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Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the
past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection
and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that de-
termine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory
infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe
manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for
immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that
differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and indi-
vidualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and
pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we
analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those
molecules more attractive for translational medicine and drug development.
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Introduction

Outbreaks of viral pneumonia have occurred all
along human history. Although the mechanism behind

morbidity remained unclear for decades, current paradigms
indicate that besides the microorganisms’ virulence, an
overdriven host immune response mediates devastating
manifestations of infections. This idea has gained further
notoriety after the coronavirus disease 2019 (COVID-19)
pandemic. Thus, it is now accepted that the critical forms of
the disease are frequently accompanied by excessive cyto-
kine release into the circulation (hypercytokinemia) (Mehta
and others 2020).

Despite advances in understanding COVID-19 patho-
biology, the exact cytokine networks involved in severe
manifestations and how each factor contributes to lung
damage are unclear. Defining immune profiles associated
with morbidity is complex due to the impact of genetic and
comorbidity differences across populations. In this scenario,
lessons from other respiratory infections might aid dissi-
pating uncertainty about COVID-19 immunopathology. In-
fluenza viruses are the prototype airborne pathogens leading
to periodic epidemics of variable severity, the last occurring
in 2009 after the appearance of a novel A (H1N1) subtype
(Centers for Disease and Prevention 2009; Novel Swine-
Origin Influenza and others 2009; Perez-Padilla and others
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2009). Similar to the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), pandemic influenza A (H1N1),
hereinafter referred to as influenza, is characterized by a
broad clinical spectrum encompassing critical respiratory
illness with hypercytokinemia (Liu and others 2016; Thomas
and others 2017).

This review compares cytokine storm syndromes (CSS)
observed during COVID-19 and influenza to detect con-
served immunopathogenic mechanisms underlying severe
disease. Moreover, by highlighting unique immune profiles
in critical COVID-19, we provide the theoretical bases
for future research on specific cytokine networks implicated
in pathogenesis that could be targeted through immuno-
therapy.

Infectious CSS

Mechanisms

Cytokines coordinate the immune response activation,
regulation, and amplification. They have short half-life
times, and their production is very regulated to prevent
systemic damage (Cavaillon and others 1992). Cytokines
act through common intracellular pathways to control in-
tercellular interaction and communication, and they have
autocrine, paracrine, or endocrine effects (Zhang and An
2007). Once released, cytokines induce the production of
more cytokines (cytokine cascades). A cytokine storm (CS)
is an increase in circulating cytokines causing acute sys-
temic symptoms and organ dysfunction (Fajgenbaum and
June 2020). The term was first used for graft-versus-host
disease in 1993 (Ferrara and others 1993). Nevertheless, this
phenomenon was associated with infections until the H5N1
influenza virus emergence in 2005 (Yuen and Wong 2005).

It is well known that CSS can occur in various contexts
due to excessive cytokine production or inadequate anti-
inflammatory responses. For instance, the hemophagocytic
syndrome (HPS), also named hemophagocytic lymphohis-
tiocytosis (HLH), is characterized by immune overstimula-
tion. This condition can be primary and secondary according
to its cause (Buyse and others 2010; Canna and Behrens
2012). Primary HLH, as in the case of familial HLH, derives
from genetic mutations altering the function of natural killer
(NK) cells and cytotoxic T cells (Stepp and others 1999).
However, it also includes other inherited immunodefi-
ciencies, such as the Chédiak–Higashi syndrome, Griscelli
syndrome, and type II Hermansky–Pudlak syndrome (Em-
menegger and others 2005). The typical cause of secondary
HPS is infections, especially related to the Epstein–Barr
virus, human immunodeficiency virus, herpesvirus 1, bac-
teria, and fungi.

Nonetheless, it can also be associated with autoimmune
diseases and malignancies such as leukemia and lymphoma
(Al-Samkari and Berliner 2018). Macrophage activation
syndrome is also a secondary HPS associated with rheu-
matic diseases, especially systemic juvenile idiopathic ar-
thritis, systemic lupus erythematosus, and adult-onset Still’s
disease (Fukaya and others 2008). Also, the cytokine release
syndrome is a class of CSS occurring in patients with B cell
malignancies after chimeric antigen receptor T cell immu-
notherapy (Porter and others 2015).

Typical manifestations of hypercytokinemia include fever,
malaise, anorexia, hypotension, hypoxia, arthralgia/myalgia,

nausea, diarrhea, tachycardia, tachypnea, altered mental
status, diffuse lymphadenopathy, hepatosplenomegaly, rash,
pulmonary edema, pneumonitis, and renal failure. There are
also common laboratory findings characteristic of an acute-
phase response such as leukocytosis/leukopenia, thrombocytosis/
thrombocytopenia, anemia, increased C-reactive protein
(CRP), ferritin and D-dimer levels, prolonged prothrombin
time, decreased erythrocyte sedimentation rate, hypertri-
glyceridemia, and hypoalbuminemia (Fajgenbaum and June
2020; Lukan 2020). All these changes are driven by the
biological activities of specific cytokines usually over-
produced during a CSS.

Sepsis exemplifies an infectious CSS

Sepsis illustrates the clinical consequences of hyper-
cytokinemia during infections and is an example to un-
derstand the pathobiology of CSS (Cohen 2002; Schulte
and others 2013). Indeed, influenza and COVID-19 also
meet the criteria for sepsis, defined as a life-threatening
organ dysfunction caused by a dysregulated host response
to infection (Singer and others 2016). Clinical manifesta-
tions associated with sepsis resemble other CSS and in-
clude an increased respiratory rate, altered mental status, and
hypotension. Septic shock is a subset of sepsis, in which
underlying circulatory and cellular/metabolic abnormalities
are that profound to increase mortality substantially. It is
characterized by hypotension refractory to fluid resuscita-
tion and increased serum lactate levels (Singer and others
2016).

Sepsis has been intensively investigated for decades, al-
lowing immunologists to discover fundamental mechanisms
of immune activation and regulation (Opal 2011). All re-
sponses against infections initiate when the innate immune
system detects pathogen-associated molecular patterns (PAMPs)
expressed by invading microorganisms using pattern rec-
ognition receptors (PRRs) such as the Toll-like receptors
(TLRs), NOD-like receptors (NLRs), retinoic-acid-inducible
gene 1 (RIG-1), among others (Eisenbarth and Flavell
2009). These receptors initiate signaling pathways that cul-
minate in reactive oxygen species and reactive nitrogen
species (ROS and RNS) production, complement activa-
tion, phagocytosis, chemotaxis, and cytokine expression,
increasing blood supply and leukocyte recruitment to the
sites of pathogen exposure (Kumar 2020). Nonetheless, al-
terations to several mechanisms initially deployed to control
the infection mediate overdriven inflammation and tissue
injury among septic patients.

Several cytokines listed below are overregulated during
sepsis and might play a pathogenic role in this condition.

� Tumor necrosis factor alpha (TNFa) and interleukin 1
beta (IL-1b). TNFa is expressed as a membrane-bound
heterotrimer and is released after shedding by a disin-
tegrin and metalloproteinase 17 (ADAM17) in macro-
phages, lymphocytes, and fibroblasts. Meanwhile, IL-1b
is secreted by monocytes, macrophages, and dendritic
cells (DCs)(Schulte and others 2013). TNFa promotes
the differentiation of macrophages (Witsell and Schook
1992), expression of intercellular adhesion molecule 1
and vascular cell adhesion molecule 1 in endothelial
cells (Nakae and others 1996), and extravasation of
neutrophils into tissues (Schulte and others 2013).
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TNFa and IL-1b are relevant in developing systemic
inflammation and the accompanying coagulation disor-
ders observed during sepsis (Schouten and others 2008).
Also, they amplify the inflammatory cascade by pro-
mpting macrophages to secrete more cytokines, lipid
mediators, and ROS and RNS (Cohen 2002).

� IL-6 is synthesized by macrophages, DCs, lympho-
cytes, endothelial cells, fibroblasts, and smooth muscle
cells. It increases soluble levels of CRP, complement
components, fibrinogen, and ferritin (Schulte and others
2013). Furthermore, IL-6 induces the differentiation of
CD4+ T cells into Th17 and CD8+ T cells into cytotoxic
T cells (Okada and others 1988; Korn and others 2009).
TNFa, IL-1b, and IL-6 are considered endogenous
pyrogens since they favor prostaglandin E2 synthesis
and fever (Schulte and others 2013).

� CXCL8 (also named IL-8) is found at high concentra-
tions in patients with sepsis (MERA and others 2011;
Surbatovic and others 2015). CXCL8 is released by
macrophages, neutrophils, eosinophils, T lympho-
cytes, epithelial cells, and fibroblasts, exerting a
chemotactic activity on neutrophils (Bickel 1993).
Hence, CXCL8 might be implicated in neutrophil-
induced tissue damage, a typical lesion observed
during sepsis (Shen and others 2017).

� IL-12 and interferon-gamma (IFNg). IL-12 and IL-18
act synergistically to elicit the release of IFNg from
type 1 T helper (Th1) cells (Zhang and others 1997),
but also NK cells, NKT cells, B cells, DCs, and mac-
rophages (Nakanishi and others 2001; Nakanishi 2018).
IFNg has an important antiviral activity and stimulates
M1 macrophages to produce proinflammatory cyto-
kines, improve antigen presentation, and exert bacteri-
cidal activity (Luheshi and others 2014). Also, IFNg
antagonizes the anti-inflammatory cytokines TGB-b
and IL-10 and causes fever, chills, headache, dizzi-
ness, and fatigue (Ulloa and others 1999).

� CCL2, CCL3, and CCL4 (MERA and others 2011).
These chemokines attract monocytes and granulocytes
to the sites of inflammation (Wolpe and others 1988;
Zhang and others 1994; Menten and others 2002). Al-
though their function is required for protective immunity
against pathogens, their excessive production might
worsen leukocyte recruitment and tissue damage.

Cytokines released during sepsis have profound effects
on the microcirculatory system. For instance, impaired red
blood cell deformability, increased blood viscosity, micro-
vascular thrombosis, and increased nitric oxide (NO) pro-
duction contribute to microcirculatory dysfunction, inadequate
oxygen delivery, and tissue hypoxia (Schouten and others
2008; De Backer and others 2011). In addition, dysfunction
of the vascular endothelium and loss of barrier integrity due
to inflammation result in capillary leakage and interstitial
edema (Goldenberg and others 2011). Likewise, altered al-
veolar endothelial glycocalyx induces pulmonary edema
and lung injury (Maniatis and Orfanos 2008), while dis-
ruption of sinusoids is associated with hepatocellular injury
and liver dysfunction (Ito and others 2006).

Persistent inflammatory responses also exacerbate the
release of ROS and RNS while impairing antioxidant pro-
duction, leading to oxidative stress damage. These changes
alter the energy balance in the mitochondria, leading to

cell death (Galley 2011). Moreover, mitochondrial damage
causes the release of mitochondrial DNA and formyl pep-
tides, which act as danger-associated molecular patterns
recognized by PRRs, worsening organ injury by inducing
neutrophil activation (Zhang and others 2010). In addi-
tion, some septic patients treated in intensive care units
develop disseminated intravascular coagulation (Saito and
others 2019).

Cytokines and chemokines activate platelets, neutrophils,
and endothelial cells (Iba and Levy 2018). Vascular endo-
thelial cells typically release NO and prostacyclin to main-
tain an antithrombotic state. However, activated endothelial
cells become prothrombotic, producing tissue and von
Willebrand factors (Iba and others 2020). Neutrophils,
meanwhile, release neutrophil extracellular traps (NETs),
composed of DNA, histones, and granule proteins, favoring
prothrombotic activity (Camicia and others 2014).

This process causes the formation of microthrombi, which
can further potentiate the inflammatory response, aggra-
vating the microvascular dysfunction (Engelmann and
Massberg 2013). Furthermore, the consumption of clotting
factors generates late hemorrhagic events, which increase
mortality (Greco and others 2017).

The immune system has different mechanisms to control
inflammation. T regulatory (Treg) cells suppress the activity
of CD4+ T cells, B cells, macrophages, neutrophils, and DCs
(Okeke and Uzonna 2019). Decoy cytokine receptors such
as IL-1 receptor antagonist (IL-1RA), IL-1 receptor type II
(IL-1R2), and soluble TNFa receptors (sTNFRs) recognize
specific cytokines but are unable to signal (Mantovani and
others 2001). Moreover, some anti-inflammatory cytokines,
such as TGF-b and IL-10, inhibit the production of proin-
flammatory cytokines (van der Poll and van Deventer 1999).
Also, myeloid-derived-suppressor cells (MDSCs) interfere
with T cell responses and regulate cytokine production from
macrophages (Gabrilovich and Nagaraj 2009).

Interestingly, after the initial hyperinflammatory phase,
some patients with sepsis experience a state of im-
munoparalysis, which is characterized by downregulation of
HLA-DR on myeloid cells and apoptosis of B cells, CD4+ T
cells, and follicular DCs (Hotchkiss and others 2001, 2002;
Boomer and others 2011). Notably, the CS profile of sepsis
also includes anti-inflammatory molecules such as IL-4, IL-
10, and TGF-b, and decoy receptors such as IL-1RA and
sTNFR (Gogos and others 2000; Surbatovic and others
2015). This immunosuppressive state is responsible for the
reactivation of the infection or incidence of secondary in-
fections, which increase sepsis’s fatality (Limaye and others
2008; Torgersen and others 2009).

Cytokines also provoke a neuroinflammatory reflex through
the afferent vagus nerve. Consequently, efferent vagus
projections promote the secretion of acetylcholine by CD4+

T cells, inhibiting the excessive proinflammatory cytokine
release (Rosas-Ballina and others 2011). Unfortunately, the
immune system cannot return to homeostasis if the primary
infection does not resolve and the regulatory mechanisms
fail, inflicting more damage without clearing the infection
(Fajgenbaum and June 2020). Meanwhile, persistent im-
munoparalysis can interfere with recovery from critical ill-
ness and increase the risk of death. Understanding the
interplay of mechanisms that lead to CS and immuno-
paralysis during sepsis could improve our scientific ap-
proaches to other severe infections (Fig. 1).
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The CSS of Influenza

Immunity against influenza

The influenza virus is among the primary causes of
pneumonia, with 290,000–650,000 deaths and 3–5 million
cases attributed to this infection annually (Shrestha and
others 2011). Influenza generates a broad spectrum of
symptoms, from mild to severe disease and death (Gheb-
rehewet and others 2016; Collaborators 2019). Type A in-
fluenza viruses are a source of annual epidemics and major
pandemic outbreaks, including the H1N1 in 1918, H2N2 in
1957, H3N2 in 1968, and the most recent H1N1 in 2009
(Dunning and others 2020).

Influenza viruses belong to the Orthomyxoviridae family,
and are composed of 4 genres (A to D), from which only A
and B infect humans. The structure of the influenza virions
has a multisegmented, negative-sense, single-strand (ss)
RNA genome of 12–15 kb, with a rounded shape of 80–
120 nm in diameter. Inside the capsid, the RNA and the
polymerase form a viral ribonucleoprotein (vRNP) complex.
The genome is segmented into 8 parts in A and B virus types
(7 in C and D), which encode 8 structural proteins (PB1,
PB2, PE, hemagglutinin (HA), neuraminidase (NA), M1,
M2, NP), and 2 nonstructural proteins (NS1 and NEP).

HA and NA are the major glycoprotein antigens, the first
facilitating the entry into the target cell, while NA mediates
the release and dissemination of virions from infected cells
(Krammer and others 2018). The HA binds to a 2–6 ga-
lactose and a 2–3 galactose sialic acid residues in human
respiratory epithelial cells and bird gastrointestinal tract cells,
respectively (Thompson and Paulson 2021). Once the virus
recognizes its cell receptor, it is internalized by clathrin- and
caveolin-dependent endocytosis. The vRNPs are imported to
the nucleus for replication, mRNA production, and translation
of novel proteins to be assembled into a new virion in the
cytoplasm (Krammer and others 2018).

The innate airway defenses formed by physical barri-
ers, mucus, phagocytic cells, cytokines, and interferon-
stimulated genes (ISGs) are the first protective antiviral
barrier (Martin and Frevert 2005). The respiratory epithe-
lium secretes mucins (MUC5AC, MUC5B, MUC1, MUC 4,
and MUC16), which prevent the binding of pathogens to
epithelial cells (Roy and others 2014; Zanin and others
2016; Hansson 2019). The importance of mucins for de-
fenses against influenza has been demonstrated in studies
evaluating the effects of adding synthetic MUC1 molecules
to epithelial cell cultures, which managed to restrain influ-
enza viruses. Furthermore, MUC1-/- mice infected with the
influenza A virus display higher morbidity and mortality
(McAuley and others 2017). Other molecules on the alveolar
surface are the surfactant proteins A and D (SP-A and SP-D),
which help viral clearance. In influenza, SP-A and SP-D bind
to viral HA impeding its activity (Han and Mallampalli 2015).

The immune response against influenza initiates with the
recognition of viral PAMPs and downstream signaling via
host PRRs (Iwasaki and Medzhitov 2004), from which 3
pathways are essential: endosomal TLR3 and TLR7, cyto-
plasmatic RIG-1, and the inflammasome (Herold and others
2015). The first 2 lead to the activation of IRF3, IRF7, and
NF-kB, promoting the transcription of genes encoding for
cytokines, chemokines, and ISGs. RIG-1 is activated by
viral ssRNA and signals by interaction with mitochondria-
associated antiviral signaling proteins (Yoneyama and oth-
ers 2015). Failure of RIG-1-mediated sensing of influenza
viruses may lead to severe disease ( Jørgensen and others
2018). Endosomal TLR3 recognizes dsRNA, and TLR7
recognizes ssRNA, activating the transcription factors NF-
kB or IRF7 using signaling pathways downstream of the
adapter protein myeloid differentiation factor 88 (MyD88)
(Lund and others 2004; Le Goffic and others 2007).

TLR3 also interacts with the adapter Toll/IL-1R domain-
containing adapter-inducing IFN-b (TRIF) and activates

FIG. 1. Mechanisms behind the cytokine storm of sepsis. Sepsis is an exaggerated immune reaction elicited by local or
systemic infection. Individuals with this condition display elevated levels of cytokines in the circulation (hypercytokine-
mia), a phenomenon named ‘‘cytokine storm.’’ The mechanisms driving the progression from a normal immune response
against a pathogen to sepsis are under investigation. Clinical and demographic features of affected persons, together with
genetic factors promoting an excessive immune activation or affecting the regulatory mechanisms of the immune system,
might contribute to the pathobiology of sepsis. The exuberant production of cytokines leads to harmful effects on local cells,
activation, and increased permeability of the endothelium, and microthrombosis. Hypercytokinemia is also accompanied by
many anti-inflammatory mechanisms that arrest immune cell functions (immunoparalysis). Together, these alterations
(cytokine storm + immunoparalysis) result in the development of organ failure without clearing the infection. Understanding
the pathogenesis of sepsis is crucial to approaching other severe infections such as COVID-19 and pandemic influenza. The
art pieces used in this figure were modified from Biorender, licensed under a Creative Commons Attribution 3.0 Unported
License. COVID-19, coronavirus disease 2019.
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serine-threonine kinases (IKKe) and TBK1, which phosphor-
ylates IRF3 for subsequent expression of IFN-b (Le Goffic
and others 2007). The third pathway implies the formation
of inflammasomes by the NLR family pyrin domain con-
taining 3 receptor (NLRP3), which is expressed in DCs,
neutrophils, macrophages, and monocytes. The detection of
the viral M2 protein and a polymerase subunit (PB1) pro-
vokes the activation of this pathway. The complex is formed
by NLRP3, the adapter protein apoptosis-associated speck-
like protein (ASC), and procaspase-1. This complex turns on
caspase-1, which cleaves the proform of IL-1b (Ichinohe
and others 2010).

During influenza, cytokines and chemokines such as type
I and III interferons (IFNs), IL-6, CXCL8, CCL2, CCL3,
CCL4, and CCL5 are produced at the site of infection
(Wareing and others 2004). Type I (IFN-a and IFN-b) and
type III IFNs are critical for innate and adaptive antiviral
immune responses. They interact with membrane hetero-
dimeric receptors (IFNAR1, IFNRAR2, IFNLR1, Il-10Rb)
associated with Tyk2 and Jak1 kinases, which then phos-
phorylate STAT-1 and STAT-2, generating 2 activating
complexes: IFN-a-activated factor (AAF) and IFN stimu-
lated gene factor 3 (ISGF3). Already in the nucleus, these
complexes bind to DNA sequences, IFNg-activated sequence
(SAG), and IFN-stimulated response element (ISRE), re-
sulting in the stimulation of ISGs (Theofilopoulos and others
2005). Interferon-induced transmembrane (IFITM) proteins
are among the host ISGs that block viral infection by frus-
trating cell entry at endosomes (Brass and others 2009).

As such, members of the IFITM family mediate re-
sistance against influenza viruses (Brass and others 2009;
Everitt and others 2012; Jia and others 2012; Smith and
others 2013; Lanz and others 2015; Yu and others 2015;
Blyth and others 2016; Meischel and others 2021; Rohaim
and others 2021). Recent clinical investigations in hu-
mans have linked increased susceptibility to influenza with
specific single-nucleotide polymorphisms (SNPs) in genes
coding IFITM1 and IFITM3 (Everitt and others 2012;
Zhang and others 2013; Allen and others 2017; Kim and
others 2020, 2021).

Other cytokines and chemokines recruit neutrophils,
monocytes, macrophages, NK cells, and DCs. NK cells
recognize viral HA molecules through their NKp44 and
NKp46 receptors and induce direct cytotoxicity or recognize
infected cells through their low-affinity Fc gamma receptor
FcRIIIa (CD16) that binds to IgG antibodies, leading to
antibody-mediated cellular cytotoxicity (ADCC). NK cells
can also release granular granzyme and perforin to in-
duce cell lysis and secrete cytokines such as TNFa and
IFNy (Jegaskanda and others 2019). Alveolar macrophages
(AMs) engulf infected cells and release proinflammatory
cytokines and chemokines (CCL2, CCL3, CCL4, CCL5,
and TNFa) to recruit circulating monocytes, which in turn
change their phenotype toward inflammatory macrophages.
The latter releases CCL5, CXCL9, and CXCL10 to in-
crease the recruitment of other leukocytes, mainly neutro-
phils (Latino and Gonzalez 2021).

Neutrophils migrate to the infection site and mediate
phagocytosis, degranulation, the release of NETs, secretion
of chemokines and cytokines (CXCL8, TNFa), and ROS
production. Excessive neutrophil recruitment and degranu-
lation destroy the lung extracellular matrix and induce epi-
thelial apoptosis and alveolar lesions (Camp and Jonsson

2017). DCs engulf pathogens, present antigens to B and T
cells, provide costimulatory signals (CD40, CD80, and CD86),
and secrete cytokines (Shekhar and others 2018). The cDC2
subtype is a source of proinflammatory cytokines in the
lung, whereas plasmocytoid DCs liberate large amounts of
type I IFNs in response to viral infection (Thomas and others
2014).

Adaptive immunity is essential for viral clearance. CD4+

T cells recognize viral antigens presented by APCs on
MHC-II molecules. Th1 cells produce IFNg, IL-2, and
TNFa, activating macrophages and promoting B cells to
produce antibodies. Th2 lymphocytes produce IL-4, IL-5,
and IL-13 and support isotype class switching in B cells
(Brown and others 2006). Notably, a CD4+ T cell response
imbalance toward the predominance of Th2 functions is
detrimental to immunity against some respiratory viruses
(Moran and others 1999; Pinto and others 2006). During
influenza, CD8+ T cells are activated in the lymph nodes and
migrate to the infection site, where they kill infected cells
by apoptosis via Fas/FasL and perforin and granzyme de-
granulation (Brincks and others 2008). B lymphocytes
produce neutralizing antibodies against HA and NA, which
activate the complement and elicit NK cell ADCC (Stadl-
bauer and others 2019; Turner and others 2020b).

Cytokine signatures of severe influenza

All the signaling pathways and cells initially deployed
against influenza benefit the host by preventing viral rep-
lication and shedding; however, these mechanisms cause
organ dysfunction among patients who progress to severe
disease. As for sepsis, the factors that determine the switch
from a protective to a harmful immune reaction are yet
unclear. Perhaps host and pathogen features contribute in
different proportions to establishing a CSS.

Different demographic and clinical host factors, such as
sex, age, and obesity, may be involved in the susceptibility
to severe influenza. Accordingly, extreme age represents a
risk factor for the severity of influenza (Casalino and others
2017). In this regard, the immune system of the young can
generate a strong response, whereas in the elderly, the im-
mune response is not regulated appropriately (Aiello and
others 2019). Sex was a significant prognostic factor during
the 2009 pandemic since most patients hospitalized for se-
vere disease were young women (Klein and others 2012).
Finally, obese individuals with influenza display higher
morbidity and mortality. High leptins and free fatty acids in
obese patients might activate TLRs, monocytes, and lym-
phocytes to produce inflammatory cytokines (Honce and
Schultz-Cherry 2019).

Genetic factors might also play a role in severe respira-
tory infections. Accordingly, SNPs conditioning the dys-
function of PRRs, signaling molecules, transcription factors,
cytokines, chemokines, or their receptors might make an
individual prone to excessive immune activation after in-
fluenza virus infection (Forbester and Humphreys 2021).
Importantly, these genetic variations may lead to CS when
other determinants such as the pathogen virulence, viral load
at the lung, and the demographic features described above
act together (de Jong and others 2006).

The immune profile observed in the circulation, bronch-
oalveolar lavage (BAL), and lung specimens of severely ill
influenza patients is characterized by large concentrations of
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TNFa, IFNy, IL-1b, IL-2, IL-6, CXCL8, CCL2, CCL3,
CXCL10, G-CSF, FGF, VEGF, and anti-inflammatory me-
diators such as TGF-b, IL-10, and IL-1RA (Meduri and
others 1995; Estella 2011; Lee and others 2011; Paquette
and others 2012; Bautista and others 2013; Gao and others
2013; Rendón-Ramirez and others 2015; Fiore-Gartland
and others 2017; Mudd and others 2020; Choreño-Parra and
others 2021a; Reynolds and others 2021; Xie and others
2021). These cytokines generate lung damage when over-
produced by different mechanisms, some of which were
mentioned above. Their damaging properties cannot be ex-
perimentally tested in humans, but animal models have
proven that these cytokines mediate the morbidity and mor-
tality of influenza.

An important cytokine for antiviral defenses that plays
a pathogenic role during severe influenza is IFNy, mainly
produced by adaptive Th1 cells. In mice with influenza A
(H1N1), antibody neutralization of IFNy reduces lung tis-
sue inflammation and BAL cytokine levels, and improves
survival (Liu and others 2021). IL-1b is another cytokine
harmful during influenza. Indeed, mice with genetic defi-
ciency of the inflammasome complex NLRP3/ASC/caspase-
1 are less susceptible to lung inflammation and mortality
by viral H7N9 influenza infection (Ren and others 2017).
Finally, IL-6 favors neutrophil recruitment and B cell dif-
ferentiation. However, its excessive secretion is linked to
severe illness. Importantly, inhibition of IL-6 by the sup-
pressor of cytokine signaling 3 (SOCS-3) improves influ-
enza outcomes by reducing inflammation in mice (Liu and
others 2019).

The data summarized above indicate that cytokines
produced by strong immune responses cause severe mani-
festations of influenza. Although the mechanisms of pre-
disposition to the CSS are not well defined, lessons from the
study of sepsis and influenza pathogenesis might be im-
portant to approach other infections such as COVID-19.

The CSS of COVID-19

Immunity against SARS-CoV-2

SARS-CoV-2 is an enveloped, positive-sense ssRNA vi-
rus of the Coronaviridae family, genus Beta coronavirus,
including SARS-CoV and MERS-CoV (Wu and others
2020b; Zhou and others 2020a). Its genome contains 14
major open reading frames (ORFs) coding for nonstructural,
accessory, and structural proteins. The ORFs 10 and 11
encode for 4 structural proteins named spike (S), envelope
(E), membrane (M), and nucleocapsid (N) (Lim and oth-
ers 2016). The S protein attaches to the cellular receptor
angiotensin-converting enzyme metallopeptidase 2 (ACE2),
thus determining infectivity and viral tropism (Li 2016).
This enzyme is found in the lungs, blood vessels, small
intestine, and kidney, among other organs, suggesting al-
ternative transmission routes and explaining the multi-
organ damage observed in critically ill COVID-19 patients
(Hamming and others 2004). CD147 has been proposed as
another SARS CoV-2 receptor (Wang and others 2020a).

Meanwhile, protein E is a viroporin that participates in
releasing newly assembled viral particles. Studies in SARS-
CoV have shown that the deletion of protein E does not
affect viral production but reduces virion maturation and
viral load (Schoeman and Fielding 2019). In addition, the E

protein has a lower mutational rate than the S protein,
making it a candidate target for vaccines (Sarkar and Saha
2020). Protein M is capable of binding to all the other
structural proteins. Despite its undefined function, its bind-
ing to the N protein allows its stabilization and, therefore,
indirectly participates in the viral genome assembly. Also,
the structure of M protein suggests a potential sugar trans-
porter function such as the sugar transporter SemiSWEET
protein found in prokaryotic cells (Thomas 2020).

Finally, protein N is among the most abundant and im-
munogenic SARS-CoV-2 proteins that participate in the
transcription and assembly of the viral genome and immune
evasion (Cubuk and others 2021).

The most common SARS CoV-2 infection route is the
respiratory system. In this study, the S protein binds to
ACE2 in the plasma membrane of pneumocytes. This pro-
tein owns 2 functional domains: the S1 domain contains the
receptor-binding domain, which attaches to ACE2, whereas
the S2 domain mediates the fusion of the viral and host cell
membranes (Walls and others 2020). For effective infection,
the host transmembrane serine protease-2 (TMPRSS-2)
cleaves to the S2 subunit of the protein (Glowacka and
others 2011; Matsuyama and others 2020). Other host pro-
teases such as furin, TMPRSS4, and cathepsin L also acti-
vate the S2 protein (Ou and others 2020; Zang and others
2020). Recently, neuropilin-1 has been identified as another
host factor facilitating SARS-CoV-2 infectivity (Hoffmann
and others 2020; Matsuyama and others 2020).

The entry mechanisms of coronaviruses are unclear. In-
itially, researchers thought that SARS-CoV entry was by the
direct release of viral particles into the cells after complete
membrane fusion. However, SARS-CoV and SARS-CoV-2
also utilize clathrin-dependent endocytosis (Wang and oth-
ers 2008; Bayati and others 2021).

As for influenza viruses, mucins and collectins at mucosal
respiratory barriers play an essential role against SARS-
CoV-2 (Bose and others 2021). Accordingly, increased
MUC1 and MUCl5AC have been observed in the sputum of
patients with COVID-19 (Lu and others 2021). Also, animal
studies demonstrated that MUC4 protects the female, but
not male mice from SARS-CoV-2 (Plante and others 2020).
Surfactant proteins with immune properties may also par-
ticipate in airway antiviral defenses. Indeed, elevated levels
of SP-D have been observed in the blood of patients with
severe COVID-19 (Tong and others 2021), suggesting a
leakage from the airway due to alveolar damage.

This blood translocation of SP-D might be less se-
vere than in influenza (Choreño-Parra and others 2021b), but
could be used as a lung injury readout. Interestingly, re-
combinant fragments of SP-D bind and neutralize the viral S
protein functions (Hsieh and others 2021), while mannose-
binding lectin recognizes glycosylated sites of the S protein
neutralizing SARS-CoV-2 infectivity (Stravalaci and others
2022).

The PRRs that recognize SARS-CoV-2 and initiate the
immune responses remain obscure. As this virus is geneti-
cally related to SARS-CoV, both viruses may share mech-
anisms of infection. For instance, SARS-CoV is recognized
by TLR3 and TLR4, which induce MyD88 and TRIF
pathways (Sheahan and others 2008; Totura and others
2015). TLR4 has been proposed to detect SARS-CoV-2
(Aboudounya and Heads 2021), but complementary evi-
dence is required. TLR2 also recognizes the E protein of
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SARS-CoV-2 and activates MyD88 signaling to initiate
the production of IL-1b, IL-6, TNFa, IFNy, and CXCL10
(Zheng and others 2021). Finally, the viral RNA sensors
TLR3 and TLR7 promote the release of type I and type III
IFNs, IL-1b, IL-4, IL-6, and IFNy, through IFR3 and NFkB
pathways (Bortolotti and others 2021). In addition, SARS-
CoV triggers the bioactivation of IL-1b through NLRP3
inflammasomes (Shi and others 2019).

Similarly, SARS-CoV-2 N protein promotes NLRP3 in-
flammasome activation (Pan and others 2021), explaining
the high levels of IL-1b observed in COVID-19 patients
(Rodrigues and others 2021).

Type I interferons and ISGs are strongly upregulated
during SARS-CoV-2 infection (Lee and others 2020; Mantlo
and others 2020; Rosa and others 2021). Indeed, higher
levels of IFN-a, IFN-b, IL-2, and IL-12 are distinctive
features of asymptomatic and mild as opposed to severe
COVID-19 (Masood and others 2021; Tjan and others
2021). Type I IFNs reduce the infectivity of SARS-CoV-2
in vitro (Mantlo and others 2020), whereas IL-2 and IL-12
might contribute to protection by stimulating T and B cell
growth and differentiation. Among other ISGs transcribed
during COVID-19, IFITMs might be necessary, and some
studies have linked the prevalence of SNPs affecting
IFITM3 to COVID-19 susceptibility (Gómez and others
2021; Schönfelder and others 2021).

The initial recognition of SARS-CoV-2 also promotes
chemotaxis. Noticeably, in patients with severe COVID-19,
an ample range of immune cell subtypes are depleted from
the circulation, including monocytes, DCs, CD4+ T cells,
CD8+ T cells, B cells, and NK cells. This phenomenon is
accompanied by peripheral neutrophilia and intense leuko-
cyte infiltration of the lung (Liao and others 2020; Merad
2020; Wang and others 2020b; Wang and others 2020; Xu
and others 2020; Zheng and others 2020), suggesting the
potential participation of specific immune cell subsets in
defenses against SARS-CoV-2.

Neutrophils are the principal cells recruited to the lung of
COVID-19 patients. These cells degranulate, phagocyte the
virus, and liberate NETs (Wu and others 2020a; Reusch and
others 2021; Rosa and others 2021). However, their exu-
berant recruitment and function lead to tissue damage and a
readout of COVID-19 severity (Hernández-Cárdenas and
others 2021). In the lung, distinct AM subpopulations engulf
SARS-CoV-2 to initiate the local immune response. How-
ever, the virus can escape from these cells and evade innate
immunity (Dalskov and others 2020; Lv and others 2021).
Then, attracted by chemokines such as CCL2, CCL3, and
CCL4, monocytes and macrophages migrate to contribute to
antiviral defenses by phagocytosis of virus and infected cells
and cytokine production to amplify the response. Never-
theless, intense recruitment of inflammatory monocytes cau-
ses excessive production of proinflammatory molecules and
neutrophil infiltration, which might lead to injury (Merad
2020; Vanderbeke and others 2021).

Populations of adaptive NK cells with enhanced cytotoxic
functions may also participate in antiviral defenses, as in-
dicated by studies demonstrating increased circulation of
NKG2C+ memory-like NK cells in patients with COVID-19
(Maucourant and others 2020). Interestingly, deleting mu-
tations in genes coding for NKG2C and its ligand HLA-E
and dysfunction of NK cells are associated with a higher risk
of severe COVID-19 (Krämer and others 2021; Vietzen and

others 2021). Moreover, NK cells from severe COVID-19
patients express PD-1, a marker of functional exhaustion
(Wilk and others 2020).

The initiation of adaptive immune responses is pivotal for
infection control, viral clearance, and short-term protection
against reinfection, as demonstrated in studies of COVID-19
vaccines (Folegatti and others 2020; Ewer and others 2021;
Levin and others 2021; Lustig and others 2021). In this
regard, vaccination and natural infection with SARS-CoV-2
elicit germinal center (GC) reactions at secondary lymphoid
organs where B cells activate and differentiate into plasma
cells that produce neutralizing antibodies with the cooper-
ation of follicular T helper cells (Shaan Lakshmanappa and
others 2021; Turner and others 2021a, 2021b). Significantly,
the failure in follicular T cell activation and promotion of
GCs is associated with severe COVID-19 (Kaneko and
others 2020).

Finally, cytotoxic CD8+ T cells also participate in SARS-
CoV-2 elimination and may be particularly important against
novel coronavirus variants with improved evasiveness of
humoral immunity (Naranbhai and others 2022). Figure 2
summarizes the current knowledge about defensive immune
mechanisms against SARS-CoV-2 and how they compare
with immunity versus influenza.

Cytokine signatures during severe COVID-19

A better understanding of the immune factors implicated
in the pathophysiology of COVID-19 is crucial to guiding
the development of novel vaccines and immunotherapeutics.
Unfortunately, what we comprehend about severe COVID-
19 is contradictory. First, the immune response against
SARS-CoV-2 is overregulated. Nevertheless, this excessive
reaction is not protective and instead causes tissue injury.
Patients with severe COVID-19 display elevated levels of
proinflammatory and anti-inflammatory cytokines, chemo-
kines, and growth factors, accompanied by increased neu-
trophil counts, lymphopenia, and depletion of different
cellular subsets in the circulation, as mentioned above.

The factors aiding the transition from a protective to
a dysregulated immune response are elusive, but there is
much interest in identifying risk factors associated with worse
clinical outcomes in COVID-19. Again, clinical variables
such as age and sex are important. Aging is associated with
declined immunity and confers higher odds of death in
patients with COVID-19 (Costagliola and others 2021). For
instance, elderly humans and primates display increased
neutrophilic inflammation than young individuals after SARS-
CoV-2 infection (Rosa and others 2021). Remarkably, the
male gender is disproportionally associated with worse
outcomes in COVID-19. The higher expression and distinct
tissue distribution of ACE2 and the possible immune al-
terations common in males might explain this discrepancy
(Peckham and others 2020). The ample spectrum of immune
deficiencies induced by metabolic disruption might account
for the higher risk for severe COVID-19 in obese and in
diabetic patients (Holly and others 2020).

In contrast, host genetic factors determining higher sus-
ceptibility to CS are poorly recognized since recent stud-
ies have only identified genetic abnormalities conditioning
immune dysfunction, but not hyperinflammation (Forbester
and Humphreys 2021; Velavan and others 2021).
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Profiling immune mediators in severe COVID-19 pa-
tients have revealed low concentrations of type I interferons
(Hadjadj and others 2020; Masood and others 2021), and
elevated levels of TNFa, IFNy, IL-1b, IL-1RA, IL-4, IL-6,
IL-7, CXCL8, IL-9, IL-17A, CCL2, CCL3, CCL4, CCL5,
CCL7, CCL8, CCL11, CXCL9, CXCL10, G-CSF, GM-
CSF, PDGF, FGF, and VEGF (Chen and others 2020;
Han and others 2020; Huang and others 2020; Kong and
others 2020; Lucas and others 2020; Remy and others
2020; Wan and others 2020; Yang and others 2020; Zhu
and others 2020b; Reynolds and others 2021; Sims and
others 2021). From these, CXCL10, a downstream IFNy
effector molecule, shows a strong correlation with disease

severity (Yang and others 2020) and is highly detect-
able in the airways of COVID-19 patients (Reynolds and
others 2021).

This chemokine, together with CXCL8, recruits neutro-
phils after binding to CXCR3 (Ichikawa and others 2013),
thus exacerbating neutrophil-induced lung damage (Wilk
and others 2020; Rosa and others 2021; Vanderbeke and
others 2021). CXCR3 is also expressed on macrophages,
activated Th1 cells, B lymphocytes, NK cells, and DCs
(Groom and Luster 2011). Hence, CXCL10 might be a
suitable target to reduce lung inflammation in COVID-19
patients. Meanwhile, the role of IL-9, the classical cytokine
of Th9 cells, is unknown in COVID-19.

FIG. 2. Immune mechanisms implicated in the defense against SARS-CoV-2 and influenza. (A) Innate humoral factors
present in the lumen of the lower airways block viruses before they attach the underlying epithelium. Mucins and surfactant
proteins A and D are important for host defenses against influenza virus and SARS-CoV-2. Mannose-binding lectin has also
shown to neutralize SARS-CoV-2. (B) The innate immune response against these viruses begins with recognizing PAMPs
by host PRRs. TLR3, TLR7, RIG-1, and the NLRP3 inflammasome participate in the early recognition of influenza and
SARS-CoV-2, eliciting the production of cytokines, chemokines, and interferons. TLR2 and TLR4 may also participate in
the defense against SARS-CoV-2, but the evidence is still scarce. (C) The innate phase of the immune response against
influenza and SARS-CoV-2 comprehends an ample range of mechanisms, including the chemotaxis of monocytes, neu-
trophils, other granulocytes, and neutrophil degranulation and NETosis, phagocytosis of viral particles and infected cells,
and cytotoxicity by NK cells. Some populations of NK cells with adaptive properties (NKG2C+) might also expand during
COVID-19. (D) Dendritic cells link innate and adaptive immunity by presenting antigens at local lymph nodes and secreting
cytokines that shape the functional fate of B and T cells. B cells produce neutralizing antibodies that mediate complement
activation and antibody-dependent cellular cytotoxicity. CD8+ T cells kill infected cells by perforin and granzyme de-
granulation or via the Fas/FasL signaling pathway. CD4+ T cells produce cytokines to orchestrate all the other mechanisms
described. A balance between Th1 and Th2 responses might be crucial for antiviral immunity. The art pieces used in this
figure were modified from Biorender, licensed under a Creative Commons Attribution 3.0 Unported License. NK, natural
killer; NLRP3, NLR family pyrin domain containing 3 receptor; RIG-1, retinoic-acid-inducible gene 1; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; TLR, Toll-like receptor.
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However, the magnitude of Th9 responses has been as-
sociated with the severity of respiratory syncytial virus in-
fection (Pinto and others 2006). CCL5 is chemotactic for
T cells, eosinophils, and basophils expressing the receptor
CCR5, and its blockade reduces inflammation and viremia
in critically ill COVID-19 patients (Patterson and others
2020), whereas CCL7 attracts monocytes and eosinophils
and is associated with the severity of the disease (Yang and
others 2020). GM-CSF is a myeloid cell growth factor and
proinflammatory signal instructing macrophages to amplify
cytokine cascades. GM-CSF is secreted by macrophages, T
cells, mast cells, NK cells, endothelial cells, and fibroblasts
and might be a pivotal driver of lung inflammation in severe
COVID-19 (Leavis and others 2022). Notably, the GM-CSF
blockade improves clinical symptoms and survival in pa-
tients with COVID-19 (De Luca and others 2020).

Intriguingly, the CS of severe COVID-19 is also ac-
companied by functional impairment of myeloid cells and
lymphocytes (Remy and others 2020), resembling the im-
munoparalysis that accompanies hypercytokinemia in sep-
sis. Impaired type I IFN production might advocate this
immunocompromised state (Hadjadj and others 2020; Ma-
sood and others 2021). Also, mixed signals might provide
immune cells with confounding instructions making them
functionally impaired. Indeed, different patterns of cytokine
and chemokine combinations in COVID-19 patients can be
identified according to their disease trajectory, showing that
some individuals with the worse outcomes display mixed
polyfunctional cytokine signatures (Lucas and others 2020).
Furthermore, the anti-inflammatory cytokines TGF-b and
IL-10 have been detected in high concentrations during

SARS-CoV-2 infection and might suppress immune cell
functions (Han and others 2020; Wan and others 2020;
Ferreira-Gomes and others 2021).

Face-to-Face: Immune Profiles of Severe
Influenza and COVID-19

As remarked in the article, the study of sepsis and severe
influenza has provided reference knowledge to face COVID-
19. Currently, it is accepted that the clinical landscape of
COVID-19 mirrors other infectious CSS in many aspects.
This assumption relies on literature reviews and retrospec-
tive studies highlighting similarities between patients in-
fected with SARS-CoV-2 and influenza ( Jiang and others
2020; Tang and others 2020). Indeed, several symptoms are
shared by both infections, probably due to a similar patho-
physiology. Nonetheless, detailed analysis reveals that some
clinical features distinguish each disease, perhaps because
of molecular properties, tropism determinants, and virulence
factors of each virus. Table 1 summarizes the main simi-
larities and differences in viral characteristics and clinical
findings of COVID-19 and influenza. The rest of this section
focuses on comparing the CSS of both diseases.

The potential behind similarities

Using the data summarized here, we can conclude that
the CSS of severe COVID-19 coincides with influenza, in-
dicating common pathological mechanisms that could be
exploited for therapeutic purposes. Certainly, both viruses
are recognized by similar PRRs, trigger the same signaling

Table 1. Viral and Clinical Characteristics of COVID-19 and Influenza

Characteristic Influenza COVID-19

Virus identification 1918, United States 2019, China
Virus family Orthomyxoviridae Coronaviridae
Viral nucleic acid Single-stranded RNA (negative sense)

13.5 kb
Single-stranded RNA (positive sense)

26–32 kb
Animal reservoirs Birds, pigs Bats? Pangolin?
Mechanism of transmission Inhalation Inhalation
Incubation period 2 days 2–14 days
R0 2 2.5
Genome variation mechanism Reassort and rearrange Point mutations
Viral proteins of interest HA, NA S, E, M
Host receptor a 2,6 sialic acids ACE2
Tropism Respiratory tract epithelium Multiple organs
Frequent symptoms Fever, dyspnea, cough Fever, dyspnea, cough
Distinctive manifestations High fever, headache, fatigue, myalgia,

sore throat, cough, eye symptoms
Nonproductive cough, fatigue,

myalgia, gastrointestinal symptoms,
anosmia, dysgeusia

Radiological findings Multilobe consolidations Ground-glass opacities
High-risk populations Elderly, pregnant women, people with

respiratory diseases, hypertension,
coronary heart disease, diabetes,
kidney disease, liver disease,
malignancy

Elderly, people with respiratory
diseases, obesity, hypertension,
coronary heart disease, diabetes,
malignancy

Need for hospitalization 5.6% 20%
Need for intubation 4.8% 10%–15%
Mortality 0.13%–1.36% 1.40%–3.67%
Sequela 20%–30% 25%–40%

ACE2, angiotensin-converting enzyme metallopeptidase 2; COVID-19, coronavirus disease 2019; HA, hemagglutinin; NA,
neuraminidase.
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pathways, and require similar innate and adaptive immune
components for protection. As shown in panel A of Fig. 3,
the CS of severe influenza and COVID-19 concurs in ele-
vated PRR- and inflammasome-induced cytokines, such as
TNFa, IL-1b, and IL-6, revealing a persistent innate in-
flammatory reaction that is detrimental to the host. Hypo-
thetically, targeting these molecules could reduce their
vascular and immunological effects, which are key in the
pathogenesis of sepsis, calming inflammation and allowing
the lung and extrapulmonary organs to restore homeostasis.

To this matter, broad transcriptional suppression of in-
nate inflammatory genes might be achieved using cortico-
steroids. For instance, dexamethasone effectively reduces
the morbidity of patients with severe COVID-19 (Group and
others 2021). This drug has minor mineralocorticoid effects
and reduces inflammation by enhancing the deacetylation of
the histones that regulate cytokine gene expression (Barnes

2006). Conversely, corticosteroids increase the rates of co-
infection and death in patients with influenza (Zhou and
others 2020b), although recent trials indicate a potential
benefit for survival (Villar and others 2020).

Direct blockade of TNFa (infliximab), IL-1R (anakinra,
canakinumab), IL-6 (siltuximab, olokizumab), and IL-6R
(tocilizumab, sarilumab, levilimab) is being tested in clini-
cal trials, showing promising benefits by reducing symp-
tomatic burden, need for invasive respiratory support, and
death, thus warranting further investigation, as revised else-
where (Pum and others 2021). TNFa antagonism would
warrant additional research about the timing of treatment
administration since TNFa is potentially protective during
the early stages of influenza and SARS-CoV-2 infection.
Some observations of individuals already taking anti-TNFa
therapies that showed milder symptoms after getting posi-
tive for COVID-19 might dissipate this concern (Abdullah

FIG. 3. The cytokine storm
profiles of pandemic influ-
enza and COVID-19. (A)
Cytokines, chemokines, and
growth factors commonly or
differentially elevated dur-
ing severe influenza and
COVID-19 were identified
by retrospective analysis of
independent studies. (B) Im-
mune profiles distinguishing
influenza from COVID-19
identified by parallel com-
parisons. The art pieces used
in this figure were modi-
fied from Biorender, licensed
under a Creative Commons
Attribution 3.0 Unported
License.
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and others 2020). On the contrary, tocilizumab is among the
immunotherapies most extensively evaluated in COVID-19.
By the time SARS-CoV-2 emerged, this agent had already
proven safety and efficacy against other CSS (Yokota and
others 2008; Kotch and others 2019), facilitating its rapid
reallocation.

Although most studies show clinical benefits, data sup-
porting tocilizumab lack reproducibility (Price and others
2020), perhaps because of methodological heterogeneity of
clinical trials. Meanwhile, there is little evidence regarding
the use of tocilizumab in patients with influenza. Two small
studies have shown that patients previously receiving this
treatment display milder symptoms of infection (Kawada
and others 2013), and tocilizumab does not affect anti-
body responses against influenza vaccines (Mori and others
2012), supporting that tocilizumab could be safely used for
influenza patients. A relevant aspect to consider for anti-IL-
6 immunotherapy of infectious CSS is the effects of IL-6
on adaptive immunity and T cell differentiation, which vary
depending on the concentration of other cytokines in the
milieu (Martinez-Sanchez and others 2018), and, if altered,
could lead to detrimental effects.

Hence, tocilizumab administration should be guided not
only by IL-6 concentrations but also by each patient’s cy-
tokine and immune cell profile. This premise might apply to
other immunotherapeutics as well.

Remarkably, severe influenza and COVID-19 also con-
verge in elevated levels of chemotactic (CXCL8, CCL2,
CCL3, and CXCL10) and activating molecules (G-CSF)
acting on monocytes and neutrophils. As mentioned above,
a range of monocyte and neutrophil subsets with inflam-
matory and degranulating phenotypes mediate lung inflam-
mation and disease progression in influenza and COVID-19
(Turner and others 2020a; Wilk and others 2020; Rosa and
others 2021; Vanderbeke and others 2021). Hence, disrup-
tion of these chemotactic axes is also an attractive thera-
peutic approach. Currently, only a clinical trial is evaluating
the effect of an anti-CXCL8 antibody for the treatment of
COVID-19 (NCT04347226), but no results have been pos-
ted. Therefore, more research on the antagonism of CXCL8,
CCL2, CCL3, and CXCL10 in influenza and COVID-19 is
required.

Interestingly, innovative approaches to disrupt chemo-
taxis using molecular engineered decoy CCL2 and CXCL8
proteins deserve additional evaluation (Adage and others
2015a, 2015b; Roblek and others 2016). Despite this, in-
hibiting chemotaxis could require administering various
agents at a time because of the considerable redundancy of
the human chemokine axes. The side effects of CXCL10
blockade in immune protection against influenza and
COVID19 should also be tested due to the functions of this
chemokine in mobilizing T cells. Similarly, the therapeu-
tic potential behind antagonizing G-CSF has not been ad-
dressed, but recent observations of detrimental consequences
of the opposite approach (G-CSF administration) in COVID-
19 patients are proof of the concept (Taha and others 2020;
Sereno and others 2021).

Historically, IFNy has been considered the dominant pro-
tective mechanism against intracellular pathogens. In con-
trast, in the light of fresh visions, IFNy-mediated Th1
responses are highly destructive backup responses only
deployed when innate defenses fail in clearing infections
(Matzinger and Kamala 2011). High levels of IFNy in pa-

tients with severe but not mild-to-moderate influenza and
COVID-19 reinforce this idea. Emapalumab, a monoclonal
antibody against IFNy, is safe and effective in reducing
the CSS of primary HLH (Locatelli and others 2020), and
is currently under evaluation for CSS of severe COVID-
19 (NCT04324021).

Immune mediators with strong effects on the endothe-
lium, such as FGF and VEGF, are also potential objec-
tives of immunotherapy to reduce morbidity derived from
microvascular abnormalities during severe influenza and
COVID-19. VEGF is of particular interest as this marker
correlates with acute kidney injury development and pro-
gression to severe disease in influenza and COVID-19 pa-
tients, respectively (Bautista and others 2013; Kong and
others 2020). VEGF inhibition with bevacizumab is used
harmlessly to reduce angiogenesis associated with lung
cancer and ocular disorders (Lauro and others 2014; Afarid
and others 2018).

A small phase 2 study has shown some clinical poten-
tial of bevacizumab in critically ill patients with COVID-19
(Pang and others 2021), but the evidence is still scarce.
Lastly, the interruption of the effects of elevated TGF-b, IL-
10, and IL-1RA levels might help overcome the immune
cell exhaustion and immunosuppression that accompany the
CS of these infections. However, extensive experimentation
is required before clinical applications are attempted since
molecules such as TGF-b and IL-10 have concentration-
dependent effector and regulatory properties, such as pro-
moting IgA production in epithelia.

Influenza versus COVID-19: targeting differences

Beyond the parallelisms between influenza and COVID-
19 aforesaid, a compilation of retrospective data from in-
dependent studies indicate that IL-2 increases only during
severe influenza, whereas high concentrations of IL-4, IL-7,
IL-9, IL-17A, CCL4, CCL5, CCL7, CCL8, CCL11, GM-
CSF, and PDGF are exclusive features of severe COVID-19
(Fig. 3A). So, what is clear is the ample and polyfunctional
CS profile elicited by SARS-CoV-2 but not the influenza
virus. Nevertheless, to identify distinctive CS components
of COVID-19 and influenza, the problem with retrospective
comparisons is the risk of biased conclusions due to dif-
ferences in the genetic background, sociocultural char-
acteristics, technological infrastructure, and research logistics
in different regions.

Another caveat is that molecules identified by this ap-
proach are observed in severe but not mild-to-moderate forms
of each disease, without side-to-side contrasting of both
infections. Furthermore, some cytokines could be measured
independently in one disease group but not the other. Hence,
parallel analyses in geographical settings with similar re-
sources would provide a better perspective. Surprisingly,
although the emergence of SARS-CoV-2 occurred near the
peak of the 2019–2020 influenza season (Poyiadji and oth-
ers 2020; Zhu and others 2020a), only a few comparative
studies have been conducted (Lee and others 2020; Mudd
and others 2020; Vaz de Paula and others 2020; Choreño-
Parra and others 2021a, 2021b, 2021c; Guo and others 2021;
Olbei and others 2021; Reynolds and others 2021), which
has also been difficulted by a reduction in the circulation of
influenza viruses following the COVID-19 pandemic.
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As shown in Fig. 3B, data from parallel comparisons
exhibit a broad spectrum of elevated molecules in both
diseases. From these, several cytokines with antiviral (IFN-
a, IFN-b), inflammatory (TNFa, IL-12, IL-22), regulatory
(IL-10), chemoattractant (CXCL8, CCL2, CCL4, CCL5,
CXCL9, CXCL10), angiogenic (FGF, PDGF, PDGF), and
growth factor (G-CSF, FGF, PDGF) properties are con-
stantly upregulated in severe influenza and COVID-19.
These findings provide further rationale for immunotherapy
directed to regulate innate inflammation, monocyte/neutrophil
chemotaxis, and vasoactive cytokines to reduce the mor-
bidity associated with these CSSs.

The second category of molecules is only elevated in
one disease but not the other. For instance, severe influenza
differs from COVID-19 by higher levels of IL-2, APRIL,
sTNF-R1, sTNF-R2, SP-D, and CXCL17. These mediators
exert important functions to sustain protective immunity.
IL-2 and APRIL support T cell and plasma cell survival
(Benson and others 2008), respectively, while sTNF-R1/R2
are decoy receptors that balance the destructive capacity of
TNFa (Pennica and others 1993). CXCL17 is a mucosal
chemokine expressed in the respiratory tract that mediates
myeloid-cell recruitment and anti-inflammatory activities
(Choreno-Parra and others 2020). The elevated CXCL17
levels observed only in severe influenza patients might in-
dicate that they have more regulatory mechanisms to min-
imize tissue damage than individuals with COVID-19. Thus,
immunotherapy against these factors might not be suit-
able, but the observations reveal important differences in the
pathogenesis of influenza.

Conversely, TWEAK, TSLP, MMP-1, and MMP-3 are
upregulated only in COVID-19. TWEAK is an amplifier of
inflammation that stimulates the further secretion of IL-6,
CXCL8, CXCL10, and MMP-1 (Saas and others 2000;
Chicheportiche and others 2002). Therapeutic targeting of
TWEAK might calm inflammation and reduce the morbid-
ity of COVID-19. Since TWEAK might promote cancer
cell survival, a monoclonal antibody developed to block
the TWEAK receptor (enabatuzumab) is being tested clin-
ically in cancer trials (Lam and others 2018), although it has
possible hepatotoxic effects. TSLP is a promoter of aller-
gic inflammation and Th2 responses (Ito and others 2012).
The matrix metalloproteinases MMP-1 and MMP-3 are
implicated in tissue damage underlying other lung diseases
(D’Armiento and others 1992; Dahlen and others 1999;
Greenlee and others 2007), placing them as potential ther-
apeutic objectives to reduce lung injury in COVID-19.
Nonetheless, validation studies are required to demonstrate
a link between TWEAK, TLSP, MMP-1, and MMP-3 and
severe COVID-19.

A third cytokine cluster includes molecules found in se-
vere influenza and COVID-19, but with higher frequency
and concentrations in one CSS than its counterpart. Inter-
estingly, the profile of this cluster in COVID-19 again shows
a mixed Th1/Th2/Th9/Th17 response, together with innate
cytokines (IL-1b, IL-6), eosinophil chemokines (CCL11),
growth factors, and vasoactive molecules (GM-CSF, HGF,
EGF, VEGF). Hence, the lack of balance of the effector
response might be another determinant of the host defen-
sive collapse observed in some critical COVID-19 patients.
Specifically, the Th2 component of this response might in-
hibit antiviral responses in specific subgroups of patients
and generate interstitial infiltrates of neutrophils, eosino-

phils, and type 2 innate lymphoid cells (ILC2s), mediat-
ing lung inflammation and tissue damage. In fact, evidence
exists that Th2 mediators and eosinophilia are associated
with worse outcomes in a subset of individuals with se-
vere COVID-19 (Fraissé and others 2020; Lucas and others
2020).

Furthermore, histopathological analyses of postmortem
lung specimens have confirmed that COVID-19 differs from
influenza by a robust Th2 response that accompanies local
Th1 and Th17 inflammation in some fatal cases (Vaz de
Paula and others 2020; Choreño-Parra and others 2021a).
These deleterious effects of Th2 responses could also initi-
ate pathogenic processes that favor the progression to pul-
monary fibrosis, as observed in several severe COVID-19
patients discharged from hospitals (Mo and others 2020).

Considering the evidence, we propose that the opti-
mal immune therapeutics for COVID-19 should not only
block specific immune signaling pathways associated with
hyperinflammation but also reestablish a convenient im-
mune balance that promotes protective immunity in the
specific subgroup of patients who display polyfunctional
cytokine production. For this purpose, some cytokines could
be targeted. For instance, monoclonal antibodies against IL-
4 (dupilumab) have been used in patients with atopic der-
matitis and COVID-19 without increasing the risk of severe
complications and even apparently reducing respiratory
symptoms (Caroppo and others 2020; Carugno and others
2020; Ferrucci and others 2020; Ungar and others 2022). IL-
9 and TSLP could be other targets to inhibit Th2 responses
in COVID-19 patients, as these molecules promote allergic
inflammation (Temann and others 2002; Ito and others
2012; Koch and others 2017). Monoclonal antibodies against
IL-9 (MEDI-528) and TSLP (tezepelumab) are currently in
clinical trials for asthma.

Although MEDI-528 inhibits several aspects of the im-
munopathology of asthma in mice, clinical data are yet
scarce (Gong and others 2017). Conversely, tezepelumab
improves lung function and reduces eosinophilia and exac-
erbations in patients with uncontrolled asthma (Menzies-
Gow and others 2021). Hence, future studies should assess
whether tezepelumab could improve outcomes in COVID-19.

Concluding Remarks

The data summarized in this article reveal important
similarities and differences in the immune profile of severe
influenza and COVID-19. These diseases display increased
levels of cytokines with anti-viral (IFN-a, IFN-b), inflam-
matory (TNFa, IL-12, IL-22), regulatory (IL-10), chemo-
attractant (CXCL8, CCL2, CCL4, CCL5, CXCL9, CXCL10),
angiogenic (FGF, PDGF, PDGF), and growth factor (G-CSF,
FGF, PDGF) properties. Hence, pathogenic mechanisms such
as excessive innate immune activation, monocyte/neutrophil
chemotaxis, and microvascular dysfunction might be impor-
tant during the 2 diseases. Conversely, discrepancies in the
immune signature of these infections include higher levels
of Th1 cytokines along with IL-2, APRIL, sTNF-R1, sTNF-
R2, SP-D, and CXCL17 in severe influenza patients, with
COVID-19 displaying a polyfunctional Th1/Th2/Th17 im-
mune activation profile in some patients with severe mani-
festations. Hence, reestablishing a balanced immune reaction
might be a good objective for host-directed therapies di-
rected to certain subgroups of COVID-19 patients.
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Nonetheless, additional research is warranted to validate
these immune profiles and clarify the best timing for ad-
ministering specific immunotherapies according to the cy-
tokine dynamics of these infections.
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2021b. Expression of Surfactant protein D (SP-D) distin-

guishes severe pandemic influenza A(H1N1) from COVID-
19. J Infect Dis 224(1):21–30.
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Fraissé M, Logre E, Mentec H, Cally R, Plantefève G, Contou
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