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Abstract

Background: Although statistical procedures for pooling of several epidemiological metrics are generally available
in statistical packages, those for meta-analysis of diagnostic test accuracy studies including options for multivariate
regression are lacking. Fitting regression models and the processing of the estimates often entails lengthy and
tedious calculations. Therefore, packaging appropriate statistical procedures in a robust and user-friendly program is
of great interest to the scientific community.

Methods: metadta is a statistical program for pooling of diagnostic accuracy test data in Stata. It implements both
the bivariate random-effects and the fixed-effects model, allows for meta-regression, and presents the results in
tables, a forest plot and/or summary receiver operating characteristic (SROC) plot. For a model without covariates, it
quantifies the unexplained heterogeneity due to between-study variation using an I2 statistic that accounts for the
mean-variance relationship and the correlation between sensitivity and specificity. To demonstrate metadta, we
applied the program on two published meta-analyses on: 1) the sensitivity and specificity of cytology and other
markers including telomerase for primary diagnosis of bladder cancer, and 2) the accuracy of human papillomavirus
(HPV) testing on self-collected versus clinician-collected samples to detect cervical precancer.

Results: Without requiring a continuity correction, the pooled sensitivity and specificity generated by metadta of
telomerase for the diagnosis of primary bladder cancer was 0.77 [95% CI, 0.70, 0.82] and 0.91 [95% CI, 0.75, 0.97]
respectively. Metadta also allowed to assess the relative accuracy of HPV testing on self- versus clinician-taken
specimens using data from comparative studies conducted in different clinical settings. The analysis showed that HPV
testing with target-amplification assays on self-samples was as sensitive as on clinician-samples in detecting cervical
pre-cancer irrespective of the clinical setting.

Conclusion: The metadta program implements state of art statistical procedures in an attempt to close the gap
between methodological statisticians and systematic reviewers. We expect the program to popularize the use of
appropriate statistical methods for diagnostic meta-analysis further.
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Background
Meta-analysis of diagnostic test accuracy (DTA) studies
using approximate methods such as the normal-normal
model has several challenges. These include poor statis-
tical properties when sensitivity and/or specificity are
close to the margins i.e. 0/1, when the sample sizes or
when the number of studies are small. Moreover, the
sample variance of sensitivity/specificity is a function of
the sample mean and ignoring this mean-variance rela-
tionship may bias the summary estimate and its vari-
ance. Generalized linear mixed models (GLMM) [1] are
therefore recommended [2]. These models are relatively
complex requiring expertise both in GLMMs and statis-
tical programming. Scientists in the fields of public
health, epidemiology or clinical research often do not
have advanced statistical and/or programming skills.
Hence, availability and dissemination of appropriate and
optimal statistical methods in a robust and user-friendly
program is quintessential.
The two most commonly used statistical models for

pooling of DTA data are the hierarchical summary re-
ceiver operating characteristic model (HSROC) [3] and
the bivariate random-effects meta-analysis model
(BRMA) [2]. The two models incorporate covariates dif-
ferently though they have been shown to be equivalent
when no covariates are included [4].
The proportion of total unexplained variation due

to between-study heterogeneity is usually quantified
using the I2 statistic by Higgins and Thompson [5].
The statistic is based on the normal-normal model
and was defined for univariate meta-analysis. There-
fore, in meta-analysis of DTA separate statistics for
sensitivity and specificity are computed. The fact that
diagnostic data sets are binomial implies that the
within-study variance in sensitivity and specificity pa-
rameters is a function of the mean parameters.
Hence, heterogeneity statistics based on the normal-
normal model tend to underestimate the expected
value of the within-study variance resulting in high
values of I2. This could lead to an incorrect conclu-
sion of very high heterogeneity [6].
Zhou and Dendukuri [6] proposed a univariate I2 stat-

istic that accounts for the mean-variance relationship
across studies. They extended the statistic to account for
the correlation between sensitivity and specificity yield-
ing a joint measure of heterogeneity. In a simulation
study, they showed that their I2 statistic almost always
resulted in much lower between-study heterogeneity es-
timates than the I2 by Higgins and Thompson [5].
On interpreting the I2, higher values indicate higher

between-study heterogeneity across the studies com-
pared to the expected within-study variability.
The reasons for the substantial heterogeneity in the

null mixed-effects model can be explored by relating

study level covariates to the latent sensitivity and specifi-
city. This is called meta-regression.
There are two Stata commands for meta-analysis of

DTA. The metandi [7] command fits both the
HSROC and the BRMA model. Its output includes a
table of the summary accuracy measures and a graph
with the SROC curve, the summary point and its
confidence region and prediction region. The com-
mand does not allow meta-regression.
midas [8] is another Stata command. It implements

the BRMA only. It produces more graphical output;
to explore goodness of fit, publication bias and other
precision-related biases. The command only allows
for univariate meta-regression with only one covariate
and uses the I2 statistic based on the normal-normal
model.
In this paper, we demonstrate a new Stata com-

mand metadta which implements the bivariate
random-effects and the univariate fixed-effects model
as a special case of the bivariate model. The com-
mand also allows for univariate and bivariate meta-
regression. The results are reported in tables, forest
plots and/or SROC plots or cross-hairs. A forest plot
of relative sensitivity and specificity can be displayed
when data are from comparative or paired studies.
For the model without covariates, it quantifies the
between-study heterogeneity using the I2 statistics by
Zhou & Dendukuri [6].

Methods
Data structure
Data from DTA studies usually result from a 2 × 2
cross-tabulation of index versus reference test results
(see Table 1). The data in the four cells represent the
true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). The sum of TP and
FN is the total with disease, and the sum of TN and
FP the total without disease.
The command provides statistical procedures for

data sets from independent, comparative and paired
DTA studies.
Independent studies contribute only one 2 × 2 cross-

table and each row in the data set has data from a differ-
ent study.

Table 1 Cross-tabulation of index test results by the disease
status in study i

Disease status

+ -

Index test + True positive (TP) = Yi1 False Positive (FP)

- False Negative (FN) True Negative (TN) = Yi2

Total Diseased = Ni1 Non-diseased = Ni2
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From a comparative study, there will be two 2 × 2
cross-tables, one for the index test and the second for
the comparator test. Each study contributes two rows to
the data set, one for the index test and another for the
comparator test. The index and the comparator test
should be the same in all the studies.
Paired studies have at least a pair of the 2 × 2

cross-tables. The data for the index and comparator
test is on the same row and a study can contribute
more than one row to the data set. Unlike data from
comparative studies, the index and the comparator
tests do not need to be the same. However, it is im-
perative that the comparator tests are similar in order
to obtain correct model estimates. The data set
should include at least two index tests.

The logistic regression model
Consider a meta-analysis of K studies. For a study i
(i = 1, …, K), let Yi1 be the number of true positive,
Yi2 be the number of true negatives, Ni1 the total
number of subjects with the disease, and Ni2 the total
number of subjects without the disease.
Suppose there are Q study level covariates, the fixed-

effects model is formulated as follows;
Yij~binomial (pij,Nij) for i = 1, …, K and j = 1, 2,

pij ¼
exp β j

0 þ β j
1X

1
ij…β j

PX
Q
ij

� �

1þ exp β j
0 þ β j

1X
1
ij…β j

PX
Q
ij

� � ;

where pi1 and pi2 are parameters denoting the unob-
served sensitivity and specificity in study i respectively.

β j
0 are log-odds while β j

1 … β j
Q are log odds ratios. Xq

ij is

the value of the q’th covariate in study i for logit sensiti-
vity(j = 1) and logit specificity (j = 2).
The random-effects model has (un) correlated random

components in the mean predictor. It is expressed as
follows;

pij ¼ π xð Þ ¼
exp β j

0 þ β j
1X

1
ij…β j

PX
P
ij þ δij

� �

1þ exp β j
0 þ β j

1X
1
ij…β j

PX
P
ij þ δij

� � ;

δi1
δi2

� �
� N

0
0

� ��
;ΣÞ;

where δij are the study-specific random-effects for the
logit sensitivity(j = 1) and the logit specificity (j = 2).
The variation in the two random effects and their
correlation is represented by Σ. The structure of Σ
can be any of the four variance-covariance matrices:
unstructured τ21 τ12

τ12 τ22

� �
, independent τ21 0

0 τ22

� �
, ex-

changeable τ2 τ12
τ12 τ2

� �
or identity τ2 0

0 τ2

� �
. The BRMA

imposes the unstructured variance-covariance matrix.

It makes the most relaxed assumption about the co-
variation of the random effects but has the most
number of parameters, i.e. 3 distinct parameters. Add-
ing β10 and β20, it implies that there needs five parame-
ters to be identified in the null model. Hence, at least
five studies would be required to enable parameter
identification. Other structures are more restrictive
but require less studies (at least 3) for identifiability.
When a random effects model is fitted to the data

set, a log-likelihood ratio (LR) test is conducted to
compare it with the fixed effects model. The re-
ported p-value is an upper bound of the actual p-
value because this hypothesis test is on the bound-
ary of the parameter space of the variance
parameters.
The models presented above are applied when

the data are from independent studies. With data
from comparative or paired studies, the linear pre-
dictor is modified to account for the dependence
introduced by the “repeated measurements” per
study. This modification is critical in the interpret-
ation of the random variation in the data as well
as in obtaining valid model-based inference for the
mean structure.
When there are more than one covariates, the fixed

effects component in the linear predictor can be ex-
tended to include interaction terms between the first
covariate and the remaining covariates. A LR test can
then be conducted comparing the model with and
without the interaction terms. This would give an an-
swer as to whether the interaction terms are neces-
sary in the model.

Summary tables
We report the marginal summary estimates and not
the direct model parameter estimates. The marginal
sensitivity and specificity are averages of the pre-
dicted probabilities from the model. They are said
to be standardized to the distribution of the covari-
ates [7, 9]. The model-adjusted probability ratios
are computed as a ratio of the marginal
probabilities.

Forest plot
The command presents five different confidence in-
tervals (CI) for the study-specific sensitivity and
specificity; the Wald, Wilson, Agresti-Coull, Jeffreys,
and exact confidence intervals. The exact confidence
intervals are displayed by default.
With data set from comparative and paired studies,

the Koopman score confidence intervals [10] for the
study-specific relative sensitivity and specificity are
calculated.
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SROC plot
Separate summary points and their confidence regions
and/or prediction regions are presented when there is
only one categorical covariate in the model. When
the number of studies is insufficient to fit the
random-effects model or when the fixed-effects model
is explicitly applied, cross-hairs indicating the confi-
dence intervals of the summary estimates are pre-
sented instead. In presence of more than one
covariate, the SROC plot presents only the overall
summary point and the corresponding confidence re-
gion and/or prediction region. When focus of is on
the relative diagnostic accuracy i.e. when the forest
plot presents the relative sensitivity and specificity,
the SROC plot is not presented.
When plotting the SROC curve, the program re-

stricts the curve to the range of the specificities in
the dataset.

Software installation
The metadta command was developed in Stata 14.2.
The program along with the help files and three
demonstration datasets are publicly available for
downloading at https://ideas.repec.org/c/boc/bocode/
s458794.html. When connected to the internet, the
command can be directly installed within Stata by
typing ssc install metadta.

Syntax

The metadta command requires five main argu-
ments to run. These are; tp fp fn tn indicating the
four outcome variables from the 2 × 2 cross-tabulation
in Table 1. The fifth argument studyid(varname) is
the study identifier. The other arguments in italics
are optional.
Categorical variables in the data set should be string

variables otherwise, the command will treat them as
continuous variables. The Stata command decode can
be used to make a factor variable into a string vari-
able. The covariates names should not contain the
underscore(_) character. If present, the program ter-
minates because the underscore character is reserved
in the program. If some of the covariates names con-
tain the underscore character, the Stata command re-
name can be used to give those covariates different
names. The options [options foptions soptions] could
be;

Once installed, typing help metadta should display the
help window. The help file provides a detailed description
of all the command options. Some of the options worth
mentioning here include;
by varlist: allows separate but similar meta-analyses for each

level of the by variable or each combination of the by varlist
variables. The results are presented in separate summary ta-
bles, forest plots and SROC plots. If it is desired to perform
separate analysis but present the results in one forest plot
and/or one SROC plot, one should specify the options stratify
and by(byvar) simultaneously. The two options by varlist: and
by(byvar) should not be confused for each other.
indepvars indicates one or more variables to be used as

covariates. They should be string/characters for categor-
ical variables and/or numeric for continuous variables.
The variable names should not contain underscores, it is
reserved in the program.
comparative indicates whether the data supplied are

from comparative studies. This option requires the first
covariate specified to be categorical with two levels, one
for the index and the comparator test or level.
paired indicates whether the data supplied are from

paired studies. This option requires at least 11 variables (in-
cluding the study identifier) in the data set in the following
order tp1 fp1 fn1 tn1 tp2 fp2 fn2 tn2 index comparator.
* are options native in Stata to change the graphics aes-

thetics. The default plots are already visually appealing but
can be optimized by soptions() and foptions() for the SROC
plot and the forest plot, respectively.
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Application
Example one – random-effects model with no covariates
Glas et al. [11] conducted a meta-analysis to assess the sen-
sitivity and specificity of urine based markers such as tel-
omerase for diagnosis of primary bladder cancer. This data
set of 10 studies is provided along with the installation files.

Because the seventh study Kinoshita1997 had an esti-
mated specificity equal to one (fp = 0), the authors needed
to use a continuity correction of 0.5 to enable parameter
estimation with the bivariate normal-normal model. They
reported that telomerase had a sensitivity and specificity
of 0.75 [95% CI, 0.66, 0.74] and 0.86 [95% CI, 0.71, 0.94]
respectively. They concluded that telomerase was not sen-
sitive enough to be recommended for daily use.

Apart from the required main arguments, we also
specified the option model (random) to request for
the random-effects model. This option is redundant
since the command fits the random-effects by de-
fault. When the program detects that the number
of studies is less than 3, the fixed-effects model is
fitted instead. dp(2) requests the results of all esti-
mates to be displayed with 2 decimal places (ex-
cept the p-values for which the decimals places are
fixed at 4). The options in soptions() and foptions()
refined the appearance of the forest and SROC
plots.
The first part of the output displays the symbolic

representation of the fitted model, the number of ob-
servations and the number of studies in the meta-
analysis as shown below;

The next part of the output presents the hetero-
geneity statistics. This table can be suppressed by
the option nohtable. By default, the unstructured
covariance matrix is imposed. The correlation (rho)
between sensitivity and specificity on the logit scale
is − 1. There is more heterogeneity in specificity
(σ2 = 3.32, I2 = 60.29%) than in sensitivity σ2 = 0.18,
I2 = 50.62 % ).
Despite presence of heterogeneity in both dimen-

sions, it may be surprising that the bivariate I^2 =
0.02. This is because the generalized between-study
variance goes to zero with (nearly) perfect correl-
ation (rho = − 1.00), and the lower the bivariate I^2.
The generalized between-study variance was <
0.0001. It summarizes the variance in both logit
sensitivity and specificity while accounting for the
correlation between them.
The p-value of the LR test comparing the fitted

random-effects to a fixed-effects model is < 0.0001.
This indicates that the random-effects is a better
fit to the data. The test has three degrees of free-
dom since the unstructured covariance matrix has
3 parameters.
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sumtable (all) requested for all available summary
tables, i.e. summary estimates on the log odds and
the probability scale. These are presented as
follows;

The mean logit sensitivity and specificity are 1.19
[95% CI, 084, 1.55] and 2.34 [95% CI, 1.10, 3.58].
The p-values from testing whether the logit

sensitivity or logit specificity is 0 are both < 0.01.
Thus the logits are significantly different from zero.
The second table presents the same summary sta-

tistics but on the probability scale. The standard er-
rors, the z-statistic and the p-values are reported on
the logit scale. Translated in the probability scale,
the p-values are from testing whether the mean sen-
sitivity/specificity is 0.5. If needed, one can use the
delta method to compute the standard errors on the
probability scale.
The pooled sensitivity and specificity of telomer-

ase in urine as a tumour marker for the diagnosis
of primary bladder cancer was 0.77 [95% CI, 0.70,
0.82] and 0.91 [95% CI, 0.75, 0.97] respectively. Our
results are different from the original publication
because we use the logistic-normal model while they
used the normal-normal model.
The third table below presents the study-specific and

summary sensitivity and specificity and their corre-
sponding 95% exact CI.

Figures 1 and 2 (left) presents the forest and the
SROC plots respectively. The program preserves the
order in the data set. Say it is preferred to order
the studies by year of publication, a variable with
the year of publication (say year) should be in-
cluded in the data set. The option sortby(year) then
instructs the program to re-order the data set.
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Fig. 1 Forest plot - meta-analysis of diagnostic accuracy of telomerase for the diagnosis of bladder cancer

Fig. 2 SROC plots - meta-analysis of diagnostic accuracy of telomerase for the diagnosis of bladder cancer. Left: the unstructured covariance and
right: the independence covariance
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Model comparison - covariance structures
To impose a different covariance structure, say inde-
pendence and select the most parsimonious model we
proceeds as follows;

1. First restore the model estimates by typing
estimates restore metadta_modest (the estimates
of the current model are always stored as
metadta_modest). Once restored, use the
command estat ic to display the Akaike
information criteria (AIC) and Bayesian information
criteria (BIC) [12]. The output is;

2. Use the command estimates store to store the
estimates for later use under a different name, say
unstructured. i.e. estimates store unstructured.

3. Fit a new model imposing independence between
logit sensitivity and logit specificity with the option
cov(independent).

4. Repeat step 1 above to be able to display the
information criteria. The output is;

The models compared using the information criteria
do not need to be nested but should use the same data.
The model with a smaller information criterion fits the
data better. From the output in steps 1 and 4, the model
with the unstructured covariance matrix fits the data
better since both the AIC and the BIC are lower.
Sometimes the AIC and BIC can give conflicting con-

clusions. In this example, both give the same conclusion.
The difference between AIC and BIC is in measuring
the model complexity. Model complexity is measured ei-
ther as 2*q or ln (K)*q, where q is the number of

parameters estimated in the model and K is the number
of observations in the data set. Explicitly,
AIC = − 2 x ln (likelihood) + 2 x q.
BIC = − 2 x ln (likelihood) + ln(K) x q.
By overweighting the model complexity, the BIC is

more conservative than AIC.

Implication of assuming the independence covariance structure
The pooled sensitivity and specificity under the inde-
pendence assumption is 0.77 [95% CI, 0.70, 0.82] and
0.90 [95% CI, 0.75, 0.97]. The pooled estimates are very
similar to those from the first model.
However, the heterogeneity statistics are much more

different; logit sensitivity (σ2 = 0.15, I2 = 46.81%) and logit
specificity (σ2 = 2.75, I2 = 65.01%). The estimate for the
generalized variability is much higher (σ2 = 0.43, I2 =
56.11%) because there is (assumed) no correlation.
When the assumed covariance structure is far from ‘cor-

rect’, the estimates for the mean always tend to be consist-
ent. However, the confidence intervals, confidence region
and prediction region might be wider. In Fig. 2 (right), as-
suming no correlation between the logit sensitivity and
the logit specificity yields wider regions.

Example two – random-effects meta-regression
Arbyn et al. [13] published a meta-analysis on the ac-
curacy of HPV testing on self-collected versus
clinician-collected samples. In the review, they sought
to find whether a HPV test on a vaginal self-sample
was as accurate as on a cervical sample taken by a
clinician to detect cervical precancer (cervical intrae-
pithelial neoplasia of grade 2 or worse [CIN2+]).
metandi [7] was used to generate the pooled absolute
sensitivity and specificity and metadas [14] was used
to obtain the relative sensitivity and specificity (self-
sample vs clinician sample) by the test amplification
method (signal or target amplification).
The studies included in the meta-analysis had been

conducted in three clinical settings: 1) cervical cancer
screening, 2) testing of high-risk women, and 3) colpos-
copy, where women were referred to because of previous
positive screening results.
Other information on the study participants, name of

the test used, the sampling device were recorded also.
We use a sample of the published data set where studies

applied the same test on a self-sample and a clinician-
sample from the same women (comparative studies). The
first 10 of the 60 observations are as below;
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where sample, setting and ta are categorical (charac-
ters/string) covariates each with two values. sample is clin
or self in the clinician-sample and self-sample respect-
ively. Year indicates the year of study publication. setting
identifies the clinical setting of the study with values
screening or follow-up. ta is TA for a target amplified test
or SA for a signal amplified test.

Exploratory analysis
We investigate whether the absolute sensitivity and speci-
ficity of the self- and clinician-collected sample differ by
the test amplification method and the setting of the study.
To do this, we fit four models for each combination of the
categories in setting and ta with sample as a covariate.
The command preserves the order of the data and there-

fore, the values in each categorical variable are decoded
based on the first-come-first-assignment. The Stata com-
mand gsort sorts the data alphabetically such that the base
level for sample is clin and the second level is self.

The values in the categorical variables can decoded
based on the alphabetic order (A to Z) while still preserv-
ing the order in the data set with the option alphasort.
The first value of the categorical covariates used in the
model are assigned the base levels.
The code to fit the first model is as follows;

The option noitable suppresses the table with the study-
specific estimates, and sumtable (abs rr) requests to display
the absolute and relative specificity and relative sensitivity

Fig. 3 Forest plots - absolute accuracy for CIN2+ of HPV testing on self-samples and clinician-samples using signal amplification-based (SA) assays
(top) or target amplification-based (TA) assays (bottom) in the follow-up setting (left) and the screening setting (right)
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only (the summary table of the log odds will be sup-
pressed). In this analysis, we are not interested in the
SROC plot and suppress its display with the option nosroc.
From the output below, there are 6 observations from

3 studies in the meta-analysis.

In this model, the base level in sample is clin.

The next part of the output below displays the linear pre-
dictor representation of two simpler models fitted to the
data set for model comparison. The fitting of the additional
models could take some time especially in more complex
or larger models. If not necessary, they can be skipped with
the option nomc. The two simpler models leave out the
sample term in each of the two predictor equations.

In meta-regression, the I2 statistics are not calculated.
From the output below, there is more heterogeneity on
the logit sensitivity (Tau.sq. = 0.56) than on the logit speci-
ficity (Tau.sq. = 0.06). The generalized I2 is even less
(Tau.sq. = 0.03) after accounting for the correlation (rho =
0.13) between the logits. Compared to the model with
fixed study effects, the model with random study effects
fits the data better (p = 0.0018).

The table below shows the pooled sensitivity and speci-
ficity of signal amplified HPV tests on self- and clinician-
samples in the follow-up setting:

The next table (below) shows the pooled relative sensi-
tivity and specificity of signal amplified HPV tests on
self- vs clinician-samples in follow-up setting;

From the output above, the signal amplified tests on self
and clinician samples have similar sensitivity (Rel Ratio =
0.92 [95% CI: 0.81, 1.04]) and specificity (Rel Ratio = 0.91
[95% CI, 0.81, 1.02]) in the follow-up setting.
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The output below shows the model comparisons results.
The results indicate that the model without sample on the
linear predictor for logit sensitivity or logit specificity is more
parsimonious (p-values are > 0.05 in both cases). The con-
clusion here from the LR test is essentially the same as from
the table with the relative diagnostic accuracy estimates.

We fit the other three models by changing if ta==
“SA” & setting==“follow-up” to include the other
combinations of the test amplification method and
the setting. Figure 3 presents the forest plots from
the four fitted models. From the forest plots, the
pooled specificity is consistently lower in follow-up
settings (range 50–63%) and substantially higher
values in the screening setting (range 84–88%) sug-
gesting that the absolute accuracy differed by set-
tings. Our interest however, is in answering whether
a HPV test on a vaginal self-sample is as good as
on the cervical sample taken by a clinician.

Confounding effects
To formally assess the differences by setting, we enter a
second covariate into the model. In another instance, we
do the same for the test amplification method ta. In the
command, we indicate that the studies in the data set
are comparative with the option comparative and re-
quest for a forest plot of the relative specificity and rela-
tive sensitivity with option outplot (rr) in foptions(). The
SROC plot is automatically not generated when the op-
tion outplot (rr) is specified.

Fig. 4 Forest plots - relative accuracy for CIN2+ of HPV testing on self-samples vs clinician-samples using signal amplification-based (SA) assays
(top) or target amplification-based (TA) assays (bottom) by setting
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In Fig. 4, we observe that the relative sensitivity of signal
amplified tests on self- vs clinician- sample is consistently
lower than unity irrespective of setting (top left). In con-
trast, the relative sensitivity of target amplified tests on
self- vs clinician-sample consistently includes unity (bot-
tom left) in the screening and follow-up setting. The
pooled relative specificity show limited variation by setting.
The findings indicate that it is reasonable to report the

“pooled” relative accuracy estimates without regard to
setting for a given method of test amplification.

Including the interaction terms
The plots in Figs. 3 and 4 suggest that the setting and the
test amplification method both significantly influence the
absolute accuracy but that the setting has a minor influ-
ence on the relative accuracy. To formally examine how
setting and ta modify the sensitivity and specificity for
CIN2+ of HPV testing on self- and clinician-sample we in-
clude the covariates ta and setting in the model. We also
include the interactions terms between sample and ta and
between sample and setting by specifying the option inter-
action(sesp). This option specification instructs the pro-
gram to add interaction terms on both the linear
predictors for logit sensitivity and specificity.

The dataset in the meta-analysis comprised 60 obser-
vations from 28 studies.

We requested for the diagnostic accuracy estimates with
the option sumtable(rr) though we do not present the table
here. Controlling for the method of test amplification, the
relative sensitivity of HPV testing on self- vs. clinician-
sample in the screening and follow-up settings are 0.91 [95%
CI: 0.86, 0.95] and 0.92 [95% CI: 0.86, 0.98] respectively. The

confidence intervals over-lap suggesting that there might be
little or no difference in the pooled relative sensitivities.
Similarly, controlling for the clinical setting, the relative sen-
sitivity in target-amplified and signal-amplified tests are 0.82
[95% CI: 0.76, 0.89] and 0.98 [95% CI:0.95, 1.01] respectively.
The confidence intervals do not overlap suggesting differ-
ences by test amplification method. The relative specificity
can be interpreted in a similar manner.
Wald-type tests for non-linear hypotheses were con-

ducted to formally test whether the relative sensitivities
and relative specificities were similar in all settings and test
amplification methods. The results are displayed as follows;

From the output above, each hypothesis test has
one degree of freedom because there is only one
contrast examined, e.g. for setting, the contrast is
RR.screening = RR.follow-up.
The results indicate that after controlling for the test amp-

lification method, the relative sensitivities were similar (p =
0.7049) in the two clinical settings. In contrast, the pooled
relative sensitivities were different (p= 0.0001) between the
two test amplification methods after controlling for the clin-
ical setting. Furthermore, there were no differences in the
pooled relative specificities by clinical setting (p = 0.4799) or
by test amplification method (p= 0.6909) after controlling
for the type of test and the clinical setting respectively.
We also tested whether the interaction terms were sig-

nificant by leaving out one interaction term in each of
the predictor equation at a time. The output below indi-
cates that neither of the two interaction terms in the
predictor equation for logit specificity are significant.
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Fitting a simpler model
The simpler model without interaction terms in the pre-
dictor equation for logit specificity is fitted to the data
set with the option interaction(se). The option instructs
the program to add the interaction terms only in the
predictor equation for logit sensitivity.
Before running the command, we restore and store the

model estimates under a different name (say full) for use
later to compare the current model (interaction(sesp))
with the next model (interaction(se)).

The predictor equations for the model with interaction
terms only on the logit sensitivity are as follows;

Other simpler models leaving out the interaction
terms or the main term from the predictor equation
for the logit sensitivity and the logit specificity re-
spectively are also fitted to the data. The model com-
parison results are as follows;

From the output above, leaving out ta*sample (p = 0.
3800) or setting (p = 0. 3700) from the linear predictor
of the logit sensitivity and logit specificity respectively,
would yield a more parsimonious model.
We restore and store the estimates under the name

reduced and request for the AIC and BIC of the current
model.

Fig. 5 Relative sensitivity and specificity for CIN2+ of HPV testing on self- vs clinician-samples controlling for setting and test
amplification method
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Both the AIC (reduced = 907.6009, full = 908.0111)
and BIC (reduced = 943.8383, full = 949.8235) indicate
that the reduced model fits the data set slightly
better.
As mentioned earlier from Leave-one-out LR Tests:

Model comparisons, the reduced model could be im-
proved further by removing more terms from the pre-
dictor equations. However, the metadta program is not
flexible to fit a model without ta*sample while keep-
ing setting*sample or a model that includes the inter-
action terms on the logit sensitivity but leave out the
main term for setting in the predictor equation of the
logit specificity. Nonetheless, this “fine-tuned” model
can be fitted outside metadta via the native Stata com-
mand meqrlogit.
Figure 5 displays the forest plot from the full (on

the left) and the reduced model (on the right). There
are differences in the estimates for the pooled rela-
tive specificity but not for the pooled relative
sensitivity.
The pooled relative diagnostic accuracy estimates

from the reduced model in Fig. 5 (right) are very
similar to the “stratified” meta-regression results pre-
sented in Fig. 4.

Discussion
This tutorial demonstrated some of the capabilities of
metadta to perform meta-analysis and meta-regression of
DTA studies in Stata. Random-effects models with and
without covariates were fitted using logistic regression.
The model-adjusted pooled absolute and relative diagnos-
tic accuracy were presented in tables and graphically in
forests and/or SROC plots.
We developed metadta to provide advanced statistical

procedures for data sets from independent, comparative
and paired DTA studies. We encourage users of our
program to explore the help file and run the demonstra-
tion examples to further familiarize with metadta.
With metadta, we expect to close the gap between ex-

pert methodological statisticians and systematic re-
viewers and to boost the use of more appropriate
methods for meta-analysis and meta-regression of DTA
studies even further.
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