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Background. Accumulating evidence substantiated that the immune cells were intricately intertwined with the prognosis and
therapy of clear cell renal cell carcinoma (ccRCC). We aimed to construct an immune cell signatures (ICS) score model to
predict the prognosis of ccRCC patients and furnish guidance for finding appropriate treatment strategies. Methods. Based on
The Cancer Genome Atlas (TCGA) database, the normalized enrichment score (NES) of 184 ICSf was calculated using single-
sample gene set enrichment analysis (ssGSEA). An ICS score model was generated in light of univariate Cox regression and
Least absolute shrinkage and selection operator (Lasso)-Cox regression, which was independently validated in ArrayExpress
database. In addition, we appraised the predictive power of the model via Kaplan-Meier (K-M) curves and time-dependent
receiver operating characteristic (ROC) curves. Eventually, immune infiltration, genomic alterations and immunotherapy were
analyzed between high and low ICS score groups. Results. Initially, we screened 11 ICS with prognostic impact based on 515
ccRCC patients. K-M curves presented that the high ICS score group experienced a poorer prognosis (P < 0:001). In parallel,
ROC curves revealed a satisfactory reliability of model to predict individual survival at 1, 3, and 5 years, with area under the
curves (AUCs) of 0.744, 0.713, and 0.742, respectively. In addition, we revealed that the high ICS score group was
characterized by increased infiltration of immune cells, strengthened BAP1 mutation frequency, and enhanced expression of
immune checkpoint genes. Conclusion. The ICS score model has higher predictive power for patients’ prognosis and can
instruct ccRCC patients in seeking suitable treatment.

1. Introduction

Clear cell renal cell carcinoma (ccRCC) was a cancer with an
incidence of 2.2% and a lethality of 1.8% annually according
to Global Cancer Observatory reported in 2020 [1]. About
20-30% of ccRCC patients has metastasized at the time of
diagnosis, with 5-year survival rates of less than 10% and
weak sensitivity to radiotherapy and chemotherapy [2, 3].
Given that, it was significant to screen novel biomarkers
with higher predictive value for the ccRCC patients.

The tumor microenvironment (TME) was a complex
dynamic multicellular ecosystem consisting of a mixture of
immune cells, stromal cells, cancer cells, and other compo-
nents [4, 5]. Immune cells in the TME were long identified
as a pivotal and central area of oncology investigation, per-
forming an invaluable role in the prognosis, immune escape,

and treatment resistance of malignancies [6, 7]. Dai et al. [8]
postulated that intratumor CXCL13+ CD8+ T cell infiltration
compromised the function of CD8+ T cells, rendering ccRCC
patients with poor clinical outcome. Jonasch et al. [9] uncov-
ered that the interaction of genomic instability with the TME
could modulate the immune cell populations of ccRCC and
in turn affected the survival of ccRCC patients, providing
innovative insights for targeted therapy.

However, the majority of present studies evaluating the
effect of immune cells on ccRCC were centered on minority
immune cells or model construction based on immune-
related genes. Wu et al. [10] identified two CD8+ T cell-
associated molecular clusters in ccRCC to provide guidance
for prognosis prediction and immunotherapy. Peng et al. [11]
constructed a TME-related genes model with prognostic value
using immune or stromal scores after ESTIMATE algorithm to
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predict patients’ survival outcomes and immunotherapy
responses. In addition, Gu et al. [12] developed an immune risk
score model to assess the prognosis of ccRCC patients by the
CIBERSORT algorithm. The CIBERSORT algorithm only
counted 22 immune cells, and most immune cell signatures
(ICS) were not included [13]. Consequently, there was an
urgent demand to adopt a new assessment system including
more ICS to predict ccRCC prognosis and guide therapy.

In this study, we utilized The Cancer Genome Atlas
(TCGA)- kidney renal clear cell carcinoma (KIRC) cohort to
construct an ICS score model based on 184 ICS and validated
in E-MTAB-1980 cohort. Moreover, the relationships between
the model and immune landscape, genetic mutations, and ail-
ment treatment were further elaborated. This study envisaged
mining prognostic indicators to assist oncologists in identify-
ing personalized treatment strategies.

2. Methods

2.1. Data Collection and Processing. Figure 1 displays the
flowchart of our study process. KIRC (539 tumor samples)
was retrieved from TCGA database (https://portal.gdc.cancer
.gov/) as training cohort. E-MTAB-1980 (101 tumor samples)
was downloaded from ArrayExpress database (https://www
.ebi.ac.uk/arrayexpress/) as external validation cohort. Patients
were ruled out if they were not a tumor sample or did not have
a complete record of clinical information (survival time, sur-
vival status, age, stage, grade, and gender) in TCGA database.
The batch effect between the two cohorts was corrected using
the “sva” package. For normalization, transcripts per million
values were processed by log2 (value + 1), which were analo-
gous to gene expression from microarrays and comparable
between patients.

2.2. Gene Set Enrichment Analysis. A total of 184 ICS were
obtained by retrieving previous literature [14]. The single-
sample gene set enrichment analysis (ssGSEA) [15] was
implemented to calculate the normalized enrichment score
(NES) of each ICS using the “GSVA” package. The NES
was considered as the infiltration levels of 184 ICS for each
ccRCC patient.

2.3. Construction of ICS Score Model. Univariate Cox regres-
sion was performed to screen the prognosis-related signa-
tures in the training cohort. In addition, the Least absolute
shrinkage and selection operator (Lasso)-Cox regression
was applied to exclude variables with a regression coefficient
equal to zero, tackling the problem of overfitting. After the
shrinkage via “glmnet” packages, the optimal λ value was
acquired [16]. Ultimately, we constructed an ICS score
model through the following formula:

ICSs score = 〠
n

i=1
COEFi ∗NESi, ð1Þ

where COEF referred to the regression coefficients stem-
ming from univariate Cox regression and NES represented
the NES for the corresponding ICS.

2.4. Assessment and Validation of Model. To evaluate the pre-
dictive performance of the model, patients in the training
cohort were classified into high and low ICS score groups
based on the median ICS score. Kaplan-Meier (K-M) survival
curves were applied for survival comparison between the high
and low ICS score groups. Time-dependent receiver operating
characteristic (ROC) curves including survival at 1, 3, and 5
years were established to reflect the sensitivity and specificity
of the model. Calibration curves were performed to compare
the actual and predicted probability of overall survival (OS)
at 1, 3, and 5 years.

2.5. Independent Prognostic Analysis. After initial filtering by
univariate Cox analysis, multivariate Cox analysis was con-
ducted to assess the implication of independent prognosis for
grade, age, gender, stage, and ICS score variables. Following
confirmation of the prognostic value of ICS score, a nomogram
integrating clinical traits and the ICS score was constructed to
predict the survival probability of each patient. The forecast
performance of the nomogram was evaluated by the C-index
and calibration curves.

2.6. Immune Infiltration Analysis.Weused the ESTIMATE [17]
algorithm to calculate the immune infiltration status of immune
components. In the ESTIMATE algorithm, we calculated the
scores using the “estimateScore” function, which calculated
the matrix, immune, and estimated values for each sample
based on the gene expression data, so the results were stable
when the gene expression data were determined. Moreover,
we utilized the CIBERSORT algorithm to estimate the abun-
dance of 22 types of immune cells. In the CIBERSORT
algorithm, we set perm = 1000, meaning that a single sample
was repeated 1000 times to estimate the P value of immune infil-
tration so as to obtain stable results. And we run the two algo-
rithms separately more than three times with the same results.
Afterwards, we employed the ssGSEA to evaluate the abun-
dance of different immune-associated functions or pathways.

2.7. Mutation Analysis. The somatic variant landscape was
visualized by the “maftools” package [18]. Tumor mutation
burden (TMB), commonly defined as the total number of
nonsynonymous mutations, was proposed as a promising
biomarker of immunotherapy [19]. The TMB of each patient
between high and low ICS score groups was assessed.

2.8. Immunotherapy Forecast and Drug Sensitivity Analysis.
Immunophenoscore (IPS) representing four categories of
immunogenicity-determining genes (effector cells, immune
suppressor cells, MHC molecules, and immune modulators)
was calculated using an unbiased machine learning approach.
It has been authenticated that the higher IPS score, the stronger
the immunogenicity and the better the response to immuno-
therapy. The IPS of ccRCC patients were originated from The
Cancer ImmunomeDatabase (TCIA, https://tcia.at/home) [20].

Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org/) was a publicly available pharmacoge-
nomic database to study the drug sensitivity of cancer cells,
which could present a distinct resource for the discovery of
new targets for cancer therapy [21]. Half-maximal inhibitory
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concentrations (IC50) of common chemotherapeutic agents
were estimated by the “pRRophetic” package [22].

2.9. Statistical Analysis. All statistical analysis was imple-
mented using R software (version 4.1.2). Continuous vari-
ables between the two groups were compared using the
Wilcoxon test. The Chi-square test and Fisher’s exact test
were performed to compare categorical variables. Pearson
correlation test was used to infer the correlation between
the two parameters. All statistical P values were two-sided.
Unless otherwise stated, P < 0:05 was considered significant.

3. Results

3.1. Identification of Prognosis-Related Signatures and
Construction of ICS Score Model. The detailed demographic
and clinical characteristics of ccRCC patients in this study are
summarized in Table 1. A total of 515 ccRCC patients from
the TCGA-KIRC cohort and 101 ccRCC patients from the E-
MTAB-1980 cohort were ultimately enlisted in this study. After
univariate Cox regression, 58 ICS were subjected to Lasso-Cox
regression for further shrinking. Then, 11 ICS were included
and used to build the ICS score model in the training cohort,
when the Lasso-Cox regression reached the optimal λ value
(0.07290335) (Figures 2(a) and 2(b)). These 11 ICS were

TCGA-KIRC
cohort (n = 611)

TCGA-KIRC
cohort (n = 515)

Calculating the normalized
enrichment score by ssGSEA

Identifying 58 ICSs related to OS
using univariate Cox (P < 0.05)

Identifying 11 ICSs via lasso-cox

Building ICSs score model using 11 ICSs
Validation of ICSs score

model

Survival and ROC curves Prognostic nomogram Immune landscape Genomic changes Drug sensitivity

184 immune cells
signatures (ICSs)

E-MTAB-1980 (n = 101)

Exclusion (n = 96)
(i) Non-tumor samples: (n = 72)

(ii) Incomplete clinical information: (n = 24)

E-MTAB-1980 (n = 101)

Figure 1: Flowchart of the study.

Table 1: Clinicopathological characteristics of the ccRCC patients.

Variables TCGA (n = 515) E-MTAB-1980 (n = 101)
Status

Dead 169 23

Alive 346 78

Age (years)

≤65 340 57

>65 175 44

Gender

Male 336 77

Female 179 24

Grade

1 13 13

2 224 59

3 205 22

4 73 5

Undetermined — 2

Stage

I 257 66

II 54 10

III 122 11

IV 82 14
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myeloid dendritic cells MCPcounter, neutrophils MCPcounter,
endothelial cells MCPcounter, cytokine receptors, interleukins,
IL4 score 21050467, IL8 21978456, interferon receptor, TGF-β
family member receptor, Rotterdam ERneg PCA 15721472,
andCSR activated 15701700, of which 5 signatures were hazard
factors while 6 signatures were protective factors (Figure 2(c)).

3.2. Evaluation and Verification of the ICS Score Model.
CcRCC patients were divided into high (n = 251) and low
(n = 264) ICS score groups based on the median ICS score.

The K-M survival curves revealed significantly favorable OS
in the low ICS score group (Figure 3(a)). The distribution
curve and survival scatter diagram indicated that patients with
a high ICS score had a worse prognosis (Figures 3(b) and 3(c)).
Meanwhile, the K-M curves, distribution curve, and survival
scatter diagram in the validation cohort were identical to the
results of training cohort (Figures 3(d)–3(f)). Analysis of the
prognostic prediction efficiencies indicated the model had rel-
atively high area under the curves (AUCs) at 1, 3, and 5 years
which were 0.744, 0.713, and 0.742, respectively (Figure 4(a)).
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Figure 2: Construction of the ICS score model in the training cohort. (a) Lasso-Cox coefficient profiles of 11 selected ICSs. (b) Disclosure of
partial likelihood bias. (c) Association between the 11 ICSs and OS.
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Figure 3: Evaluation of ICS score model. (a) Estimation of the OS in the training cohort. (b) Distribution curve in the training cohort. (c)
Survival scatter diagram in the training cohort. (d) Estimation of the OS in the validation cohort. (e) Distribution curve in the validation
cohort. (f) Survival scatter diagram in the validation cohort.
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The calibration curves delivered a high degree of consistency
between predictions and observations in the training cohort
(Figure 4(b)). Analogously, the AUCs at 1, 3, and 5 years were
0.796, 0.783, and 0.777 separately and the calibration curves also
implied an excellent concordance between predictions and
observations in the validation cohort (Figures 4(c) and 4(d)).

3.3. Prognostic Impact of ICS Score Model and Establishment of
the Nomogram. Univariate and multivariate Cox regression
revealed the ICS score was independently correlated with
OS, with a HR of 2.576 (95%CI = 1:801-3.682, P < 0:001),
along with a HR of stage (1.609, 95%CI = 1:384-1.871, P <
0:001), a HR of grade (1.288, 95%CI = 1:026-1.617, P =
0:029), and a HR of age (1.025, 95%CI = 1:010-1.040, P <
0:001) (Figures 5(a) and 5(b)). To define a quantitatively indi-

vidual scoring system for each patient, a nomogram that inte-
grated the stage, grade, age, and ICS score was generated
(Figure 5(c)). The C-index verified that nomogrammanifested
a satisfactory prediction in the OS of ccRCC patients
(Figure 5(d)) and calibration curves testified a desirable con-
sistency between the predicted and observed values at the odds
of 1, 3, and 5 years’ survival (Figure 5(e)).

3.4. Estimation of TMEwith ICS ScoreModel.A battery of thor-
ough analysis was conducted to appreciate the immunologic
nature between the high and low ICS score groups. Initially,
the result of ESTIMATE illustrated that the high ICS score
group exhibited a higher ImmuneScore and EstimateScore
which entailed a lower TumorPurity (Figure 6(a)). Meanwhile,
there was a significant positive correlation between ICS score
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Figure 4: Estimation of the prognostic prediction efficiencies. (a) Time-dependent ROC analysis in the training cohort. (b) Calibration plot
of the model in the training cohort. (c) Time-dependent ROC analysis in the validation cohort. (d) Calibration plot of the model in the
validation cohort.
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Figure 5: Continued.
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and ImmuneScore and EstimateScore, as well as a negative cor-
relation between ICS score and TumorPurity (Figures 6(b)–
6(d)). Subsequently, the CIBERSORT demonstrated that in
the high ICS score group, the antitumor lymphocyte cell
subpopulations such as CD8+ T cells, T cell CD4 memory
activated, T cell regulatory, and neutrophils were significantly
increased. However, the proportions of T cell CD4 memory
resting, NK cell resting, monocytes M2, and mast cell resting
were significantly decreased (Figure 6(e)). Further, correlation
analysis verified the above results (Figure 6(f)). The ssGSEA
displayed that the high ICS score group possessed a universally
higher infiltration of immune functions apart from type II IFN
response (Figure 6(g)). And significant correlations between
ICS score and different immune functions were found
(Figure 6(h)).

3.5. Comparison of Genomic Alterations between High and
Low ICS Score Groups. The mutation scenery between the
high and low ICS score groups was analyzed and visualized
(Figures 7(a) and 7(b)). In the beginning, the mutation rates
were comparable between the high and low ICS score groups
(109/134, 81.34% vs. 153/185, 82.70%, P = 0:922). Further-
more, the five most frequently mutated genes and the most
common mutation type in both high and low ICS score
groups were VHL, PBRM1, TTN, SETD2, and BAP1 and
missense mutation, accordingly. Subsequently, the mutation
rate of BAP1 was significantly rose in the high ICS score
group as shown in Table 2 (P = 0:004). However, there was
no statistical difference of TMB between the high and low
ICS score groups (Figure 7(c)). Interestingly, survival analy-
sis noted that patients with an increased level of TMB corre-
lated with a poor OS. And the combination of low mutation
and low ICS score group had the most prolonged survival
(Figures 7(d) and 7(e)).

3.6. Relationship between ICS Score and Treatment Strategies.
To evaluate which group was more applicable for immuno-
therapy, several immune checkpoint genes [23] and IPS were

introduced for investigation. As depicted in Figure 8(a), the
expression of immune checkpoint genes was substantially upreg-
ulated in exception to programmed cell death 1 ligand 1 (PD-L1)
in the high ICS score group. Meanwhile, patients with higher
ICS score had significantly higher IPS cytotoxic T lymphocyte-
associated antigen-4 (CTLA4)-positive-programmed cell death
1 (PD-1)-positive, IPS-CTLA4-positive-PD-1-negitive, IPS-
CTLA4-negitive-PD-1-positive (Figures 8(b)–8(e)). Addition-
ally, the data of drug susceptibility showed that the high ICS
score group patients had a dramatic sensitivity to sunitinib,
docetaxel, bortezomib, gefitinib, and dasatinib compared to
low ICS score group patients, who exhibited a higher sensitivity
to axitinib, pazopanib, and imatinib (Figures 9(a)–9(i)).

4. Discussion

Immune cells in the TME were essential factors affecting the
progression, prognosis, and therapy of ccRCC [24]. In this
study, we constructed an ICS score model based on 184
ICS. ROC curves and calibration curves corroborated the
robust competence of the model to evaluate prognosis.
What’s more, higher ICS score was associated with more
infiltration of immune cells, higher BAP1 mutation rate
and better adaptation to immunotherapy. This highlighted
the essential role of the ICS score model in establishing a
prognostic prediction system and providing a therapeutic
reference for ccRCC patients.

The ICS score embraced 11 ICS. Myeloid dendritic cells
generated chemokine ligand 17 that recruited T cells as well
as other activated antigen-presenting cells and was an inde-
pendent prognostic factor for OS in ccRCC patients [25].
Tumor-infiltrating neutrophils were involved in the prognos-
tic deterioration of ccRCC by releasing elastase that broke
down cell-cell adhesion and promoted tumor propagation
[26]. Interferon receptors, cytokine receptors and interleukins
could impair the prognosis of ccRCC through reconfiguring
the immune landscape of TME [27, 28]. In addition, TGF-β
was also a member of the cytokine family. Reports claimed
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that the deletion of TGF-β receptors triggered the dysregula-
tion of TGF-β signaling which further led to enhanced metas-
tatic of ccRCC [29, 30]. Regarding the role of other ICS in
ccRCC, further studies were expected to confirm. In general,
these ICS had valuable effects in the occurrence, progression,
prognosis, and treatment of ccRCC.

The TME were not simply consisted of the tumor cells but
also the stromal cells which can be infiltrated by tumor cells
and equipped with tumor-associated effects [31]. Our study
observed significant difference in ImmuneScore between high

and low ICS score groups, while the StromalScore was not sig-
nificantly related to ICS score. Therefore, the following analysis
principally recounted the immune landscape between high and
low ICS score groups. It was unearthed that patients with high
ICS score were evidently richer in immune cells andmore likely
to benefit from immunotherapy, which was inconsistent with
the inferiority survival exhibited by high ICS score group
patients. A substantial body of studies revealed the immuno-
suppressive properties of TME in ccRCC patients. Chevrier
et al. [32] found that T cells and tumor-associatedmacrophages
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Figure 6: The immune status of ccRCC patients between high and low ICS score groups in the training cohort. (a) ESTIMATE analysis of
StromalScore, ImmuneScore, and EstimateScore. (b–d) Correlation of ICSs score and ImmuneScore, EstimateScore, and TumorPurity. (e)
CIBERSORT analysis of the relative proportions of immune infiltration for 22 immune cells. (f) CIBERSORT analysis of the correlation
between immune infiltration for 22 immune cells and ICS score. (g) ssGSEA of different immune functions. (h) ssGSEA of the
correlation between immune functions and ICS score. Levels of statistical significance: ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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(TAMs) were the main immune cell populations in ccRCC.
Among them, CD4CD25 regulatory T cell-suppressing T cell
immunity was perceived as a principal impediment governing

immunotherapy [33]. Meanwhile, high infiltration of M2-like
TAMs limited the efficacy of antitumor T cell responses and
exhibited high expression of HLA class II as well as
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Figure 7: Mutation scenery in the training cohort. (a) Waterfall plot of the mutation distribution of the top 20 most frequently mutated
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Table 2: Mutation rate of BAP1 in high and low ICS score groups.

Gene H-wild H-mutation L-wild L-mutation P value

BAP1 114 (85.07%) 20 (14.93%) 176 (95.14%) 9 (4.86%) 0.004
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Figure 8: Prediction of immunotherapy response in the training cohort. (a) Differences of immune checkpoint genes between high and low
ICS score groups. (b–e) Differences of IPS between high and low ICS score groups.
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Figure 9: Continued.
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complement-related genes, which were associated with tumor
cells proliferation and resistance to chemotherapy [24, 34–36].
In addition, Zou et al. [37] illustrated upregulation of check-
point molecules dampened the activity of effector T cells and
antigen-presenting cells, impeding an effective antitumor
immune response. Together, these contributed to explain why
patients in the high ICS score group had a dismal OS despite
a high infiltration of immune cells.

In a bid to furnish proper clinical treatment strategies, we
would like to figure out whether the ICS score could predict
the response to immunotherapy in ccRCC patients. Our study
uncovered that the expression of CTLA4 and PD-1 was strik-
ingly elevated in the high ICS score group, which was further
validated by IPS, whereas no apparent differences were
detected in the PD-L1 expression and TMB between high
and low ICS score groups. Although PD-L1 was the most
promising biomarker for predicting immunotherapy response
for most malignancies, its predictive value continued to be con-
troversial in ccRCC. Motzer et al.’s CHEKMATE-025 trial
showed that irrespective of PD-L1 expression, nivolumab and
everolimus improved OS in patients with refractory ccRCC
consistently [38]. The inconsistency of detection methods and

the variability of the thresholds used to define PD-L1 positivity
were probably the most prominent factors. Meanwhile, PD-L1
expressionmeasured by transcriptomic data was not as credible
as the intensity and location of PD-L1 expression detected by
immunohistochemistry. To understandwhether the prognostic
effect of ICS score was related to genetic alterations, we com-
pared the disparities of genomic layer between high and low
ICS score groups. It was certified that BAP1 mutation evoked
augmented expression of C-C chemokine receptor 5 (CCR5)
on Tregs and tumor cells. Tumor cells could secrete CCR5
ligands which bonded to CCR5, induced increased PD-L1
expression, and recruited CCR5 Tregs to local TME, thereby
enhancing immune escape [39]. Extrapolating from the above
results, we speculated that alterations in genes were involved
in the prognosis and therapy of ccRCC patients.

There were a few of drawbacks for this study. Foremost,
it was grounded in public database which deserved further
validation in a prospective cohort of patients receiving
immunotherapy. Moreover, integrated analysis of multio-
mics in the future will enable to compensate for the current
deficiency of exclusive attention to data on transcriptional
expression and mutation levels.

6

5

4

3

Low High

Pa
zo

pa
ni

b 
se

ns
iti

vi
ty

 (I
C5

0)

ICSs score

Pazopanib

ICSs score
Low
High

P < 0.001

(g)

6

4

2

Low High

Su
ni

tin
ib

 se
ns

iti
vi

ty
 (I

C5
0)

ICSs score

Sunitinib

ICSs score
Low
High

P < 0.001

(h)

4.50

4.25

3.75

4.00

3.50

Low High

So
ra

fe
ni

b 
se

ns
iti

vi
ty

 (I
C5

0)

ICSs score

Sorafenib

ICSs score
Low
High

P = 0.390

(i)

Figure 9: Analysis of drug sensitivity in the training cohort. (a–i) Differences in IC50 of the chemotherapeutic drugs.
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5. Conclusions

In summary, the ICS score model is very valuable for pre-
dicting the prognosis of ccRCC patients and is intimately
interrelated with the potency of treatment. This compre-
hensive model has excellent prediction ability and provides
appropriate individualized treatment strategies for ccRCC
patients.
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