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Abstract: As of 27 December 2021, SARS-CoV-2 has infected over 278 million persons and caused
5.3 million deaths. Since the outbreak of COVID-19, different methods, from medical to artificial
intelligence, have been used for its detection, diagnosis, and surveillance. Meanwhile, fast and
efficient point-of-care (POC) testing and self-testing kits have become necessary in the fight against
COVID-19 and to assist healthcare personnel and governments curb the spread of the virus. This
paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies,
and surveillance approaches that have been used or proposed. The review provided in this article
should be beneficial to researchers in this field and health policymakers at large.

Keywords: COVID-19; SARS-CoV-2; artificial intelligence; machine learning; deep learning;
molecular diagnosis

1. Introduction

The recent incident of the novel coronavirus (SARS-CoV-2) in Wuhan, China, and its
spread globally has impacted the world’s economy. So far, the virus has claimed more
than 5 million lives and infected over 278 million people worldwide as of 27 December
2021 [1]. The emergence of different variants shows that the fight against the deadly and
infectious viruses is far from over [1]. It also shows how swiftly new infectious diseases
might emerge and spread while wrecking global economic havoc. The viral aetiology of
coronavirus disease 2019 (COVID-19) is SARS-CoV-2, which has unexpectedly increased
the need for clinical knowledge and information, epidemiological investigations, and quick
diagnostic technology.

It is well known that quick, efficient, and ultrasensitive detection of SARS-CoV-2 is
crucial for epidemic prevention and containment [2,3]. As a result, there has been world-
wide demand for knowledge on SARS-CoV-2 diagnostic and surveillance technologies.
With accurate diagnostics in place, health workers may decide where and how to allocate
resources and efforts to effectively isolate and treat patients. This mechanism can slow the
spread of infectious diseases and minimise mortality. Thus, all of the tools required for the
rapid detection of SARS-CoV-2 are extremely useful to frontline healthcare workers and
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policymakers working together to alleviate the disease’s devastation and limit its spread.
Since the emergence of COVID-19, many methodologies have been used worldwide to iden-
tify and diagnose the virus. The approaches reported include whole-genome sequencing,
electron microscopy, and different computed tomography (CT) imaging based methods,
which were initially employed to screen for and detect SARS-CoV-2 [4,5].

Meanwhile, the availability of known diagnostic tools for SARS-CoV-1 (from the 2002
SARS outbreak) was helpful in the diagnosis of COVID-19. These tools are currently per-
forming critical roles in detecting and controlling the spread of COVID-19. For example,
the transmission electron microscopy (TEM) was employed to determine the morphol-
ogy of the SARS-CoV-2 virus [6]. The virus’s identification was confirmed via genome
sequencing [7,8], and the sequencing data was used in the development of primers and
probes for polymerase chain reaction (PCR) [9]. It is worth noting that whereas the SARS-
CoV-1 identification took about five months in 2002, the same procedures were employed
to identify SARS-CoV-2 within a few days [10]. Recently, artificial intelligence (AI) has
shown great potential in detecting diverse diseases [11–13]. Some AI-based methods have
been proposed for COVID-19 detection, tracking, and treatment [14–17]. Deep learning, a
subfield of AI that is based on artificial neural networks [18], has been applied to learn and
analyze the lung regions using CT images and chest radiographs (X-ray) in order to detect
COVID-19 [19,20].

This study presents a detailed review of the various types of detection methods,
diagnostic technologies, and surveillance approaches that have been used or recently
proposed in the fight against COVID-19. Holistically, this will aid decision making by
researchers and policymakers. The rest of this paper is structured as follows: The current
and emerging COVID-19 diagnostic tests are presented in Section 2. Section 3 discusses
real-time reverse transcriptase-polymerase chain reaction, and rapid antigen detection test
is presented in Section 4. Section 5 presented a detailed application of AI techniques for
COVID-19. Section 6 highlights some contributions of AI in the fight against COVID-19.
Finally, the paper is concluded in Section 7.

2. Current and Emerging COVID-19 Diagnostic Tests

Nucleic acid tests and computer tomography (CT) scans were earlier used to diagnose
COVID-19. At the start of the COVID-19 epidemic in China, syndromic testing using CT
scans was predominantly employed to diagnose and examine the virus [21]. However,
molecular technology is more suitable for detecting the virus than syndromic examination
and CT scans because it can target and detect specific infections. However, due to the need
for a more effective and real-time diagnosis of COVID-19, researchers and scientists have
created several tools summarised in Table 1. These technologies are divided into three
categories: nucleic acid testing, protein testing, and point-of-care (POC) testing.

Figure 1 also depicts the stages of development of diagnostic tests used thus far.
As can be observed, most of the approaches are still in the proof-of-concept stage. The
majority of the proposed diagnostics technologies are likely to enter the commercial phase
and be applied for disease detection in the future. Notably, it remains unpredictable if
the vast knowledge gathered from the various variants seen so far can be generalised
for investigating future variants of the COVID-19 virus. For example, to mitigate the
widespread of the new variant (Omicron) that was first confirmed on 9 November 2021 [22],
testing will be paramount. And to achieve this, less expensive, sensitive, user-friendly,
and point-of-care kits will be required. Such kits will ultimately reduce a surge in cases as
people can self-test and isolate themselves accordingly.
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Figure 1. The diagram depicts four pipeline for diagnostics technologies development. In most
cases, stages 1 and 2 are designed and achieved by researchers while stages 3 and 4 typically involve
commercial transfer to companies.

Table 1. Notable developed and emerging diagnostics deployed.

Detection System Technology Biomarker Principle

Rapid antigen test Lateral flow Protein Detection of Colorimetric through the use
of paper with gold-coated antibodies [23]

ELISA ELISA Protein
The induction of virus colour change in
enzymatic reaction in the presence of target
antigen [24]

Biobarcode assay DNA-mediated
immunoassay Protein

Involve the conjugation of gold nanoparticles
with DNA through the help of protein signal
detection [25]

Quantum dots
barcode Barcode Nucleic acid Capture of viral DNA and RNA through

quantum beads [26]

Magnetic bead Magnetic Nucleic acid Detection of PCR through the help of
magnetically isolated bacteria [27]

LAMP LAMP Nucleic acid Isothermal DNA synthesis through the
signal of turbidity detection [28]

Smartphone dongle ELISA Protein ELISA by microfluidic set up [29]

RT-LAMP LAMP Nucleic acid RNA target generation through reverse
transcriptase LAMP reaction [30]

CRISPR RPA Nucleic acid Lateral flow nucleic assay by the help of
PCR and CRISPR/Ca9 [31]

CRISPR RT-RPA Nucleic acid SHERLOCK, RPA detection by multiplexed
fluorescence spectroscopy [32]

3. Real-Time Reverse Transcriptase-Polymerase Chain Reaction

In recent years, nucleic acid detection-based techniques have become a reliable and
rapid approach for detecting viruses. Precisely, the polymerase chain reaction (PCR) has
gained popularity and is considered the gold standard for diagnosing some variants of
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viruses and is characterised by rapid detection, high sensitivity and specificity [33]. Based
on those above, real-time reverse transcriptase-PCR (RT-PCR) has gained much interest
in detecting SARS-CoV-2 due to its specific and easy qualitative assay. To achieve its
aim, the RT-PCR involves the reverse transcription of the virus RNA into complementary
DNA (cDNA) strands, followed by the amplification of certain regions of the cDNA. The
amplified cDNA of the virus is targeted, and a section of the SARS-CoV-2 genome is
amplified via PCR [34].

The Center for Disease Control and Prevention (CDC) presented a recent study using
the Fulgent COVID-19 RT-PCR test to detect COVID-19 [35]. A total of 2039 patients
admitted to the emergency department in a California hospital between June and August
of 2020 participated in the study, and the RT-PCR test obtained a specificity above 99%.
Another study used the RT-PCR test to detect COVID-19 in samples from 323 patients,
and metrics such as sensitivity and specificity, with confidence intervals (CI) that indicate
the test results’ statistical significance, were used in the study [36]. The RT-PCR obtained
a sensitivity of 94.7% (95% CI 74.0 to 99.9%) and a specificity of 100% (95% CI 94.9 to
100%). To date, the RT-PCR test is the most commonly used test for detecting COVID-19,
and several studies have stated its robustness and reliability compared to other testing
methods [37–40].

The SARS-CoV-2 RNA is extracted and diluted with a master mix containing both
forward and reverse primers, nuclease-free water, a fluorophore-quencher probe and
a reaction mix (magnesium, transcriptase, nucleotides, polymerase, and additives). The
extracted viral RNA and master mix are amplified in a PCR thermocycler, and the respective
incubation parameters are set to run the assay. During the assay, the cleavage of the
fluorophore-quencher probe results in a fluorescent signal detected by the thermocycler
and amplification is recorded in real-time. The primary method of this diagnostic test
involves the collection of samples from the upper respiratory of a person via nasal and
oropharyngeal swabs. Notably, swabs from the nose and throat can produce false-negative
results if not done correctly. Hence, the person performing the test must be familiar with
the upper respiratory anatomy [41]. False-negative tests may also occur due to mutation in
the real-time RT-PCR primer and probe-target segments of the virus genome [33]. Others
may include but are not limited to sample cross-talk, and hitches with software may reduce
the sensitivity of PCR reaction. More so, the commercially available RT-PCR kits are only
operated in well-equipped laboratories due to the specialised tools and instruments used
for the reactions coupled with safety reasons, thereby limiting the number of tests that can
be performed daily [42]. Several nucleic acid amplification tests have been authorized by
the U.S. Food and Drug Administration (FDA) [43]. These kits have been used to analyze
samples from the nose, throat, bronchoalveolar lavage and sputum, and the sensitivity
of some are higher than RT-PCR. For example, loop-mediated isothermal amplification
(LAMP) can rapidly amplify the viral RNA at a single temperature whilst providing
a reliable diagnosis [44]. Some of these tests can be self-administered at home or in
laboratories. Indeed, antigen tests targeting various virus proteins could be vital to support
the currently available RT-PCR kits and speed up detection.

4. Rapid Antigen Detection Test

A rapid antigen test (RAT), also known as an antigen rapid test (ART), or a rapid
antigen detection test (RADT), or simply a rapid test, is a type of rapid diagnostic test
that immediately identifies the absence or presence of an antigen for point-of-care testing.
Rapid tests are a form of lateral flow device that detects antigens, as opposed to other
medical tests that detect nucleic acid (nucleic acid tests) or antibodies (antibody tests), of
either point-of-care types or laboratory. Usually, it is widely used to detect SARS-CoV-2,
the virus that causes COVID-19. Rapid tests often have fast turnaround times of less than
5 to 30 min, involve minimal training or equipment, and offer considerable cost benefits,
and may be employed in decentralised testing; and they have the potential to boost testing
procedures [45].
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Meanwhile, Gremmels et al. [45] studied the potential of PanbioTM COVID-19 antigen
rapid test and its diagnostic performance, which is yet to be fully confirmed. According
to their results, the PanbioTM COVID-19 Ag rapid test successfully detects SARS-CoV-2
infected people with a significant viral load in nasopharyngeal samples in a population
of participants dwelling in a community with mild respiratory tract infection, and this
test has a 100 percent specificity. Though the sensitivity is lesser than that of RT-qPCR,
all false-negative rapid test findings were attributed to low viral loads in nasopharyngeal
samples. The study concluded that because the PanbioTM COVID-19 Ag rapid test has a
lower sensitivity, RT-qPCR would be the appropriate diagnostic test for clinical applications
in a hospital environment.

However, for community monitoring of SARS-CoV-2, this rapid antigen test accurately
and quickly identifies persons with a high risk of continued transmission. In the future, it
might be an essential tool in our testing strategy to prevent SARS-CoV-2 transmission. In
another research, Torres et al. [46] studied the performance of the PanbioTM COVID-19 Ag
rapid test device to identify and detect SARS-CoV-2-infected asymptomatic peoples. The
study discovered that the Panbio test has limited sensitivity in asymptomatic COVID-19
patients close contacts, especially non-household contacts. Notably, the authors believe
that determining the best time to collect upper respiratory tract samples in this group is
critical for pinpointing test sensitivity [46]. However, a low sensitivity test such as this is
not suitable for detecting COVID-19, considering the impact a false-negative test result
can cause.

Furthermore, Mak et al. [47] studied the specificity and sensitivity of COVID-19 Ag
rapid tests such as SARS-CoV-2 detection using the rapid antigen detection kit from the
WHO Emergency Use List. The findings from the study revealed that the rapid antigen
detection kit was 100 times less sensitive than RT-PCR. The clinical sensitivity of the rapid
antigen detection test for identifying specimens from COVID-19 patients was 68.6%. A
multicenter study was also conducted by Merino et al. [48] also conducted a multicenter
study to evaluate the PanbioTM COVID-19 rapid antigen-detection test for SARS-CoV-2
infection diagnosis.

5. Artificial Intelligence and COVID-19
5.1. Machine Learning

Machine learning (ML) has shown high performance in several image processing
applications such as image analysis [49], image segmentation and classification [50], and
medical imaging [11,51]. With the recent outbreak of the COVID-19 pandemic, ML offers a
great potential for accurate and fast detection of COVID-19 from computed tomography
(CT) and chest radiographs (CXR) images.

As we learn more about the natural history of COVID-19, it has become apparent
that the disease progresses in stages. The need to pre-empt deterioration and personalise
preventative interventions has emerged as a priority [52]. Currently, imaging research
has focused on diagnosis based on appearances once the disease has progressed. Early
detection of the infection, when the initiation of appropriate therapy is likely to be most
effective, would be more helpful. CT also has a well-established role as a tool to detect
several diseases, particularly when combined with clinical data. This finding is essential in
COVID-19 detection; because the primary concern for healthcare providers is becoming
overwhelmed by patients requiring intensive care and ventilatory support, accurate prog-
nostication is a more pressing clinical problem than diagnosis [53]. For COVID-19, training
a model to predict outcomes such as the need for mechanical ventilation, intensive care
unit admission, and mortality could have a considerable clinical effect [54–56].

Since the pandemic, several studies have been conducted on how ML can be used
to detect and diagnose COVID-19. The systematic review in [57] critically examined the
methodologies used in 29 studies that focused on ML and COVID-19. Of these 29 studies,
seven were based on conventional ML algorithms, 20 on deep learning techniques, and
two used deep learning and traditional ML techniques together. Most of the studies,
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i.e., 23, address the detection of COVID-19, while six focused on building systems for
prognostication. The findings in Roberts et al. [57] showed that none of the developed
models in the 29 papers has any potential for clinical use because of their methodology’s
underlying biases and flaws. An ML model was developed in [58] for screening potential
neutralising antibodies discovered for the COVID-19 virus. The model was developed to
check synthetic antibodies to detect antibodies that potentially inhibit SARS-CoV-2. The
study used 14 different types of viruses and developed models using graph featurisation
with different ML algorithms such as support vector machine, random forest, and logistic
regression. The model’s out-of-class predictions for covid and influenza were 100% and
84.61%, respectively; this shows the model’s robustness in neutralising predicted antibodies
for the SARS-CoV-2. To understand the spread of the virus in the top five affected countries
(USA, India, Brazil, Peru, and Russia) as of 10 July 2020, Hazarika and Gupta [59] proposed
a new approach based on a random vector functional link (RVFL) network. RVFL was
hybridised with a wavelet-coupled RVFL network and 1-D discrete wavelet transform.
Hazarika and Gupta [59] concluded that the wavelet-based hybrid models can be useful in
the fight against COVID-19.

Elaziz et al. [60] introduced an ML technique that uses fractional multichannel expo-
nent moments (FrMEMs) to extract features from X-ray images. The technique classified
chest X-ray images into two classes, i.e., COVID 19 patients and non-COVID-19 patients.
The proposed method achieved an accuracy of 96.09% in predicting the COVID 19 class
and 98.09% in the non-COVID-19 class. Meanwhile, India is among the countries worse
hit by the COVID-19 pandemic [61]. During the pandemic surge in that country, an ML
forecasting model was proposed in [62] to assist in predicting the spread of the virus.
The authors in Sujath et al. [62] used multilayer perceptron, linear regression, and vector
autoregression on datasets obtained from Kaggle to understand the fast-spreading virus
across the country, i.e., confirmed, death, and recovered cases across India. The review in
Kushwaha et al. [63] discussed the importance of ML in the fight against the COVID-19
pandemic. The research examined several papers that addressed how different ML models
could have assisted in detecting the virus. The review concluded that ML could be used
for COVID-19 diagnosis, precise and personalised patient treatment, patient behaviour
analysis, and future symptoms prediction. A hybrid ML model based on a multilayer
perceptron algorithm and adaptive network-based fuzzy inference system was used to
predict a patient mortality rate [64]. The dataset used was collected in Hungary, and the
model validation was performed for nine days with good results. ML-based CT analysis
has shown to be a promising screening medium for COVID-19 and has outperformed viral
real-time PCR testing [65,66].

5.2. Deep Learning

Although machine learning powers many aspects of societal applications from social
media networks to consumer products and devices, supported by cameras and smart-
phones [67]. However, conventional machine learning techniques are not well-suited for
some modern societal applications [68]. The advent of deep learning, a subset of machine
learning, has found applications in many areas, such as object and speech detection, drug
and genomics, and natural language processing systems [67,69].

Since the outbreak of COVID-19, deep learning algorithms have been widely used to
understand and forecast the disease pattern [70,71]. Several attempts have been made to
utilise these algorithms to estimate and forecast the future spread of the disease [72]. A
review by [70] on six deep learning algorithms used for disease forecasting shows popular
algorithms such as Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),
Bi-directional (Bi-LSTM), Variational Auto Encoder (VAE), and Gated recurrent units
(GRUs) have been used on time-series data for predicting newly affected and recovered
cases of COVID (See Figure 2).

These models are based on time-sensitive analysis (temporal) and possess attractive
modelling features. All these algorithms are based on RNN [73,74]. Meanwhile, RNNs
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possess less memory and are not suited for time dependencies in historical data. LSTMs
were designed to mitigate many of the dependency issues of RNN, and they contain three
gates for controlling information flow—input, forget, and output gates. Bi-LSTM enhances
the capabilities of the LSTM and retains the option of being reconstructed to a backward
context [73]. The GRU models are an alternative to LSTM. GRUs was created to optimise
the performance of LSTM models, and VAE models are based on generative modelling and
extend the capabilities of RNNs.

Other works in literature have explored the convolutional neural networks (CNN) [75–77].
CNN is a type of artificial neural network that has been widely used for medical imaging
analysis. It has multiple layers to process data at less computational power with higher
accuracy. A pre-trained CNN was used in classifying X-ray images to uncover healthy
and non-healthy chest scans [78]. These pre-trained models include ResNet18, ResNet50,
ResNet101, VGG16, and VGG19. The ResNet50 model was trained alongside the support
vector machine, which was found to have achieved higher accuracy. Other CNN variants have
been created to join the fight against COVID, which include CoVNet-19 [79], Res-CovNet [80],
and MTU-COVNet [81].

Figure 2. Deep learning model for COVID-19 detection [78].

5.3. COVID-19 Datasets

Data is essential in all machine learning models and applications [82]. If data is
made publicly available, ML algorithms can help in reducing the spread of COVID-19.
Therefore, the first step in designing a COVID-19 detection model is data collection. Having
ML-based COVID-19 diagnosis from X-rays and CT scans will lower the challenge on
the short supplies of reverse transcriptase-polymerase chain reaction (RT-PCR) test kits.
Epidemiological and statistical analysis of reported covid cases can also be useful in
understanding the relationship between virus transmission and human mobility. Social
media data can also provide socio-economic and sentiment analysis for governments
and policymakers in the current pandemic. Therefore, data is essential for the effective
implementation of models to fight and reduce the spread of the virus.

Most available datasets were private at the beginning of the pandemic due to privacy
issues. However, several of these datasets were recently made open to researchers [83].
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Meanwhile, most researchers have focused on using CT image datasets for their diagnosis
due to the time consumed and low sensitivity associated with the standard COVID-19
diagnosis methods, such as the RT-PCR and CXR [84–88]. This has made both CT and chest
X-ray diagnostic imaging modalities quickly produce large volumes of data on COVID-
19, which has enabled the development of machine learning models for detecting and
diagnosing the virus.

At the start of the COVID-19 pandemic, radiologists were extremely busy with little
bandwidth to read many CT scans timely. Also, radiologists in developing countries may
not be well equipped to recognise COVID-19 from CT scans since the disease was relatively
new at the time. Therefore, in order to accurately detect the virus, several deep learning
methods were developed to screen COVID-19 from CTs [65,89–91]. COVID-CT, an open-
sourced dataset, was introduced in [92]. The dataset comprises 349 positive COVID-19
CT images and 463 negative COVID-19 CTs. The dataset was extracted from reported
CT images in 760 bioRxiv and medRxiv preprints about COVID-19. Experiments on the
dataset showed that COVID-CT is efficient in developing an AI-enabled model to diagnose
COVID-19. The authors [92] further used the dataset to build self-supervised and multi-task
learning, which achieved an area under the receiver operating curve (AUC) of 0.98, F1-score
of 0.90, and accuracy of 0.89. Table 2 summarises some notable COVID-19 datasets in the
literature, the techniques used in building the ML model, and the obtained results. The
metrics used in evaluating the performance includes accuracy (ACC), sensitivity (Sen), and
specificity (Spe).

Afshar et al. [93] proposed COVID-CT-MD, a new COVID-19 dataset. The dataset also
consisted of healthy and participants infected by Community-Acquired Pneumonia (CAP).
The COVID-CT-MD consists of 169 chest CT scans of positive patients, 60 patients with CAP,
and 76 patients that do not have either covid or CAP. The results obtained from COVID-CT-
MD showed that the dataset could advance the application of ML and DL in diagnosing
COVID. Ref. [85] developed an open-source SARS-CoV-2 CT scan dataset to encourage the
development of AI techniques for detecting COVID-19 through the analysis of their CT scan.
SARS-CoV-2 CT contains 2482 CT scans, with 1252 positive and 1230 non-infected cases.
The dataset is made up of actual patient CT scans collected in Sao Paulo, Brazil. Using
the eXplainable Deep Learning technique (xDNN), Angelo and Soares [85] achieved an
F1-score of 97.31%, which is promising. Furthermore, in light of understanding how chest
X-ray images can assist in diagnosing COVID-19, Hall et al. [94] obtained 320 chest X-rays
of bacterial and viral pneumonia and 135 chest X-rays of positive COVID-19 patients. These
datasets were used with a pre-trained deep convolutional neural network (DCNN). The
model achieved an accuracy of 91.24% and an AUC of 0.94. Another notable application of
ML in the COVID-19 era is contact tracing, which has yielded excellent results [95].

Table 2. COVID-19 datasets available for developing ML models.

References Dataset Size Image Modality Techniques Evaluation Result (%)

[85] SARS-CoV-2
2482 scans
(1252–positive,
1230–negative)

CT xDNN F1 = 97.31

[87] LIDC CT Deep Learning
Acc = 90.8,
Sen = 84,
Spe = 93

[88] SARS-CoV-2 2482 CT EfficientNet
Acc = 87.6,
F1 = 86.19,
AUC = 90.5

[89] COVIDx 13,975–13,870 positive
patient CXR DCNN Sen = 91.0

[94] OSR , Istituto Ortopedico
Galeazzi (IOG) 1925 CXR Logistic regression, Naïve bayes,

KNN, Random forest, SVM
AUC = 87,
Spe = 94

[65] COVIDx X-ray CNN—Capsule network

Acc = 95.7,
Sen = 90,
Spe = 95.8,
AUC = 0.97
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6. Notable Contributions of AI in the Fight against COVID-19
6.1. AI for COVID-19 Tracking and Dashboarding

Since the outbreak of COVID-19, there have been concerted efforts towards tracking
and predicting its debilitating effect across many nations [96–98]. These unified efforts
have led AI researchers to utilise predictive modelling for forecasting actual and expected
spread and reporting on open data dashboards, thereby supporting the efforts of health-
care professionals.

One of the foremost real-time dashboards used for COVID-19 tracking was devel-
oped by the Center for Systems Science and Engineering (CSSE) at the John Hopkins
University [99]. The CSSE platform has effectively tracked recoveries, death, and new
cases worldwide. This platform aimed to provide stakeholders, such as public authorities,
researchers, and the broader public, with an interactive interface to track the virus in
real-time [100]. Similar platforms have emerged to unify monitoring and prediction efforts.
These dashboards include the Center for Disease Control and Prevention (CDC), COVID-19
Data Tracker, Microsoft Bing’s COVID-19 tracker dashboard, the BBC, New York Times,
HealthMap, and Upcode. Other notable platforms include nCoV2019, 1point3arces, China’s
Baidu, South Korea’s KSIC, Time’s Coronavirus Map, NPR, and Worldmapper [101].

Countries within the Global South have intensified efforts to create dashboards for
monitoring and predicting COVID-19 [102–104]. The African Union Centre for Disease
Control, a public health agency for member states, created the African CDC Dashboard to
provide updates on the COVID-19 crisis within the region [105]. Another popular example
is the COVID-19 ZA South Africa Dashboard, developed at the University of Pretoria by
the Data Science for Social Impact Research Group (DSFSI). In South America, especially
in Panama, a dashboard termed the COVID-19 Open data was developed to track and
predict cases [106]. Saudi Arabia launched its own dashboard in the Middle East to enable
public authorities to monitor and combat COVID-19 cases. Table 3 shows the summary
of COVID-19 dashboards discussed in this research, and they are classified according to
the source, name of dashboard, country, its purpose, coverage, and accessible medium.
However, this list is not exhaustive.

Table 3. A summary of open data dashboards for COVID-19 tracking and prediction.

References Name Country Purpose Coverage Medium

[99] John Hopkins
CSSE

United States Tracking and
Prediction

Worldwide Web

[98] COVID-19
Data Hub

Canada Tracking Worldwide Web

[107] COVID-19
Tracker

United States Tracking Worldwide Web

[108] COVID-19
Dashboard

Cyprus Tracking Worldwide Web

[109] COVID-Track United States Tracking Worldwide Web

[105] Africa CDC
COVID-19

All member
states

Tracking Africa Web

[106] COVID-19
Open data

Panama Tracking and
Prediction

Panama Web

[110] α-Satellite United States Risk assessment United States Web

[111] COVID-19 ZA
South Africa

South-Africa Tracking South-Africa Web

[112] Saudi MoH
COVID-19
Dashboard

Saudi Arabia Tracking Saudi Arabia Web

6.2. AI for COVID-19 Diagnosis and Forecasting

Recently, researchers have intensified efforts to combat the threats posed by COVID-19
using different techniques. Several AI initiatives are in continuous development to detect
COVID-19 infections, assisting healthcare professionals. A study by [113] used the Random
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Forest (RF) algorithm to extract eleven key blood indices to accurately identify traces of
the COVID-19 virus on patients’ blood test data. The study showed that the RF algorithm
extracted the features, enabling the predictive model to achieve an accuracy of 96.7%.
Similarly, Tang et al. [114] applied the RF algorithm on chest CT images and identified
features of COVID-19. The study reported an accuracy of 87.5% and an AUC of 91%.

Yan et al. [115] proposed a method to detect COVID-19 using the extreme gradient boost-
ing (XGBoost) classifier. The XGBoost classifier was trained with samples from 485 infected
patients, and it achieved excellent performance. In another research, Bertsimas et al. [116]
used the XGBoost classifier to predict the mortality of COVID-19 patients. Furthermore,
Wang et al. [89] proposed a deep convolutional neural network approach called COVID-
Net to diagnose COVID-19 from radiography images. Sun et al. [117] applied the Support
Vector Machine to predict severe symptoms in COVID-19 patients using four clinical
indicators. The study reported an accuracy of 77.5% and a specificity of 78.4%.

Chimmula and Zhang [71] applied the Long Short Term Memory (LSTM) algorithm, a
type of recurrent neural network, to forecast COVID-19 prevalence. The proposed method
achieved an accuracy of 93.4% on the test set. Other studies have also focused on forecasting
COVID-19 prevalence. For example, Chintalapudi et al. [118] and Gupta et al. [119] applied
the Auto-Regressive Integrated Moving Average (ARIMA), a time-series method, to forecast
the number of confirmed cases. Ref. [120] used a modified stacked auto-encoder method
to forecast the prevalence of confirmed cases in China. A summary of articles reviewing
COVID-19 diagnosis and forecasting can be found in Table 4.

Table 4. A summary of literature review of articles for COVID-19 diagnosis and forecasting.

References Model Scope Evaluation Results Datasets

[113] Random Forest Diagnosis Accuracy = 96.9 Private, Blood samples

[89] CNN Diagnosis Accuracy = 93.3% Private, Chest
X-ray images

[115] XGBoost Mortality risk prediction Survival Accuracy = 100%,
Mortality Risk = 81%

Private,
Blood samples

[116] XGBoost Mortality risk prediction
AUC = 90%
(Out of sample)
AUC = 0.92
(Seville)

Private

[117] Support Vector
Machine

Prediction Accuracy = 77.5%
AUC = 78.4%

Private, Chest
X-ray images

[71] LSTM-RNN Forecasting Accuracy = 93.4% Public dataset:
John Hopkins and Canadian Health
Authority

[119] ARIMA Forecasting Accuracy = 90% Public dataset:
John Hopkins

[120] Stacked
Auto-Encoder

Forecasting Unknown WHO

[114] Random Forest Diagnosis Accuracy = 87.5,
AUC = 91%

Private, Chest
X-ray images

[118] ARIMA Forecasting Accuracy = 93.75% Public dataset:
Italian Ministry of Health

6.3. AI for the Treatment of COVID-19

AI is changing the landscape of many disciplines, particularly the pharmaceutical
industry [121–123]. Through clinical trials, AI has found applications in the area of drug
discovery even prior to the existence of COVID-19. Anecdotal evidence revealed that drug
discovery and development are capital-intensive processes that typically cost billions of US
Dollars and take about twelve years on a typical average [124–126]. In itself, drug discovery
and development involve target selection and validation, screening of compounds identi-
fied from molecular libraries, preclinical studies, and drug candidates, which must pass
clinical trials by being administered to patients (See Figure 3). Recently, this landscape has
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been changing with the exploration of AI to the voluminous data produced in the genomics
field [121,125].

Figure 3. A pipeline of drug discovery and development [125].

Arshadi et al. [127] outlined three approaches of AI to drug discovery: protein-based,
RNA-based, and generative methods. The study showed that AI was useful in identifying
unique drug and disease relationships. Furthermore, the study reviewed Benevolent AI,
a UK-based organisation that integrated biomedical data from structured and unstruc-
tured sources through its AI-knowledge graph. Other organisations that have intensified
efforts in using AI for COVID-19 drug discovery include Innoplexus through assessing
the capability of Hydroxychloroquine and Remdesivir in the treatment of COVID-19 [128].
Similarly, Deargen and Gero used AI techniques to recommend atazanavir and niclosamide-
nitazoxanide, respectively, for treating the virus [128–130].

In a study that utilised AI for drug screening, Delijewski and Haneczok [131] applied
a supervised machine learning model based on gradient-boosting, an ensemble learning
technique to identify zafirlukast as the best-repurposed candidate drug in the fight against
COVID-19. The study utilised the Food and Drug Administration (FDA) set of approved
drugs as the dataset, consisting of approximately 290,000 negative and 405 active molecules
of COVID-19 3CL pro inhibitors, and concluded that the ML algorithm was helpful in
the drug identification. Meanwhile, Pham et al. [132] proposed a graph-based neural
network called DeepCE, a technique used for predicting chemical-induced gene expression
profiles from chemical and biological objects. The study achieved excellent performance
on the L1000 dataset and indicated that it could also be helpful for phenotype-based
drug screening.

In a pathogenesis study used to find possible drug candidates, Kabra and Singh [133]
used ML algorithms in a high-dimensional nucleotide sequence dataset for selecting and
identifying peptides against a strain of the COVID-19 virus. The dataset consists of 2765 se-
quences of COVID-19 patients from different countries. The study concluded that the ML
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algorithms obtained excellent performance and opened a new dimension in designing and
generating peptides with desired targets. Meanwhile, Jin et al. [134] proposed a drug-target
interaction using a deep learning architecture, ComboNet, to predict whether a drug is
likely to bind to a biological target. ComboNet consists of a graph convolutional neural
network that learns a molecule representation and a linear function that learns antiviral
activity and synergies in biological targets. According to the study, ComboNet performed
very well despite limited drug combination training data.

6.4. AI for COVID-19 Surveillance

Many AI techniques have been used to build surveillance tools that predict the impact
of COVID-19 [135–137]. As represented in Figure 4, these tools can help towards pandemic
combating strategies, which can be difficult if manual methods are applied. According
to Arora et al. [138], these tools incorporate several features, such as location tracking,
travel data, epidemiological and behavioural patterns, to build reliable surveillance toolkits.
Although these tools have been effective in reducing the spread of COVID-19, they have
been widely criticised for privacy infringements.

Figure 4. Digital tools for pandemic preparedness and response [139].

Different machine learning models have been used to curb the spread of infection in
several countries. For example, the Taiwan authorities implemented AI-based health checks
for airline travellers who had visited Wuhan, China, after the outbreak was reported [140].
Taiwan attributed the low number of death cases to the AI surveillance system. Before
the COVID-19 pandemic, many Chinese cities had surveillance security cameras linked to
AI-based facial recognition systems [141]. When the pandemic started, these technologies
were repurposed with thermal imaging for screening citizens with high temperatures.

Furthermore, South Korean CDC deployed its contact-tracing system, known as
COVID-19 Smart Management System, to trace the movement of individuals with COVID-
19 [142]. The system incorporated security footage, credit card records, and global posi-
tioning system (GPS) data from cell phones. Meanwhile, a US-based firm, Swedish Health
Services, developed a platform for healthcare professionals to track COVID-19 cases in
hospitals [139]. The app aimed to use the tracking information in allocating healthcare
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resources and knowing the facilities’ status. In India, a local government used geo-mapping
of quarantine locations and CCTV recordings to track possible COVID-19 patients [143].
Similar technologies have been used in Israel, Argentina, and Morocco [143,144].

7. Discussion and Conclusions

The health and economic impact of the COVID-19 pandemic has been severe world-
wide. Numerous researchers have proposed several COVID-19 diagnosis techniques.
Generally, these techniques are based on antibody tests that detect the presence of proteins
the body produces in response to a previous infection, molecular tests used for detecting
viral genomic material, and CT tests that examine a person’s lung. Among these diagnostic
techniques, the RT-PCR test that detects various regions of the SARS-CoV-1 genome is the
gold standard for diagnosing COVID-19. However, the scarcity of testing tools such as
RT-PCR kits could occur during pandemic emergencies. Hence, it is vital to have several
testing options. Also, the RT-PCR testing technique is expensive, and many low-income
countries cannot afford sufficient testing of a greater part of their population.

Meanwhile, a comprehensive review of COVID-19 diagnostic methods has been
conducted in this research. The study covered current and emerging diagnostic tests,
including RT-PCR, rapid antigen detection, and AI-based methods. Also, this research
discussed other areas where AI has been applied to curb the spread of COVID-19, such
as surveillance, tracking and dashboarding, forecasting, and treatment. Furthermore, it is
necessary to state that different methods are required to control and prevent the spread of
COVID-19 effectively in addition to clinical diagnosis. While highly accurate and sensitive
tests are needed in the fight against COVID-19, it is also necessary to have a somewhat
rapid point of care and easy to use self-testing kits.
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