Eq (2) for

different CV with showing the exponential component (solid black line), the Gamma survival function (dashed gray lines) and resulting cell age distribution

for a single population with a mean generation time of 200 days growing in homogeneous conditions (dashed yellow lines). b) Distribution of weights used

for the numerical integration of Eq (2) taken from a lognormal distribution to represent different growth regimes including slow growth (red line),

intermediate growth (green line) and rapid growth (blue line). The solid black line represents the homogeneous distribution of growth rates. c) Resulting

community cell age distribution when numerically integrating Eq (2) using a CV of 0.1 and the weight distribution in panel b. The dashed line represents the

power law of Eq (4) assuming a CV of 0 and homogeneous growth rate distribution whereas the solid black line shows the numerical integration when

considering a CV of 0.1 and homogeneous growth rate weights.

https://doi.org/10.1371/journal.pcbi.1009857.g005
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Discussion

To bridge the information gap due to limitations of current experimental methods in resolving

soil bacterial age distributions within individual soil samples, we use a mechanistic model that

represents physical microhabitats and simulates individual bacterial cells interacting with their

environments to track life histories of cell lineages and estimate generation time distributions.

Simulation results show a broad range of growth rates marked by extremely slow growth rates

(despite considering a single obligate aerobic bacterial species with an optimal generation time

of 0.5 h) where some cells did not divide during the entire duration of the e simulations. These

“old” individuals persist by balancing metabolic activity and cell maintenance, a mechanism

congruent to experimental observations in batch cultures where cells entered a deep starvation

mode in response to diminishing nutrient conditions [35]. Analogous observations of

extremely slow growth have been made in fertile soils where average population doubling

times exceeding 100 days are common and reproducible [15], with experiments in harsher

conditions suggesting that bacterial generation times may become indefinitely long as nutrient

interception balances cell maintenance rates [36–38].

The broad and heavy-tailed age distributions observed in the simulations resemble a power

law with varying slopes for a range of bacterial cell age with prominent truncated tails of the

distributions that vary with hydration conditions (Figs 3 and S1) marking an upper limit for

the oldest cells in the simulated domain. The key ingredient for the emergence of these heavy-

tailed distributions is the broad range of growth rates within the system under consideration.

This assumption is difficult to validate in situ, since current methods to determine growth

rates in soil measure a sample average growth rate (which would bias the observed growth rate

towards rapid growing cells) and cannot resolve the growth rate distribution at the individual

cell level. In the model, the wide distribution of growth rates is a consequence of the patchy

nutrient landscape dictated by thin water films, especially in dry conditions (S2 Fig) for which

the simulation data show a generation time distribution following a power law more closely

(Fig 3D). A consequence of such distribution is that no simple mean bacterial generation time

can be defined due to the heavy-tailed distribution. We may define the average cell age of cer-

tain fractions of the population (S3 Table), such estimates would however be highly biased

towards the younger and more abundant cells.

Heavy-tailed generation time distributions promote a division of the bacterial community

into dominant and rare lineages. By virtue of their position relative to nutrient sources, domi-

nant lineages that contribute most to the overall biomass (but constitute the minority of the

original inoculated cell lineages) proliferate and achieve high reproductive success, which

translates to shorter generation times and younger cells on average. In contrast, the rare line-

ages grow very slowly, thereby exhibiting overall longer generation times and aged cells. Thus,

considering a soil volume that contains at least a single hotspot, we expect the emergence of a

bimodal distribution of cell ages (Figs 2 and S3) where the interplay of bacterial hot and cold

spots as a function of diffusion limitations provide mechanisms that support the emergence of

within species diversity [39]. In addition, an interesting analogy exists between the rare and

dominant lineages in our simulations and the rare and common species found in natural soil

[40,41]. Recent experimental results have provided glimpses into a wide distribution of taxon-

specific growth rates for the same soil sample [42], raising the question of whether bacterial

cold spots (representing the rare lineages) also harbor the tail of the bacterial species distribu-

tion (rare species). This discrepancy in growth dynamics between lineages (or strains/species)

culminates in the creation of a “genetic reservoir” (also termed microbial genetic seed banks

[43]) where rapid proliferation generates genetic variation that persists through time owing to

the slow growing and rare lineages that act as trait keepers. Often such genetic reservoirs have
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been associated with the fraction of the bacterial population at a state of reduced metabolic

activity (dormancy) within larger soil volumes [44]. Our analysis suggests that even under

ubiquitous hydrological conditions and within small soil-volumes (mm3) occupied by a single

bacterial hotspot, the persistence of rare lineages existing close to the maintenance rate pro-

vides a simple and intuitive mechanism for the emergence of heavy tailed generation time dis-

tributions that contribute to the soil bacterial genetic reservoir.

The question remains how important the soil microbial genetic reservoir is for ecosystem

stability and function. The dynamic nature of soil as a microbial habitat creates scenarios

where adapted gene variants are outcompeted due to changing environmental conditions. We

hypothesize that under conditions where environmental conditions revert to a previous state,

such genetic memory within every bacterial species may promote rapid adaption of soil micro-

bial communities [45]. Evidence for the importance of the microbial seed bank in soil has been

found in the disproportionate response of rare taxa during following rapid changes in environ-

mental cues [46] or during a controlled 45-week experiment including a thermal disturbance

[47]. In both cases, resuscitation of dormant taxa from the vast soil genetic reservoir was key

for ecosystem stability and function.

Admittedly, the models describe a highly abstracted and simplified reality representing a

small domain with limited heterogeneity where a single, aerobic species growing on a sole car-

bon source in absence of environmental variables (e.g. pH or temperature) with the exception

of hydration conditions. Evidently, microbial life in soil is characterized by a vast diversity in

traits that govern the generation time distribution. For instance, cell-size variation across spe-

cies plays a critical role in the metabolic rate and may thus significantly influence the genera-

tion time distribution for different cells [48]. Motility is an important trait for soil bacterial

species. In comparison to motile obligate aerobic species, non-motile bacterial species produce

small colonies that are exposed to local growth conditions and unable to relocate towards

more favorable conditions. Individual colonies are limited by nutrient flux through the aque-

ous phase and cannot self-engineer the overall nutrient landscape of the hotspot, resulting in a

homogenization of the generation time distribution across hydration conditions (S4 Fig). In

these simulations, only saturated conditions are significantly different from the drier condi-

tions due to the low oxygen diffusion through the saturated pore space. We further investi-

gated how removing the oxygen dependency for growth (essentially simulating motile

facultative anerobic species) changes the generation time distribution for all hydration condi-

tions (S5 Fig). In this case, saturated conditions (-0 and -1 kPa) resulted in a vastly higher over-

all population size and shift in generation time distribution towards shorter generation times

when compared to the obligate aerobic species simulations. For unsaturated conditions, the

changes in population size and generation time distributions are minimal, confirming that the

system is governed by diminishing carbon diffusive fluxes. In contrast to out simulations, bac-

terial communities in soil hotspots with oxygen and carbon counter-gradients may self-segre-

gate into sub-populations following their oxygen preference [49] and engage in cross-feeding

of intermediate metabolites as demonstrated in silico [28] and experimentally in bacterial colo-

nies growing on agar plates [50] or microcolonies within microfluidic devices [51]. This sce-

nario would lead to more rapid proliferation of anaerobically growing cells in close proximity

of the carbon source whereas obligate aerobic species are restricted to leaking intermediate

carbon sources with limited prospects for rapid growth. Based on these results, we would

expect a further shift of the generation time distribution in saturated conditions converging

towards the distribution observed in intermediate hydration conditions with a greater abun-

dance of rapidly growing cells and a slightly more pronounced tail of the distribution due to

aerobic cells growing on intermediate carbon sources. In addition to different bacterial traits,

natural soil conditions impose numerous further constraints such as highly complex pore
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spaces, restricted nutrient accessibility, a plethora of potential carbon sources and additional

biotic factors (such as intraspecific variability and non-growth associated maintenance). Since

our simulations represent the optimal case of rapid bacterial growth, we expect that the above-

mentioned processes likely extend the generation time distribution and contribute further to

the genetic reservoir in soil [44].

In analogy, we also expect a range of biotic and abiotic processes to act in the opposite

direction that would truncate the range of the observed heavy-tailed generation time distribu-

tions. The lowest limit for the age range is defined by physiological constraints affecting rapid

bacterial growth (i.e. the shortest metabolically supported generation time), whereas mecha-

nisms that truncate the upper range of the distributions are more complicated to determine.

Unlike mammals, the lifetime of a bacterial cell is not limited [36–38]. However, there are

other mechanisms of bacterial death which shape the cell age distribution, such as grazing of

bacteria [52], large-scale bacterial death associated with episodic wetting events [53] or phage

infections [54] supporting the “forever young” hypothesis [55]. If the mechanisms above act

uniformly on the total soil bacterial population, they would affect primarily the dominant line-

ages (due to their high relative abundance), yet, over extended periods we expect gradual ero-

sion of the age distribution tail and rejuvenation of the overall community. Simulating all

potential conditions using the mechanistic model is nigh impossible due to computational lim-

itations. However, the heuristic model with the assumption of heterogeneous growth rate dis-

tributions can be used to estimate the influence of how a shift in hydration conditions may

reshape the expected generation time distribution. If for instance a rainfall event shifts the

local growth rate distribution towards faster growth rates (e.g. from the red line to the green or

blue in Fig 5B), the expected cell age distribution would become skewed towards younger cells

for a brief period of time until water drains and soil field capacity is reached (often within a

few hours) which we verified using a numerical simulation containing dynamic moisture con-

ditions (S6 Fig). The bacterial generation time distributions are thus expected to revert to their

characteristic shape for the soil under consideration. Importantly, although such events result

in an overall rejuvenation of the extant community, they do not diminish the genetic genera-

tional gaps that have emerged during the previous growth phase. However, we emphasize that

results of the heuristic model need to be interpreted in light of the assumptions of the underly-

ing equations outlined in the results section. Overall, since many of the above-mentioned

mechanisms are related to the microscale liquid organization in soil pores, the resulting bacte-

rial cell age and related generation time distributions represent a delicate balance between pro-

cesses that promote and suppress survival of old bacterial cells as a function of soil hydration

conditions.

To resolve the bacterial age and generation time distribution of small soil volumes, novel

experimental approaches are required that manage to capture the breadth of bacterial growth

rates. A promising avenue is to use chromosomal barcoding of bacterial species that enables

direct tracking of individual lineages [56,57]. In this approach, a single bacterial species is

tagged with a library of unique genetic barcodes that enable to track individual lineages

throughout time and observe the emerging generation time distribution. Furthermore, by

combining this approach with whole genome sequencing, the influence of individual muta-

tions on the population composition and overall evolution of the initially isogenic population

can be resolved [58,59] and sheds light onto the missing link between individual bacterial pop-

ulation dynamics and their generation time distributions with the overall population

evolution.

The original aim of estimating bacterial cell age and generation time distributions in soils

in relation to heterogeneity and hydration conditions began with a very simple question:

“What is the average age of a soil bacterial cell?”. In contrast to macrobiota with a finite life
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span where an average age in an ecosystem is well defined, providing a similar answer for pro-

karyotes living within heterogeneous soil is far more complicated. Overall, our results suggest

that the emerging bacterial generation time distribution in soil is a function of the soil hydra-

tion state and related patchy nutrient conditions, and the tails of the generation time distribu-

tion are likely to be eroded by various biotic (bacteriophages, grazing by protists) and abiotic

(osmotic bursting upon rewetting, starvation due to diffusion limitations) soil and climatic

processes. The proximity of vastly different ages and generations of the same bacterial species

that may coexist a few hundred microns apart raise several intriguing possibilities. Considering

reconnection of subpopulations with large generational gaps by episodic soil wetting events,

could offer opportunities for regaining physiological traits lost during prolonged segregation

and potentially provide a ubiquitous mechanism for sustaining genetic reservoir of traits and

ecotypes [39].

Methods

Mechanistic modeling of bacterial age and cell lineages in soil

The spatially explicit mechanistic modeling framework (IndiMeSH) was used to simulate bac-

terial life in heterogeneous soil microhabitats [28] mimicking a soil aggregate (or a hotspot

around an active root segment, Fig 2). The domain is comprised of an angular pore network

occupying a spherical soil cross section (10 mm radius) containing individual pore channel

segments with lengths of 100 microns (106,901 pores). The pore channels with triangular cross

sections are drawn from a uniform distribution of central angles between 30˚ and 150˚ with

inscribed pore radii sampled from a lognormal distribution with mean 30 microns and vari-

ance 10 microns. In addition, systematic variations of the domain heterogeneity were included

by varying pore sizes in 50 randomly located regions of the pore network. Hydration condi-

tions are prescribed by a matric potential that translates into a distribution of micro-aqueous

habitats based on the pore network (see Borer et al. 2019 [28] for detailed equations). The

effective water film thickness is derived for each individual pore channel based on its geometry

and the prescribed matric potential. Bacterial cells are simulated as individual agents that are

motile following a run-and-tumble mechanism including a chemotactic bias. A constant car-

bon source is located at the center of the simulation domain (0.1 mM) with oxygen sources at

the periphery of the pore network, following Henry’s law (constant source of 0.27 mM). This

arrangement of boundary conditions gave rise to counter gradients of oxygen and carbon

mimicking conditions frequently found in natural soil hotspots [3]. For simplicity, we modeled

bacterial cells as obligate aerobes, with Monod kinetics including carbon and oxygen limita-

tion terms. Under optimal conditions (no oxygen or carbon limitation), the simulated bacte-

rial cells have a mean generation time of 28 minutes. We focus on aerobic growth since this is

the most common state in most near surface soils. In some soils and under certain conditions,

saturated conditions throughout the soil profile may prevail, however, for simplicity and con-

sidering the long-time horizons of the analyses, we neglected these cases. All model parameters

concerning bacterial growth are shown in S2 Table and are based on Borer et al. 2018 [49]. A

total of 1000 bacterial cells are inoculated homogeneously across the domain (representing an

isogenic population where each cell has the same growth parameterization) with a total simula-

tion time of 30 days at 10 s time steps. The age of each individual bacterial cell is captured as

the time since last division. For each dividing cell, its current age is stored as the generation

time while resetting the age of the daughter cells. A unique identifier (similar to a genetic bar-

code) is assigned to each inoculated cell that is inherited by its progeny, enabling tracking of

reproductive success, generation time distribution and cell age distribution of each lineage.

Each hydration condition was simulated in triplicates. However, inter-replicate variation was
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negligible (despite containing stochastic elements, the large number of simulated individual

cells homogenize the results across replicates).
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