
ARTICLE

Genome-wide fine-mapping identifies pleiotropic
and functional variants that predict many traits
across global cattle populations
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The difficulty in finding causative mutations has hampered their use in genomic prediction.

Here, we present a methodology to fine-map potentially causal variants genome-wide by

integrating the functional, evolutionary and pleiotropic information of variants using GWAS,

variant clustering and Bayesian mixture models. Our analysis of 17 million sequence variants

in 44,000+ Australian dairy cattle for 34 traits suggests, on average, one pleiotropic QTL

existing in each 50 kb chromosome-segment. We selected a set of 80k variants representing

potentially causal variants within each chromosome segment to develop a bovine XT-50K

genotyping array. The custom array contains many pleiotropic variants with biological

functions, including splicing QTLs and variants at conserved sites across 100 vertebrate

species. This biology-informed custom array outperformed the standard array in predicting

genetic value of multiple traits across populations in independent datasets of 90,000+ dairy

cattle from the USA, Australia and New Zealand.
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Genome-wide association studies (GWAS) have been
widely used in humans1, animals2 and plants3 for at least
three purposes: To study the genetic architecture of

complex traits; to map and, if possible, identify causal variants for
these traits; and to predict the genetic value of individuals for
complex traits. Markers from genotyping arrays can map causal
variants to a region of the genome, but to identify the causal
variants requires whole-genome sequence since the causal var-
iants should be included in the sequence data4. Even with whole-
genome sequence data, it is difficult to identify the causal variants
because their effects are typically small, and there are too many
variants in linkage disequilibrium (LD)5. These difficulties in
identifying causal variants may be reduced by statistical analysis
that fits all variants simultaneously6 and by the use of information
on the likely function of genomic sites7–9. When these methods
are applied to a small genomic region, it is known as fine-scale
mapping10. However, it would be desirable to fit all sequence
variants simultaneously across the genome, i.e., genome-wide
fine-mapping. Causal variants often affect more than one trait, i.e.
they are pleiotropic, so power to identify them might be gained by
multi-trait analysis11.

Prediction of genetic or breeding value does not need the
causal variants to be identified provided variants (e.g. single-
nucleotide polymorphism or SNPs) in LD with the causal var-
iants are genotyped and their effects estimated12,13. The result-
ing prediction is known as a polygenic risk score (PRS) in
humans and a genomic estimated breeding value (gEBV) in
livestock14–17. The low effective population size (Ne) in many
breeds of livestock causes extensive LD and hence makes this
prediction possible with modest numbers of SNPs18. However,
the predictions are usually far from 100% accurate in humans or
livestock. The accuracy depends on a number of factors
including the accuracy with which the individual SNP effects are
estimated and the extent to which these SNPs explain the genetic
variance by their LD with causal variants. The proportion of the
genetic variance explained by SNP panels has been estimated to
vary from 33 to 90%19 and this represents a limitation on the
accuracy of PRS or gEBV. The accuracy of prediction is typically
low when the target population in which the prediction is to be
used is different from the population in which the prediction
equation was derived, i.e., out-of-sample prediction20. For
instance, if the populations differ in LD between the causal
variants and the genotyped SNPs then the apparent effect of the
SNP will not be the same in both populations. Even within a
breed LD will change over time due to selection and genetic drift
eroding the accuracy of the prediction. The accuracy with which
individual SNP effects are estimated is dependent on the size of
the training population. Therefore, it would be desirable to
maximise the size of the training data, for instance, by com-
bining the training data from multiple populations. Single-step
genomic prediction methods21 that effectively use genotyped
and ungenotyped animals can also increase accuracy. However,
the gain is offset by the differences in LD between the popula-
tions. This problem could be eliminated if the variants that are
used in the prediction were the causal variants or SNPs in
consistent LD with them across all populations. In this case, the
prediction would be more accurate and more robust because the
SNPs would explain all of the genetic variance and their effects
would be unaffected by changes in LD. In theory we could use
whole-genome sequence, or use high-density panels such as HD
(~800 K markers)22 to genotype every animal. However, whole-
genome or high-density genotyping of large populations is very
expensive. Therefore, a panel with a modest marker number
such as 50k, enriched with potentially causal variants that pro-
vide a similar genomic prediction power to high-density panels,
would be optimal for large-scale genotyping.

The identification of causal variants and accuracy of prediction
would be enhanced by a large training dataset representing
multiple populations and recorded for multiple traits; (imputed)
genome sequence data; a statistical method that fitted all variants
simultaneously and which used functional data on these sequence
variants. Unfortunately, this is too computationally demanding
with current resources. In this paper, we describe a method that
approximates this ideal and applies it to data on 44,000 dairy
cattle from three breeds (Holstein, Jersey and Australian Red)
with records on 34 traits including milk production, fertility,
management and body conformation (average h2 of 0.42 ± 0.04 in
bulls and 0.16 ± 0.03 in cows). First, we reduce the number of
variants from 17 to 1.7 M by carrying out a multi-trait GWAS
using single variant regression incorporating the Functional-And-
Evolutionary Trait Heritability (FAETH) score, a publicly avail-
able ranking of cattle sequence variants based on their func-
tionality and predicted heritability7. The set of 1.7 M variants is
further reduced to 165k by variant clustering and pruning for LD.
Then we carry out an analysis that fits all remaining variants
using Bayesian methods. Finally, we derive a set of informative
variants that we chose to be designed on a custom 50K array that
will enable better genotyping and more accurate prediction of
genetic merit in many cattle.

Results
Analysis overview. Our genome-wide fine-mapping analysis
utilised two major sources of information: first, the GWAS effects
of 17.7 million sequence variants on 34 Cholesky-decorrelated
traits23,24 in bulls and cows (Supplementary Table 1) where a
small multi-trait p-value11 indicates a variant to be pleiotropic
and second, the Functional-And-Evolutionary Trait Heritability
(FAETH) score7 where a high score indicates the high functional
and evolutionary significance of these 17.7 M variants. Our
genome-wide fine-mapping in Holstein (9739 ♂/22,899 ♀), Jersey
(2059 ♂/6174 ♀), mixed breed (0 ♂/2850 ♀) and Australian Red
breeds (125 ♂/424 ♀) had five major steps as described in Fig. 1.

Sequence variant prioritisation using pleiotropy and func-
tionality. The 17.7 million sequence variants were first ranked by
their multi-trait p-values divided by their FAETH score7. Variants
that had low multi-trait p-value and high FAETH score, i.e.,
pleiotropic and functional, would be top-ranked. Then, those
variants ranked within the top 10% of the FAETH adjusted multi-
trait p were selected. This led to 1,757,104 variants in bulls with
the average multi-trait p being 0.028(±1.78e−05, SE). In cows,
1,756,637 variants were left with the average multi-trait p being
0.022(±1.4e−05). This top 10% of variants in bulls and cows were
LD pruned using Plink 1.925 to r2 < 0.95 within 5Mb sliding-
windows, leading to 317,804 variants in bulls and 313,760
in cows.

Variant prioritisation within sliding-window clusters. If two
variants are in LD with the same causal variant, they are likely to
show the same pattern of associations with the 34 traits and to be
in LD with each other. Therefore, for each pair of variants i and j
within a 5Mb window, we calculated:

ρij ¼ rcor tvarianti ; tvariantj

� �
´ rLD varianti; variantj

� �
ð1Þ

Where rcorðtvarianti ; tvariantjÞwas the correlation across 34 traits
between the t values (beta/se from GWAS described above) of
varianti and variantj; rLD(varianti, variantj) was the LD assessed
by the correlation between the genotypes of variant i and variant
j. ρ was computed for all variant pairs within 5Mb sliding-
windows for variant clustering (see ‘Methods’). Within each
cluster, the top 50% of SNPs were selected based on their ranking

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21001-0

2 NATURE COMMUNICATIONS |          (2021) 12:860 | https://doi.org/10.1038/s41467-021-21001-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


of the FAETH adjusted multi-trait p values. The selection of top
variants in each cluster led to 165,214 unique variants remaining
in bulls and 164,965 variants in cows. Figure 2a features a small
region showing the clusters on chromosome 5 and genome-wide
results are provided in Supplementary Fig. 10.

If each cluster represents a single, independent QTL then when
the most significant variant from a cluster is fitted in the statistical
model, the significance of other variants in that cluster should
drop while variants in other clusters should not. We tested this by
repeating the multi-trait GWAS but jointly fitting the top 100
variants (tagging up to 90 clusters) from the 165k variant
prioritisation. The results in a region of chromosome 5 (Fig. 2b)
and across the genome (Fig. 2c) showed that only the variants in
the same clusters as the 100 jointly fitted variants dramatically
dropped in significance. These results support the suggestion that
each cluster represents a pleiotropic QTL.

Bayesian mixture modelling across sexes. The next step used
BayesRC6 to model the effects of all 165k selected variants
simultaneously with their functional priors, where the variants
were divided into three categories defined by their FAETH score
‘high’ (top 1/3 of the FAETH score), ‘medium’ (middle 1/3) and
‘low’ (bottom 1/3) (see ‘Methods’). If BayesRC is applied to the
same data as used to select the top 165k variants, this can result in
bias because the non-significant variants are missing from the
BayesRC analysis. To avoid this bias of variant preselection, we
analysed the 165k variant set discovered in the bull analysis in the
cows and vice versa (Fig. 1 and Supplementary Note 1). The
BayesRC analysis resulted in a prediction equation that predicted
phenotype (breeding value) for each trait from the 165k variant
genotypes. This prediction equation was also applied to the var-
iants within each 50 kb chromosomal segment to generate the
genomic estimated breeding value for each 50 kb segment, i.e.,

local gEBV, for 34 traits. Chromosome segments had on average
4.0 variants in bulls (ranging from 1 to 67) and 4.2 variants in
cows (ranged from 1 to 83). In total, up to 16,524,586,466 records
of bull local gEBV (40,763 segments × 11,923 bulls × 34 traits)
and 43,577,017,830 records of cow local gEBV (39,635 seg-
ments × 32,337 cows × 34 traits) were generated for further
analysis.

If a chromosome segment contained causal mutations for a
quantitative trait, the predicted breeding value using this segment
would display a large between-individual variance. The variance
of local gEBV across individuals has previously been shown to be
a useful metric for prioritising informative genomic regions26 and
was used here. Across 34 traits, the average local gEBV variance
was 1.6e−06 (±3.4e−08) in bulls with the maximum variance
being 0.062. In cows the average local gEBV variance was 1.3e
−06(±2.9e−08) with the maximum variance being 0.048. Note
that the trait variance was close to 1 after Cholesky transforma-
tion. The local gEBV variance for each trait is summarised in
Supplementary Table 2.

The bias that occurs when the same animals are used for
selection of the most significant variants and for the BayesRC
analysis occurs in the estimated mixing proportions of the BayesR
model. Therefore, an unbiased BayesR analysis in the bulls using
the variants selected in the bulls can be obtained if the mixing
proportions needed for the BayesR model are estimated in the
cows. This approach is used in the next section.

The number of pleiotropic QTL per segment by analysis of (co)
variance of local gEBV. The BayesRC analyses were carried out
one decorrelated trait at a time so if a chromosome segment has a
large variance of local gEBV for multiple traits, this could be due
to a single pleiotropic QTL or to multiple QTL each affecting a
different trait. If it is due to a single pleiotropic QTL then the

Fig. 1 Overview of the 5-step genome-wide fine-mapping analysis with 34 traits. Steps 1–2 that prioritised variants based on the multi-trait GWAS and
functional information were conducted separately in the male and female cattle. The design of the Bayesian mixture modelling across two sexes (step 3)
aimed at avoiding the bias of variant preselection and is detailed in Supplementary Note 1. Variant effects from Bayesian models were used to calculate
local gEBV for each 50 kb segment. Different sets of local gEBV allowed the estimation of the predicted number of pleiotropic QTL per segment. Within
each segment, variants with the highest correlation with the local gEBV variance were selected (step 4). These variants were used to customise the XT-
50K bovine genotyping array (step 5).
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animals should rank in the same order on local gEBV for all traits;
whereas if there were different QTL for different traits in this
segment, then the ranking for each trait should be different. To
test whether one or more QTL occurs per chromosome segment,
we performed an analysis of two sets of local gEBV. One set was
estimated by the aforementioned BayesRC where the variant-
predictors were trained in the opposite sexes (e.g., markers pre-
selected in bulls and trained in cows called the ‘cow equation’).
The other set was estimated by BayesR where the variant-
predictors were trained in the sex with which the variant-
predictors were prioritised (e.g., markers pre-selected in bulls
trained in bulls called the ‘bull equation’), but using the Dirichlet
prior (α) for the distribution of variant effects19 from the
BayesRC runs in the opposite sex (see Supplementary Note 1 and
Fig. 3a). We calculated a weighted correlation (Fig. 3b):

rweighted ¼
Pn

i

Pn
j i≠jð Þ Cij

���
���

Pn
i

Pn
j i≠jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vii ´Vjj

p : ð2Þ
Pn

i

Pn
j i≠jð Þ jCijj was the sum of the absolute value (‘Methods’ and

Supplementary Note 2) of the off-diagonal elements of the matrix
(Cij corresponded to squares labelled by grey ‘C’, i.e., covariance,
in Fig. 3a).

Pn
i

Pn
j i≠jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vii ´Vjj

p
was the sum of the pairwise

geometric mean of the diagonal elements (where i ≠ j, Vii and Vjj

corresponded to squares labelled by red ‘V’, i.e., variance, in
Fig. 3a). The number of QTL per segment was estimated as

1/rweighted. As a result, the average number of QTL per segment
was estimated to be around 1 in both sexes (0.91 ± 0.001 in bulls
and 0.92 ± 0.001 in cows, Fig. 3c, d). In fact, most 50 kb chro-
mosome segments contained a single QTL or at least one QTL
that dominated the local gEBVs for all traits. Therefore, the
strategy of selecting variants that tagged one QTL per segment
was adopted as described in the following.

Selection of 80k variants that best explain local gEBV variance.
We wish to identify a reduced panel of variants that could be used
to predict the breeding value of all 34 traits. To do this we looked
for variants within each chromosomal segment that were highly
correlated with the local gEBV for all traits by calculating:

Varglocal variantð Þ ¼ Var glocalð Þ ´ r2ðglocal; xÞ ð3Þ

where Varglocal variantð Þ was the amount of local gEBV variance
explained by each variant, Var(glocal) was the local gEBV variance,
r2(glocal,x) was the squared correlation between the vector of local
gEBV (glocal) and the vector of the genotype allele count of the
variant (x). The sum across 34 traits,

P34
1 Varglocal variantð Þ, was

calculated for each variant and used to select variants ranked in
the top 3 in both sexes per segment. This led to the selection of
80k variants (83,455) as shown in Fig. 1. The original multi-trait
GWAS p-value of these 80k variants are shown in Supplementary
Fig. 11.
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Fig. 2 Examples of variant clustering and prioritization and results of the conditional analysis. a Manhattan plot of the sliding-window containing the
MGST1 gene. The y-axis is the multi-trait p-value of 34 bull traits in this region. Different symbol colours indicate variants in different clusters. Empty
triangles are those variants within the top 50% ranking of multi-trait p-value adjusted (divided) by FAETH score. These variants across all sliding-windows
made up the 165k prioritized variants in both sexes. The solid triangles are among the top 100 variants that appeared in both bull and cow set of prioritized
165k variants and these 100 variants were fitted as covariates in the GWAS for conditional analysis. b Manhattan plot of the conditional analysis of the
window containing the MGST1 gene. The y-axis is the multi-trait p-value of the conditional GWAS of 34 bull traits when fitting the top 100 variants in the
model (i.e., the solid triangles in panel a). Different symbol colours indicate membership of variants to clusters. Solid circles are the variants from those
clusters in which the top 100 variants (e.g., solid triangles in a) were selected, while crosses represent variants from those clusters that did not include a
top 100 variant. c A bar plot showing the genome-wide difference of p-values between the conditional GWAS and of the original GWAS after combining
sexes. The standard error bars of the mean are across more than 30,000 clusters selected and not selected for conditional GWAS.
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Illustration of mapping and fine-mapping of QTL. The results
of GWAS, posterior probability (PP) of BayesRC and the metric
of Varglocal variantð Þ were compared in the region of genes MYH9-
CSF2RB (Fig. 4). Previously it has been suggested that this region
harbours multiple QTL6,27. In Fig. 4a, where the results of single
variant GWAS are plotted, it is not clear how many QTL occur in
this region and no variants were genome-wide significant. Fig-
ure 4b shows the posterior probability (PP) of individual variants
having a non-zero effect. No variant was included in the model
100% of the time but some were included in over half the itera-
tions. Figure 4c accumulated the PP of variants over a 50 kb
segment. There were multiple segments in which at least one
variant was included in the model almost every iteration. This
implied multiple QTL in this region which is supported by the
multiple clusters defined by the dot colouring in Fig. 4a. That is,
there appear to be several QTL in this region, but the data does
not clearly indicate which variants were causal. We wish to select
a reduced number of variants to design a custom array for future
genotyping and Fig. 4d shows the basis for this selection. That is,
the variants were selected based on their correlation with the local
gEBV in each 50 kb segment. Subsequently, by ranking variants
using multi-trait Varglocal variantð Þ in each segment (right panel),
the final set of 80k variants was prioritised. As shown in Fig. 4e,
many prioritised 80k variants were also functionally important,
including several variants as splicing QTL (sQTL)28 affecting

excision ratio of introns in APOL3, NCF4 and CSF2RB. Three
prioritised variants in this region also had p < 0.05 for a 36-trait
GWAS in US Holstein cattle29. A more systematic analysis of the
enrichment of US GWAS signals in the Australia-prioritised
variants is presented in later sections.

A further illustration (Supplementary Note 3) of the prediction
accuracy of 8 types of variant selection using data of 6 traits from
42.2k cows across 3 breeds supported our method of variant
selection using local gEBV from BayesRC. In addition, across all
scenarios, the FAETH ranking7 based variant selections showed
competitive performances in prediction accuracies, while GWAS
based top variant selections had the worst prediction accuracies
(Supplementary Note 3).

Final selection for inclusion on custom Infinium XT-50K
beadchip. The prioritized 80k variants were used as a base for the
array design as developed using the systematic approach descri-
bed (Supplementary Fig. 12). Variants (SNPs and INDELs) were
submitted to DesignStudio (Illumina Inc.) according to manu-
facturer instructions and variants with a design score >0.4 were
selected. Attention was given to ensure relatively even distribu-
tion across the genome, a preference for Infinium II beadtype
(where possible) and variants that were both prioritised by us and
appeared in previous standard SNP chips30. As a result, over
46.5k sequence variants were selected as the final design for the

Fig. 3 The estimation of the indictive number of pleiotropic QTL across 34 traits (tr01–tr34) for each chromosome segments. a An asymmetric matrix
of the variance and covariance of local gEBV of 34 traits for a chromosome segment. The asymmetry (the colour difference between elements above and
below the diagonal) of the matrix is due to the use of two sets of local gEBV to calculate the covariance from different training populations (bulls or cows).
The yellow colour indicates positive values and the dark colour indicates negative values. The diagonal elements are labelled as red ‘V’ (variance) and the
off-diagonal elements are labelled as grey ‘C’ (covariance). b Equation (2) uses the inverse of the weighted correlation (rweighted) of the asymmetric
variance and covariance matrix (panel a) to estimate the number of QTL within each segment (n(QTL)segment). c boxplot for the estimation of the number
of QTL across 39,635 chromosome segments in bull data. d Boxplot for the estimation of the number of pleiotropic QTL across 40,763 chromosome
segments in cow data. Each dot on c and d indicate the estimated number of causal QTL per segment. For each box, the minimum is the lowest point, the
maximum is the highest point, whiskers are maxima 1.5 times of interquartile range, the bottom bound, middle line and top bound of the box are the 25th
percentile, median and the 75th percentile, respectively.
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custom 50 K array (termed as ‘XT-50K’ array in the following
text). The average gap between markers was 57.1 ± 0.4 kb, which
was comparable to 65 ± 0.4 kb for the Standard-50K panel. As
shown in Supplementary Fig. 13, on average, the XT-50K variants

were as common as the standard-50K SNPs in the Holstein breed,
and were a slightly rarer than the standard-50K SNPs in Jersey
and Australian Red. However, the XT-50K variants were much
more common than random sequence variants in all breeds.
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percentage (middle), and multi-trait meta-analysis GWAS of 34 traits (right). Dot colour indicates variant membership to different clusters (putatively
representing independent QTLs) defined by Eq. (1). b Posterior probability (PP) of individual variants from BayesRC runs of milk yield (left) and protein
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e FAETH7 annotated data of the right panel of (d). Large orange points are variants prioritized in the 80k selection and large red diamonds are variants
prioritized in the 80k as well as having p < 0.05 in the US GWAS. Three variants that are prioritized by the Australian 80k selection and have p < 0.05 in
the US GWAS are also splicing sQTLs in an Australian RNA sequencing dataset28; the target genes (shown in red colour parenthesis) of these sQTLs have
altered intron excision ratio (FDR < 0.05). Variants in the region that are conserved across 100 vertebrate species (conserved100w) and are historically
young7 are also labelled.
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The final selection included 45,226 SNPs and 1285 INDELs
(Table 1). Around 40% of the XT-50K markers (18,569) were
non-intergenic variants31,32 (gene body variants), including
categories (originally from Ensembl and NGS-SNP31,32) of
‘coding.related’, ‘noncoding.related’, ‘splice.sites’, ‘UTR’, ‘gene.
end’, and ‘intron’7. Around 30% (13,627) were putative regulatory
variants from our FAETH analysis7,28,33, including milk fat
metabolite QTLs (mQTLs), splicing QTLs (sQTLs), allele-specific
expression QTLs (aseQTLs), exon expression QTLs (eeQTLs),
gene expression QTLs (geQTLs) and variants under ChIP-Seq
peaks in multiple tissues. Around 5% (2158) were involved in
within and/or across species evolutionary processes, including
578 variants under selection and/or young and 1604 variants
within sites conserved across 100 vertebrate species. Over 80% of
the markers (39,756) had an effect on more than 1 out of 34 traits
in at least one sex (multi-trait p < 0.05, Table 1). Over 3.3k
markers had relatively low minor allele frequency (MAF < 5% in
both sexes) in the Australian population. All the low MAF
markers which were newly discovered (not pre-existing) had a
multi-trait p < 0.05 for GWAS of 34 traits in at least one sex and
99% of them had a multi-trait PP (π, single-trait PP summed over
34 traits, see ‘Methods’) of non-zero effects across 34 traits >0.9
for BayesRC mapping.

Validation of the XT-50K custom array for genomic prediction
in global cattle data. Three validation tests were conducted. The
first test used an independent dataset of 28.2k multi-breed Aus-
tralian cows to train the BayesR prediction equations for three
milk production traits using: the custom XT-50K array, the
standard-50K array and the combined markers from the XT-50K
and standard-50K arrays. These Australian cow genomic pre-
dictors were used to predict the milk production phenotype of
21.2k New Zealand purebred and crossbred cows (Holstein and
Jersey breeds). Note that cow phenotypes usually have high error
variances and low heritability7,26. The XT-50K markers increased
genomic prediction accuracies, defined as the correlation between
the gEBV and cow phenotype (same below), in the New Zealand
cows compared to the standard-50K markers in all scenarios
(Fig. 5a). Averaged across 3 traits, the relative increase of the
prediction accuracy for the XT-50K from the standard-50K
(½rXT�50K�rStandard�50K� ´ 100%

rStandard�50K
, same below) was 9% for pure Holstein,

11% for pure Jersey and 7.9% Holstein–Jersey crossbreds. In all
scenarios, the performance of XT-50K markers was not sig-
nificantly different from the markers combined from two arrays
(Fig. 5a).

The second validation test used the estimated variant effects
from a 36-trait GWAS on over 27.1k Holstein bulls from the
United States29. The US study used 2.7 M imputed sequence
variants from Run 5 of the 1000 Bull Genomes Project4,34 and
excluded intergenic and intronic variants29. Thus, from the US
study variants, there were 27.7k variants overlapping markers on
the XT-50K and these were used to predict 3 milk production
traits of 28.2k Australian cows and of 21.2k New Zealand cows
(Fig. 5b). In most genomic prediction scenarios (17/18), the XT-
50K markers increased genomic prediction accuracies compared
to the standard-50K markers. Averaged across the 3 traits in the
Australian population, the relative increase of the prediction
accuracy for the XT-50K from the standard-50K was 1.4% for
Holstein, 60% for Jersey and 30% for the Australian Reds.
Averaged across the 3 traits in the New Zealand population, the
relative increase for the XT-50K was 14% for pure Holstein, 90%
for pure Jersey and 16% for Holstein–Jersey mixed breeds.
Genomic prediction accuracies of Jersey fat with the standard-
50K markers were very low.

The third validation of the XT-50K markers and standard-50K
markers was to test for their enrichment in pleiotropic variants in
the US GWAS study (meta-analysis using method of ref. 11)
associated with up to 36 USA traits29. Only 19 of 36 US traits
were found in the 34 Australian traits that were used to prioritise
the XT-50K markers (Supplementary Table 3). At any p-value
threshold of the multi-trait meta-analysis of GWAS, a small p-
value of which indicates a variant to be associated with many
traits11, variants affecting at least one of the 36 US traits were
strongly enriched in the Australian XT-50K markers and such
enrichment of pleiotropic variants was always much higher than
that of the standard-50K markers (Fig. 5c). The US multi-trait p-
value in comparison with the Australian multi-trait p-value for
the XT-50K markers is published (see ‘Data availability’).

Further, the predictive power of markers from our XT-50K
panel was compared to existing panels including the standard-
50K (50k SNPs), GGP-F250 (up to 250k SNPs)22 and high-
density (HD, up to 600k SNPs26) using data of 6 traits recorded in
42.2k Australian cows across 3 breeds (Supplementary Note 4).
We showed that the predictive power of the XT-50K, with a much
smaller number of markers, was similar and often better than
denser panels such as GGP-F250 and HD. The standard 50 K
panel had the lowest prediction accuracy across all scenarios.

Discussion
In this paper, we have demonstrated a method that fine-maps
genome-wide informative sequence variants with pleiotropic
effects and functional significance. Tested using global datasets,
we show that a selection of <50k markers from these informative
variants can be used to predict multiple traits in populations quite
different from the one used for training the prediction equations.
Genomic prediction tested in this study using our XT-50K panel
which contains up to 50k potentially causal markers, is as pow-
erful as dense panels such as GGP-F25022 and HD that contain
hundreds of thousands of markers. This implies that by using the
XT-50K panel in future routine genotyping, good prediction
accuracy can be achieved with a lower cost genotyping platform
that is affordable to farmers. Our results based on real cattle data
contrast the results from Karaman et al.18 using simulated human
data which suggested that the selection of informative variants
has little benefit in increasing genomic prediction accuracy. Sig-
nificant differences in the types of genomic and phenotype data,
models, and design used between the two studies could lead to
different conclusions. However, our conclusion is supported by
extensive discovery and validation analyses using data of over
100k cattle with multiple traits across breeds and countries. The

Table 1 Summary of the markers on the XT-50K
genotyping array.

Variant type Count

SNP 45,226
INDEL 1285
Gene body 18,569
Regulatory 13,627
Evolutionary 2157
Multi-trait p < 0.05 in either sex 39,756
Multi-trait π > 0.9 in either sex 37,503
Low MAF 3373

Gene body: not annotated as ‘intergenic’ from Ensembl VEP31 and NGS-variant32. Regulatory:
milk fat mQTLs, sQTLs, aseQTLs, eeQTLs, geQTLs and variants under ChIP-Seq peaks.
Evolutionary: variants at sites conserved across 100 vertebrate species and/or under
selection. Multi-trait p: p-value of the multi-trait meta-analysis (chi-square test11) of 34 single-
trait GWAS in each sex. Multi-trait π: multi-trait posterior probability of non-zero effects across
34 traits as summed across single-trait BayesRC runs. Low MAF: variants with minor allele
frequency <5% in both sexes.
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use of the dairy cattle data in our study takes advantage of large
datasets from this sector, like previous studies6,7,19. The methods
presented in the current study can also be applied to other
species.

The main feature of our variant prioritisation is the incor-
poration of functional information of variants not necessarily
correlated with their size of effects on complex traits. Besides,
variants were selected if they were associated with at least one
trait (uncorrelated multi-trait GWAS23,24, variant clustering with
ρij and variance of local gEBV summed over 34 traits). Also, we
select variants that had consistent rankings based on their func-
tionality and multi-trait associations between two sexes within
each chromosome segment. This leads to the selected informative
variants being evenly distributed across the genome, instead of
being clustered in some parts of the genome.

In the first step of the method, we used functional information
(represented by the FAETH score of sequence variants) and a
multi-trait meta-analysis of single-trait GWAS to select 1.7 M

variants out of 17M. The most significant variants from a GWAS
are not necessarily causal10,35, and in fact may track 2 or more
QTL without being in complete LD with any of them. Therefore,
we prefer to fine-map and make a further selection of variants
when all are fitted simultaneously in our Bayesian method.
However, this would be too computationally demanding, so we
compromise by first using GWAS and the FAETH score to select
the top 10% of variants. That is, we assumed that causal variants
and their LD mates will be among the 10% of most significant
sequence variants. This selection is expected to represent the
majority of informative variants, as both the multi-trait effects11

and the FAETH score are based on robust methods and relatively
large functional datasets with validations. However, it is likely we
missed some informative variants due to the datasets used for
this study.

In step 2, we clustered variants that had a similar pattern of
effects across traits and were in LD. By selecting some variants
from every cluster, we attempted to prevent QTL of small effect
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Fig. 5 Comparing customized XT-50K markers with the Standard-50K markers in multiple validation cow sets. a BayesR genomic prediction trained in
an independent set of 28.2k multi-breed Australian cows for three traits and predicted into 21.2k New Zealand cows (pure- and crossbreds). XT&Standard-
Combined: combined markers from the XT-50K and Standard-50K panels. b Genomic prediction using a subset of markers from the two 50 K panels that
are also found in the US 36-trait GWAS using 27.1k Holstein US bulls for the same three traits and predicted into 28.2k Australian cows and 21.2k New
Zealand cows. The US GWAS excluded intergenic and intronic variants29 and their sequence variant imputation was based on Run 5 of the 1000 Bull
Genomes project4. c The enrichment of pleiotropic variants from the US 36-trait GWAS in the two 50K panels. Note that only 19 of 36 US traits were
present in the 34 Australian traits used to prioritise the XT-50K markers (Supplementary Table 3). X-axis: multi-trait p-value thresholds (0–100 on −log10
scale) used to select significant pleiotropic variants for USA traits. Y-axis: the significance of enrichment (hypergeometric test) of pleiotropic variants for
USA traits based on the number significant variants at each multi-trait p-value threshold (X-axis) within the XT-50K markers and within the Standard-50K
markers.
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from being neglected in the selection of variants to include in the
Bayesian analysis.

In step 3, a set of 165k variants were fitted simultaneously in a
Bayesian analysis. However, if the Bayesian analysis was based on
variants that had been selected using a GWAS from the same
data, the estimated effects of these variants would likely be biased.
This potential bias was overcome by performing the Bayesian
analysis in the cows (bulls) using the pre-selected variants from
bulls (cows) GWAS. BayesR assumes that variant effects follow a
mixture of four normal distributions with increasing variance.
The preselection of variants by GWAS causes bias in the BayesR
estimated mixing proportions if the same data is used. Therefore,
another way we overcame the bias was to analyse the same data in
the BayesR as in the GWAS but using the Dirichlet prior (α) for
the distribution of variant effects from another dataset.

In step 4, a set of 80k variants was selected from the 165k used
in the Bayesian analysis. For a set of causal or highly informative
markers to well predict complex traits across populations/breeds,
they need to cover the whole genome and include small-effect
variants. Our genome-wide fine-mapping was designed to meet
these needs by prioritising variants region-by-region, including
clusters (selecting the top 50%) and 50 kb segments for local
gEBV calculation (selecting the top 3). Such ‘localised’ mapping
maximised the chance of finding potential causal variants
representing genome-wide QTL (Fig. 4), based on the assumption
that causal variants, or markers in strong LD with them, existed
in these genomic regions. This is supported by our conditional
analysis of top variants from selected clusters (Fig. 2) and
weighted correlation analysis (Fig. 3) where on average 1 QTL
affecting up to 34 traits exist in each 50 kb segment across the
cattle genome.

If only one causal variant exists in a genomic segment, we
expect animals to rank in the same order for different traits based
on their local gEBVs. This proposition was tested by the weighted
correlation of local gEBVs (Supplementary Note 2). The variance
of local gEBVs for one trait in one sex is inflated by error var-
iance. Therefore, we used the covariance between local gEBVs for
trait i and j calculated from two analyses, e.g., (1) local gEBV of
trait i based on variants pre-selected in bulls and the prediction
equation trained in cows, and (2) local gEBV of trait j based on
variants pre-selected in bulls and the prediction equation trained
in bulls with Dirichlet α from cows (Supplementary Note 1).

The variance of local gEBV across individuals was used to
prioritise the final set of markers. This metric has previously
shown power for mapping36 and is consistent with our obser-
vation in the current study (Fig. 4). Although BayesR fits all
markers simultaneously to generate marker effects and PP, in
some regions where markers are in strong LD no single marker
has a high PP (e.g., Fig. 4b). Therefore, we calculated the corre-
lation between variant genotype and the local genetic merit
(gEBV) and summed these across traits weighted by the variance
of local gEBV for each trait (e.g., Fig. 4e). This way, we maximise
the power from the BayesR modelling to locate a small set of the
best possible variants.

Our analysis successfully translates big genomic data into a
product, the customised XT-50K array, for the global dairy
breeding industry. A key feature of this customised array is that
most of the markers are supported by either multi-trait associa-
tion statistics or biological functions (Table 1). Thus, many of
them can be putatively causal or at least highly informative. We
also included INDELs on the customised array that may play
important roles in shaping mammalian complex traits37. Com-
pared to the Standard-50K array, the XT-50K array increased
genomic prediction accuracies in most scenarios. The observation
that the prediction performance of the XT-50K was almost as
good as the combined markers from two panels (Fig. 5a) also

supports the conclusion that the XT-50K panel is highly enriched
with informative markers. Large improvements of prediction
accuracy with the XT-50K panel in small breeds where prediction
accuracy is usually low7,17, also supports the conclusion that
across-breed informative markers were captured. Specifically,
compared to the Standard-50K panel, there was 11% relative
increase in accuracy using Australian multi-breed training dataset
to predict New Zealand Jersey traits; and 60%, 30% and 90%
relative increase in accuracy using the USA Holstein (GWAS
equation instead of BayesR equation) training dataset to predict
traits for Australian Jerseys and Reds and New Zealand Jerseys,
respectively (Fig. 5a, b). Predictions into Holstein–Jersey mixed
breeds also benefited from the XT-50K panel. As the USA single-
breed GWAS excluded intergenic and intronic variants which
may contain many regulatory variants28,38, some loss of power is
expected for the USA GWAS effects to predict Australasia multi-
breed cow traits using the XT-50K panel (Fig. 5b). When using
the US GWAS effects to predict the Australian and New Zealand
cows, the overall prediction accuracy for NZ traits is lower than
that for the AU traits. This may be due to the more distant genetic
relationship between NZ and US animals than the relationship
between Australian animals and US animals. The difference in the
scale of phenotype between the NZ and US animals may also be
larger than the difference between AU and US animals.

When using the US Holstein GWAS to predict, the increase in
the accuracy of XT-50K compared to Standard-50K panel in the
Holstein cattle is smaller than such increase in accuracy in Jersey
and Australian Red cattle (Fig. 5b). The fact that there was no
Jersey, Australian Red or mixed breeds in the US GWAS dataset
limited its power in predicting traits of these two breeds in the
Australian and New Zealand cows. This resulted in a lower
accuracy for the Standard-50K to predict Jersey and Australian
Red traits using the US Holstein GWAS, compared to the accu-
racy of predicting Holstein traits using the US Holstein GWAS.
This would leave more room for the accuracy to improve when
using US Holstein GWAS to predict Jersey and Australian Red
traits with the XT-50K panel. Overall, the prediction accuracies
using the GWAS summary statistics (Fig. 5b) were much more
variable than the accuracies using the raw data with BayesR
model (Fig. 5a). The use of GWAS summary statistics in genomic
prediction (i.e., PRS in humans15) of cattle complex traits requires
more investigation in the future. Nevertheless, even though only
around half of the traits overlapped between the Australian and
the US data, putative pleiotropic variants affecting up to 36 US
traits were strongly enriched in the Australian XT-50K panel but
barely so for the Standard-50K panel (Fig. 5c).

With the increasing amount of phenotypic and omics data
available, the precision of the genome-wide fine-mapping will
increase, allowing more causal variants to be discovered and
customised on the genotyping panel. After several iterations
between the fine-mapping and customised genotyping in the
future, we expect a chip panel to be highly enriched with causal
variants which may be used in combination with single-step
genomic prediction methods21 to allow more accurate genomic
selection for many traits.

In conclusion, we present an innovative fine-mapping
approach that captures important genome-wide QTL and prior-
itises informative markers allowing for robust genomic predic-
tion. Our methodology provides additional concepts for fine-
mapping with functional and pleiotropic information in general
and can be easily applied to other species. Finely mapped markers
are used to customise a genotyping array to improve on the
existing one and genomic prediction of multiple traits across
populations and countries. Overall, we demonstrate a successful
case of translating big genomic data into an industry-usable
product.
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Methods
Bull and cow data for variant discovery, genome-wide fine-mapping. The data
analysed in this study was collected by DataGene Australia (http://www.datagene.
com.au/) and no further live animal experimentation was required for our analyses.
A set of 11,923 bulls and 32,347 Australian cows were used for the main study and
this data set has been previously described7. Briefly, phenotypes for Australian bulls
(N= 5354) were obtained from DataGene as daughter trait deviations: i.e. the
average trait deviations of a bull’s daughters pre-corrected for known fixed effects
by DataGene, Australia for the official release of National bull breeding values.
Phenotypes for the non-Australian bulls (N= 6,569) were derived from their
Interbull MACE breeding values (https://interbull.org/ib/interbullactivities)
deregressed on the Australian scale and converted to the scale of the daughter trait
deviation. Only those bulls’ phenotypes which were based on records from more
than 15 daughters were included. Cow phenotypes were also processed and cor-
rected for known fixed effects by DataGene. Animal breed origins included Hol-
stein (9739 ♂/22,899 ♀), Jersey (2059 ♂/6174 ♀), mixed breed (0 ♂/2850 ♀) and
Australian Red breeds (125 ♂/424 ♀). The 34 traits were ordered by their number
of non-missing records and decorrelated by Cholesky transformation23,24 sepa-
rately in each sex, so that the traits had minimal phenotypic correlations with each
other. After transformation, the Kth trait can be interpreted as the Kth original trait
corrected for the preceding K−1 traits and each Cholesky trait had a variance of
close to 1 (Supplementary Table 1). The Cholesky transformation allowed us to use
all traits with a varying number of missing values and make phenotypes
uncorrelated23,24.

Most bulls were genotyped with a medium-density SNP array (50 K) or a high-
density SNP array (HD: BovineHD BeadChip, Illumina Inc.) while most cows were
genotyped with a low-density panel of which approximately 6.9k SNPs overlap
with the Standard-50K panel (BovineSNP50 beadchip, Ilumina Inc.). The low-
density genotypes were first imputed to the Standard-50K panel and then all 50K
genotypes were imputed to the HD panel using Fimpute v2.27,39. Finally, all HD
genotypes were imputed to whole-genome sequence using Minimac3 with Eagle
(v2) to pre-phase genotypes40,41. The sequence reference set for imputation was
Run 6 of the 1000 Bull Genomes Project4,34. All imputed sequence variants with a
Minimac3 R2 imputation score < 0.4 were removed. Variants with minor allele
frequency (MAF) >0.001 were used. All these sequence variants had a Functional-
And-Evolutionary Trait Heritability (FAETH) score where a higher value indicates
their stronger functional and evolutionary significance7. The genome-wide fine-
mapping in our study is described in the following five major steps:

Step 1: sequence variant prioritisation by pleiotropy and functionality. This
step used two metrics to rank over 17.7 M sequence variants: (1) p-value from the
multi-trait meta-analysis of GWAS of 34 decorrelated traits and (2) their FAETH
score. These variants were ranked based on their multi-trait p-value adjusted
(divided) by their FAETH score and the variants within the top 10% of such
ranking in each sex were prioritised. The prioritised sets of over 1.7 million variants
in bulls and cows were LD pruned using Plink 1.925 where one of each pair of
variants within 5000 kb windows were removed if LD r2 > 0.95.

The multi-trait p-value was based on the meta-analysis of 34 single-trait GWAS
using the multi-trait χ2 statistic for varianti:

χ2i ¼ t0iV
�1ti; ð4Þ

published in ref. 11. ti was a K (number of traits= 34) × 1 vector of the signed t-
values of varianti effects, i.e., beta/se, for the K traits; ti′ was a transpose of vector
ti(1 × K); and V−1 was an inverse of the K × K correlation matrix where the
correlation was calculated over the all estimated variant effects (signed t-values) of
the two traits. The χ2 value of each variant was examined for significance based on
a χ2 distribution with K degrees of freedom to test against the null hypothesis that
the variant had no significant effects on any one of the K traits.

The single-trait GWAS of 34 decorrelated traits in each sex fitted a linear mixed
model implemented in GCTA42:

y ¼ meanþ breedi þ bx þ aþ error ð5Þ
where y= vector of phenotypes for bulls or cows, breedi= three breeds for bulls
(Holstein, Jersey and Australian Red) and four breed groups for cows (Holstein,
Jersey, Australian Red and mixed); bx= regression coefficient b on variant
genotypes x; a= polygenic random effects ~N(0, Gσg2) where G= genomic
relatedness matrix based on all variants. The same GWAS model as above, but
without including variants in the model (bx), was applied to estimate variance
components for the calculation of decorrelated trait heritability.

Step 2: Variant prioritisation within sliding-window clusters. This step was
based on the metric ρij ¼ rcorðtvarianti ; tvariantj Þ´ rLDðvarianti; variantjÞ (1) within
each sex. The motivation behind ρij was that the combined measure of the genotype
correlation and effect correlation between variant pairs was expected to capture
sequence variants tagging the same QTL. The reason for choosing 5Mb as the size
of the sliding-window was that it was likely to be large enough to see the differ-
entiation of distributions of LD between sequence variants and to potentially
include several QTL. ρ was computed for all variant pairs within 5Mb sliding-
windows (step was 2.5 Mb). Within each window, variant pair ρ values were

clustered using graph-based Random Walks determining densely connected sub-
graphs (clusters)43 implemented in igraph44. Up to 50 clusters were retrieved in
each window and in total, 30,514 clusters were retrieved in bulls and 30,440 were
retrieved in cows. There were 1–98 (average 11.9) variants per cluster in bulls and
1–92 (average 11.7) variants per cluster in cows. The Random Walks algorithm was
chosen because of its clustering capability for a dense network with high compu-
tational efficiency43. The Random Walks algorithm can be operated at an
agglomerative mode which learns the hierarchy of a network, and this was similar
to the conventional hierarchical cluster algorithms which tend to be much less
efficient. The hierarchical tree for each sliding-window was cut to form individual
clusters by assuming that up to 50 clusters could be reasonably formed to represent
QTL within each 5Mb window. Within each cluster, unique variant members were
determined and ranked based on their multi-trait p-value adjusted by the FAETH
score. Then variants ranked within the top 50% (inclusive) were chosen as the
prioritized variants. The R codes of variant clustering with test datasets are
available at https://github.com/rxiangr/SNP_cluster_ranking.

To verify if those clusters represented different pleiotropic QTL, a conditional
GWAS was conducted using GCTA-COJO45. Thirty-four single-trait GWAS were
re-run conditioned on variants ranked within top 100 (out of the 165k variants
after prioritisation within sliding-window clusters) for their adjusted p-value by the
FAETH score in both sexes. The meta-analysis of the conditional GWAS also used
Eq. (4).

The reason for fitting variants representing certain clusters, instead of fitting
variants representing all clusters, in the conditional GWAS was that, in theory, if
identified clusters represented different pleiotropic QTL, fitting the top variants
from these clusters in the conditional GWAS would only reduce the significance of
the effects of the variants from these selected clusters, not the significance of the
effects of the variants from other clusters.

Step 3: BayesRC mixture modelling across sexes. The across-sex design was
used to maximise the power from separated male and female cattle and to reduce
bias as much as possible by not training and predicting using the same population.
Those 165k variants prioritised from bulls as described above were trained by
BayesRC in cows. Accordingly, those 165k variants prioritised from cows were
trained by BayesRC in bulls. The BayesRC algorithm6 added a feature to the
BayesR algorithm19 of including a priori independent biological information to
allocate each variant to a specific category (‘c’). Similar to BayesR, BayesRC
modelled the variant effects as mixture distribution of four normal distributions
including a null distribution, Nð0; 0:0σ2gÞ, and three others: Nð0; 0:0001σ2gÞ,
Nð0; 0:001σ2gÞ and Nð0; 0:01σ2gÞ, where σ2g was the additive genetic variance for the
trait. This mixture of distributions is modelled independently in each category of
variants to allow for different mixture models per category. The starting value of σ2g
for each trait within each sex was determined by GREML implemented in the
MTG2 software46 using a single genomic relationship matrix made of all 17M
sequence variants. For each trait, the BayesRC model fitted in the training dataset
was:

y ¼ XbþWv þ e ð6Þ
y was the vector of each decorrelated trait; X was the design matrix allocating
phenotypes to fixed effects; b was the vector of fixed effects, such as breeds; W was
the design matrix of marker genotypes; centred and standardised to have a unit
variance; v was the vector of variant effects, distributed as a mixture of the four
distributions (described above); e= vector of residual errors.

The C component of BayesRC had three categories c (c= 3): variants that were
ranked ‘high’ (top 1/3), medium (middle 1/3) and low (bottom 1/3) for their
FAETH score. Within each category c, an uninformative Dirichlet prior (α) was
used for the proportion of effects in each of the four normal distributions of variant
effects: Pc � Dir αcð Þ, where ac= [1, 1, 1, 1]. ac was updated each iteration within
each category: Pc � Dirðαc þ βcÞ, where βc was the current number of variants in
each of the four distributions within category c, as estimated from the data.

After each single-trait BayesRC run, the posterior probability (PP) of having a
non-zero effect was obtained for each variant by summing the proportion of
iterations the variant was allocated to each of the 3 mixture distributions with non-
zero variance6. Across 34 single-trait BayesRC, each variant had PPi where i ~ 1:K
(K= 34 in this study). Then, a multi-trait PP of each variant to have a non-zero
effect for all traits was calculated as

π ¼ 1�
YK

1
ð1� PPiÞ: ð7Þ

The local gEBV was calculated using the conventional gEBV methods for each
trait (e.g., ref. 26), except that the variants used to calculate the local gEBV were
from each 50 kb segment:

ŷvl ¼ Wl1 :ln
v̂l1 :ln ð8Þ

where ŷvl was the local gEBV of the segment l, Wl1 :ln
was the design matrix of

marker genotypes (from Eq. (6)) for variant 1 to variant n within the segment l, and
v̂l1 :ln was the variant effects from the training dataset. The use of local gEBV took
advantage of the BayesR model where variants were analysed jointly which
accounted for LD. The variance of local gEBV can be used to prioritise informative
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chromosome segments as shown by our previous study26. The local gEBV was
calculated using each segment for each one of the 34 traits within each sex.

BayesR mapping. In the above described BayesRC modelling scenario, variants
prioritised from one sex were trained in the opposite sex to avoid bias. However, it
was also possible for variants prioritised from one sex were trained in the same sex,
but the prior of the variant effect distribution (i.e., the Dirichlet prior α) was
determined by the variant effect distribution (mixing proportion) previously esti-
mated from the opposite sex with BayesRC mapping. According to the imple-
mentation of BayesR19, in each iteration, the proportions of variant effects in each
one of the four effect distributions was updated as: P ~Dir(α+ β)19 where β was
the current number of variants in each of the four distributions. This meant that a
predetermined Dirichlet prior α informed by the mixing proportions estimated in
the opposite sex with BayesRC will influence each iteration of the BayesR learning,
i.e., the mixing proportion of the current BayesR modelling will lead towards the
previous mixing proportion of the BayesRC modelling.

Using the above-described design, those 165k variants prioritised from bulls
were trained by BayesR in bulls. Accordingly, those 165k variants prioritised from
cows were trained by BayesR in cows. For training with BayesR in each sex, instead
of using the uninformative Dirichlet prior α of [1,1,1,1] as the starting value, an
informative Dirichlet prior α of [ξ1,ξ2,ξ3,ξ4] was used to initiate BayesR training. ξ1
was the number of variants falling into the null distribution, Nð0; 0:0σ2gÞ, in the
previous BayesRC training for the same trait in the opposite sex, ξ2 was the number
of variants falling into the 2nd distribution of Nð0; 0:0001σ2gÞ, ξ3 was the number of

variants falling into the third distribution of Nð0; 0:001σ2gÞ and ξ4 was the number

of variants falling into the fourth distribution of Nð0; 0:01σ2gÞ. σ2g was the additive
genetic variance for the trait. For each one of the 34 traits, the BayesR training in
the same sex where the 165k variants were prioritised (discovered) used Eq. (6).
After the genomic predictors were trained, Eq. (8) was used to calculate the local
gEBV with the genotype data from the opposite sex. A more practical explanation
of such across-sex BayesR implementation is detailed in Supplementary Note 1.

The number of QTL per 50 kb segment by analysis of (co)variance of local
gEBV. As described above, using variants from each segment, two sets of local
gEBV were estimated for K traits (K= 34 in this study) within each sex: one set was
generated from the BayesRC scenario where variants were prioritised (discovered)
in one sex (e.g., bull), trained in the opposite sex (e.g., cow) and estimated the local
gEBV in that sex (e.g., cow). The other set was generated from the BayesR scenario
where variants were prioritised (discovered) in one sex (e.g., bull), trained in the
same sex (e.g., bull) and estimated the local gEBV in the opposite sex (e.g., cow).
Therefore, for each segment, a K × K asymmetric variance-covariance matrix can
be built (Fig. 3a). This was used to calculate the weighted correlation for each
segment and its inverse was used to infer the number of QTL within each segment.
The weighted correlation was calculated as

rweighted ¼
Pn

i

Pn
j i≠jð Þ jCijjPn

i

Pn
j i≠jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vii ´Vjj

p ; ð9Þ

where
Pn

i

Pn
j i≠jð Þ jCijj was the sum of the approximate absolute values of the off-

diagonal elements of the matrix and
Pn

i

Pn
j i≠jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vii ´Vjj

p
was the sum of the

pairwise geometric mean of the self-exclusive diagonal elements. For the weighted
correlation calculation using the per segment matrix, only the diagonal elements
with positive values and their associated rows and columns in the asymmetric
matrix were considered. Also, to properly account for the impact of negative off-
diagonal values on the sum, we used an ‘approximate absolute value’ approach and
this was implemented as a programmatic sign-flipping process for the asymmetric
matrix for each segment (Supplementary Note 2).

Step 4: Causal marker prioritisation by partitioning local gEBV variance to
variants. The variance of local gEBV estimated with BayesRC scenario across
individuals was calculated for each segment for each trait within each sex. Then,
Eq. (3), Varglocal variantð Þ ¼ Var glocalð Þ ´ r2 glocal; x

� �
was used to partition the local

gEBV variance, Var(glocal), to each variant, based on the squared correlation (r2)
between the value of local gEBV (glocal) and the genotype of the variants (x) within
the segment where the local gEBV was estimated. The use of the squared corre-
lation was to prevent the negative value of the Varglocal variantð Þ due to the negative r
which would reduce the sum of Varglocal variantð Þ. Varglocal variantð Þ of each marker
that entered the BayesRC mapping was estimated for each trait and added up
across 34 traits, i.e.,

P34
1 Varglocal variantð Þ, within each sex. This allowed the

ranking of the analysed variants based on
P34

1 Varglocal variantð Þ within each sex and
variants within the top 3 of such ranking for a given local gEBV window in both
sexes were selected to make up the 80k variants (83,455) as shown in Supple-
mentary Fig. 11. The R codes for analysing the correlation between genotypes and
local gEBV with its test datasets are available at https://github.com/rxiangr/
SNP_correlation_local_gEBV_variance.

Step 5: Infinium XT beadchip design. The final goal of this study was to use the
selected list of 80k markers to design a custom XT genotyping panel with up to 50k
variants for the Dairy industry (XT-50K). In this instance, the selected variants
were to be added to an existing XT array of ~9000 variants. The steps for the design
of the Infinium XT-50K (Illumina Inc) beadchip are detailed in Supplementary
Fig. 12. Briefly, flanking sequence for each SNP and INDEL was extracted (+/−150
bases) and any other known variants within the flanking sequence were identified,
using the variant list from Run 6 of the 1000 Bull Genomes Project (REFs), and
then masked (replaced with N). All the INDELs and SNPs were processed using
DesignStudio (Illumina Inc., https://sapac.illumina.com/informatics/sample-
experiment-management/custom-assay-design.html) according to the manu-
facturer’s instructions. Only designable markers with a design score >0.4 were kept.
Where possible Infinium I design (requiring 2 probes), were swapped with des-
ignable Infinium II (requiring 1 probe) mates with LD r2 > 0.9 in the 80k list and
design score >0.4.

Validation using additional Australian, New Zealand and US cattle data.
Phenotypes from an additional 28.2k Australian cows with no overlap with the
above described 44k bulls and cows were provided by Datagene and processed in
the same way as described above for the main set of cows. The new Australian cows
consisted of 24.4 Holsteins, 2.5k Jerseys and 1.2k Australian Reds. The raw phe-
notype data of an additional 21.2k New Zealand cows were obtained from DairyNZ
(https://www.dairynz.co.nz/) and were merged into the Australian cow database by
DataGene, enabling the new Australian cows and the NZ cow data to be processed
jointly by DataGene with all the national Australian data to produce deregressed
proof phenotypes (phenotypes corrected for herd-year-season-age) for milk, fat
and protein yields47. The New Zealand cows consisted of 8.6k pure Holsteins, 3.9k
pure Jerseys and 8.7k mixed breed of Holstein and Jersey.

The genotype data of the new Australian and New Zealand cows were imputed
sequence variants of the XT-50K and Standard-50K markers with the same
methods as described above. The breed codes of the new Australian and New
Zealand cows were cross-checked using a principal component analysis of a GRM
based on 8.5k low-density genotypes. Two separate GRMs were constructed for the
Australian and the New Zealand cows and each included purebred Holstein and
Jersey bulls from the same country. Based on both pedigree and PCA, cows were
allocated a breed code indicating their approximate breed proportion. Crossbred
cows in the new Australian population were excluded due to very small numbers.

In the first validation test, three sets of markers, (1) XT-50K markers, (2)
standard-50K markers and (3) the combined markers from (1) and (2) were
trained by BayesR in the new Australian cows and predicted into the New Zealand
cows. This training used the same model as Eq. (6) and the prediction of gEBV
used the same model as Eq. (8), except that instead of using markers from
chromosome segments, all markers were used to predict the gEBV of 3 traits. The
Pearson correlation r between gEBV and the individual phenotype within each
breed of the validation cows (the same for all validation analysis) was used as the
proxy for the prediction accuracy.

In the second validation test, we used published single-trait GWAS summary
statistics for 36 traits of 27.1k US Holstein bulls29. The summary statistics included
the beta, p-values and coordinates of ~2.7 million sequence variants that were
imputed from Run 5 of the 1000 Bull Genomes Project4,34 with the imputation cut-
off set by the authors29. The authors29 also excluded those variants annotated as
intergenic and intronic variants by Ensembl VEP31. These 2.7 M US variants had
an overlap of 2.3 M variants with the 17.7 M Australian variants, an overlap of
36.2k with the standard-50K markers, and an overlap of 27.7k with the 46.5k
Australian XT-50K markers.

The estimated variant effects from the US GWAS that overlapped with the
Australian XT-50K and standard 50 K markers were used to predict (similar to Eq.
(8)) milk yield, fat yield and protein yield in the new Australian and New Zealand
cows. Because the Standard-50K markers found in the US GWAS were over 30%
more than the XT-50K markers found in the US GWAS (36.2k VS 27.7k), a
random set of the Standard-50K markers presented in US GWAS were dropped to
leave the total number used at 27.7k to match the number of variants on the
Australian XT-50K panel. The GWAS effects of these 27.7k markers were used to
calculate the EBV in the new Australian and New Zealand cows using MTG246

with the option of -sbv b.
In the third validation test, we conducted a multi-trait meta-analysis of 36 US

single-trait GWAS (Supplementary Table 3 and ref. 29) with the method of
Bolormaa et al.11. This analysis generated a multi-trait p-value for each variant
presented in the US GWAS, which was tested against the null hypothesis that each
variant had no effect on any one of the 36 US traits. This meant that a variant with
small a multi-trait p-value would be associated with many traits. Then, for 100
thresholds of the multi-trait p-value, the significance of the enrichment of
significant pleiotropic variants within the XT-50K markers and Standard-50K
markers were tested. At each multi-trait p-value threshold, e.g., p= 0.05, the
following counts of variants were obtained: nXT&sig: the number of variants with
multi-trait p < 0.05 and were also the XT-50K markers and nSTD&sig: the number of
variants with multi-trait p < 0.05 and were also the Standard-50K markers. Other
constant numbers counted included: nXT: the total number of XT-50K markers
presented in the US GWAS; nSTD: the total number of Standard-50K markers
presented in the US GWAS; nsig: the total number of variants with multi-trait
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p < 0.05; and nu: the total number of unique variants presented in the XT-50K,
Standard-50K and US GWAS. In R (v3.5.1), the hypergeometric test was conducted
for these numbers at each multi-trait p threshold as implemented in phyper; for
XT-50K markers: phyperðnXT&sig � 1; nXT ; nu � nXT ; nsig ; lower:tail ¼ FÞ and for
Standard-50K markers: phyperðnSTD&sig � 1; nSTD; nu � nSTD; nsig ; lower:tail ¼ FÞ.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The information regarding the XT-50K markers and the multi-trait GWAS summary
statistics of the 46.5k markers of Australian bulls, cows and the US bulls are accessible via
figshare at https://melbourne.figshare.com/articles/dataset/Marker_information_of_the_
XT-50K_panel/13523837 with the https://doi.org/10.26188/13523837. The functional
and evolutionary data are publicly available via the FAETH score at https://melbourne.
figshare.com/articles/The_Functional_And_Evolutionary_Trait_Heritability_FAETH_
score_of_over_17_million_cattle_sequence_variants/7660277/2. Additional GWAS
results for Australian animals can be found at Xiang et al.24. DataGene Australia (http://
www.datagene.com.au/) are custodians of the raw phenotype and genotype data of
Australian farm animals. DairyNZ (https://www.dairynz.co.nz/) are custodians of the raw
phenotype data of New Zealand farm animals and CRV (https://www.crv4all-
international.com/) are custodians of the raw genotypes of New Zealand farm animals.
Details of the data access to the GWAS results from US animals used for validation of
XT-50K markers can be found at Jiang et al.29. The DNA sequence data as part of the
1000 bull genome project4,34,48 is included in NCBI BioProjects PRJNA431934,
PRJNA238491, PRJDB2660, PRJEB18113, PRJEB1829, PRJEB27309, PRJEB28191,
PRJEB9343, PRJNA210519, PRJNA210521, PRJNA210523, PRJNA279385,
PRJNA294709, PRJNA316122, PRJNA474946, PRJNA477833, PRJNA494431,
PRJDA48395, PRJNA431934, PRJNA238491. Other supporting data are shown in
the Supplementary Information of the current manuscript.

Code availability
The GWAS used plink (https://www.cog-genomics.org/plink/) and GCTA (https://
cnsgenomics.com/software/gcta/#Overview). The multi-trait meta-analysis implemented
in R is published at https://melbourne.figshare.com/articles/Effect_Direction_MEta-
analysis_EDME_of_GWAS/11730939/1. Variant annotation used public Variant Effect
Prediction of Ensembl and NGS-SNP (http://stothard.afns.ualberta.ca/downloads/NGS-
SNP/). The details of BayesRC can be found at MacLeod et al.6. The implementation of
weighted correlation analysis is detailed in Supplementary Note 2. The R codes of variant
clustering with test datasets are available at https://github.com/rxiangr/
SNP_cluster_ranking and the R codes of correlation between genotypes and local gEBV
with its test datasets are available at https://github.com/rxiangr/
SNP_correlation_local_gEBV_variance.
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