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Simple Summary: Despite great advancements in early detection and therapeutic strategies, the 5-year
survival rate for patients with metastatic prostate cancer remains low (i.e., ~30%). Targeting prostate
cancer-associated genes has emerged as a promising treatment for this devastating disease. This review
summarizes recent findings in silencing genes that are involved in prostate cancer pathogenesis.
Moreover, novel nanotechnology-based platforms for effective delivery of therapeutic RNAs to
prostate cancer cells have been discussed. Information provided in this review will benefit both
researchers and clinicians to design and develop novel therapeutic approaches for patients suffering
from prostate cancer.

Abstract: Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer
treatment in light of their ability to specifically target and silence cancer-associated genes. In recent
years, numerous studies focus on determining genes that actively participate in tumor formation,
invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great
advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer
cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field
of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses
on recent findings in cancer-associated genes and the application of siRNAs to successfully silence
them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
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1. Introduction

Prostate cancer (PCa) is the most commonplace malignancy in men along with the second most
frequent cause of cancer-related death in males in the Western population, just behind lung cancer [1].
In 2020, it is anticipated that 191,930 American men will be diagnosed with prostate cancer and
33,330 patients will die due to this malignancy [2]. Among more than a million new cases diagnosed
with PCa worldwide annually, statistics shows that roughly 30% of patients succumb to this disease [3].
Moreover, in light of higher incidence of this abnormality among the elderly and as a result of
enhancement in life expectancy, it is estimated that the number of PCa new cases elevates roughly
80% to more than two million annually by 2040 [4,5], making this malignancy a critical health issue,
particularly in developed countries [6]. Despite great advancements in current therapeutic strategies
for PCa such as surgery, radiotherapy, and androgen deprivation therapy, the 5-year survival of patients
with distant tumors remains low (i.e., ~30%) [7,8]. Therefore, it is exigent to identify novel targets for
developing more effective treatments to combat this growing concern.
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Recent advancements in genetic research have provided numerous innovative tools for treatment of
various abnormalities, from inflammation to diverse types of cancers. In line with this, RNA interference
(RNAi) has attracted tremendous attention as a novel therapeutic tool in the clinical setting among
the research community merely after it was discovered in the 1990s [9,10]. Short interfering RNAs
(siRNAs), also recognized as small RNAi, are double-stranded RNAs with 21–25 nucleotides that are
applied to silence target genes in cells [11,12]. siRNAs are made of two single sequences, named sense
strand (passenger strand) and antisense strand (guide strand), connected by an active protein complex
called the RNA-Induced Silencing Complex (RISC) [13,14]. It has been demonstrated that guide strand
acts as the guide for the recognition of complementary mRNAs, and the RISC complex forms through
their attachment. As soon as the guide strand binds to the target mRNA, the mRNA is cleaved by
argonaute 2 (Ago2), the catalytic subunit of the RISC complex [15,16]. siRNAs have gained importance
as effectual drugs against specific genes involved in the pathogenesis of different disorders, including
viral infections and cancers [9,17]. The review will discuss the potential value of siRNAs in the treatment
of PCa and elaborate novel approaches for siRNA delivery.

2. siRNA as a Therapeutic Agent in Various Types of Cancers

There is growing evidence proving that siRNAs can be considered as promising therapeutics
for many human pathologies, namely cancer, cardiovascular diseases, and other abnormalities of
genetic etiology [18,19]. Cancer is the most prevalent genetic disorder, provoked from the alteration in
precise genes within cancer cells. Various types of gene mutations, which can either activate oncogenes
or inactivate tumor suppressor genes in cells, could result in initiating cancer or even exacerbating
it [20]. Therefore, one of the promising ways to tackle different types of malignancies is gene therapy
to modulate the expression pattern of particular genes participating in tumor pathogenesis [21].
Since their discovery, siRNAs have attracted tremendous attention as novel cancer therapeutics.
In line with this, it is proven that elongation factor 2 kinase (EF2K) is overexpressed in breast cancer
of patients with mutations in BRCA1 (a human tumor suppressor gene), consequently triggering
significant tumor growth and poor survival rate. Using siRNAs to target EF2K significantly declines cell
proliferation, migration, and invasion of the cancer cells. Additionally, delivery of EF2K-specific siRNAs
into BRCA1-mutated breast cancer in an orthotopic xenograft model by silica-coated cobalt-ferrite
nanoparticles considerably diminishes tumor growth and metastasis [22]. Furthermore, acetylation of
ATP-binding cassette transporter E1 (ABCE1), which is often induced by a Tat interactive protein 60 kDa
(Tip60), has been found to be increased in the tissues and cells of lung cancer. Gene silence of Tip60 in
lung cancer cells by designed siRNA reduces the acetylation of ABCE1, accompanied by reduced tumor
weight and volume [23]. Consistent with these findings, it was shown that knockdown of neuromedin
U receptor 2, a bioactive and highly conserved neuropeptide, through siRNA significantly enhances
paw withdrawal threshold value in bone cancer pain via inactivation of PKC/ERK and PI3K/AKT
signaling pathways in comparison with negative controls [24]. These data suggest that using siRNA to
silence genes involved in tumor pathogenesis has potential value for cancer treatment.

Numerous proteins are upregulated in cancers and have crucial roles in cancer development.
The precursor of nerve growth factor is one of the proteins that was recently shown to be overexpressed
in pancreatic cancer tissues and cell lines. It was reported that knockdown of this specific growth
factor by siRNA diminishes cell proliferation, migration, and invasion, and promotes anoikis of
pancreatic cancer cells [25]. Similar to these findings, Li et al. [26] showed that water channel proteins
(aquaporins), which are responsible for the transportation of water molecules, can participate in tumor
cell proliferation and metastasis in breast cancer. It was found that silence of aquaporin-5 via siRNA
decreases invasion and migration of cancer cells and augments the chemosensitivity of MCF-7/ADR
cells to adriamycin, indicating the effectiveness of siRNAs in breast cancer treatment [26]. Additionally,
Tang et al. [27] studied the impact of siRNA knockdown of CT45A1 (cancer-testis antigen family
45 member A1) in cancer therapy and showed that depletion of CT45A1 results in significant inhibition
of cell viability, migration, and invasion of lung cancer cells, accompanied by reduced expression of Bcl-2,
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survivin, matrix metallopeptidase (MMP)-2 and -9, phospho-ERK1/2, and phospho-cAMP-responsive
element binding protein-1, along with an increase in Bax expression [27]. Another study evaluated
the effect of gene silence of STAT6 on tumor growth [28]. STAT6 is highly expressed in tumor cells
and its level is positively correlated with a high rate of cell proliferation and poor prognosis. It was
proven that STAT6-specific siRNA decreases viability of both HT-29 colorectal cancer and ZR-75-1
breast cancer cells through inhibiting cell proliferation and initiating apoptosis [28]. In vivo studies
substantiated the efficiency of siRNA in knocking down STAT6 and subsequent inhibition of tumor
growth [28].

siRNAs in combination with other therapeutic agents including chemotherapeutic drugs have
exhibited synergetic effects in the treatment of various cancers. It has been shown that gene
silencing of Notch-1, Wnt/β-catenin, and STAT3 alone or in combination significantly enhances the
chemosensitivity of both doxorubicin-sensitive and -resistant MCF-7 breast cancer cells to doxorubicin,
indicating the potential role of siRNA in the enhancement of the anticancer efficacy of conventional
therapies [29]. Furthermore, it was reported that siRNA knockdown of Bag-1, an antiapoptotic
protein, sensitizes MCF-7 breast cancer cells to apoptosis initiated by chemotherapeutic drugs such
as cisplatin or paclitaxel. This combination therapy results in a significant reduction of pro-survival
PI3K/Akt/mTOR and ERK1/2 pathways, an enhancement in stress-activated p38 and SAPK/JNK
mitogen-activated protein kinase pathways, and an upregulation of tumor suppressors p21 and Rb [30].
Overall, these results indicate that designing and employing siRNAs against oncogenes either alone or
in combination with other conventional therapies like chemotherapy can be a promising procedure to
combat different malignancies.

3. siRNA-Mediated Cancer-Associated Gene Silencing in Prostate Cancer

As alluded to above, RNAi offers a novel and beneficial strategy in the field of cancer therapy.
Despite the late discovery, siRNAs have been developed to silence countless genes responsible for
diverse PCa hallmarks, including angiogenesis, invasion, and metastasis. In line with this, knockdown
of a dual specificity protein kinase TTK, which is involved in chromosome segregation during mitosis,
by designed siRNA, has been reported to be able to reduce proliferation, invasion, and migration of PC3
and DU145 PCa cells and initiate cell death [31]. Once applied to tumor-bearing mice, this developed
siRNA prevents tumor cells from division in comparison with the control group, signifying a potential
target for PCa treatment [31]. It was also reported that knockdown of Rho-associated protein kinase
by siRNA significantly reduces migration and invasion of PC-3 and DU145 PCa cells, which are
associated with decreased expression of phospho-LIM kinase 1 and MMP-2 [32]. Protein phosphatase
2A (PP2A) is known as an oncoprotein overexpressed in most human malignancies, especially PCa.
Growing evidence suggests that this enzyme could be a potential target for PCa treatment. It was
validated that siRNA-mediated gene silencing of PP2A significantly elicits sensitivity of PC-3 cells to
docetaxel-induced cell growth inhibition and apoptosis [33]. Poly (ADP-ribose) polymerase 1 (PARP1)
is a nuclear protein that is involved in various cellular processes and has been revealed to have
prognostic values in diverse malignancies. Inhibition of PARP1 by chemical inhibitors such as olaparib
or rucaparib has demonstrated treatment efficacy in BRCA1/2 mutant tumors [34]. Lai et al. [35]
reported that depletion of PARP1 with siRNA diminishes PCa cell progression regardless of the
BRCA1/2 mutation. PARP1 silencing reduces cell migration and invasion in vitro and inhibits tumor
growth in a PC3 xenograft model. Notably, knockdown of PARP1 increases the induction of apoptosis
in PCa treated with docetaxel, implying that PARP1-siRNA may be a potential therapeutic agent
against PCa by application either alone or in combination with other therapeutic tools [35].

Fusion genes are a class of oncogenes that have been found in many cancer types including PCa
and caused by genomic rearrangements [36]. Gene fusion between a transcription repressor (BMI1)
and a transcriptional factor (COMMD3) has been recently identified in PCa, which triggers disease
recurrence and poor survival [37]. It was reported that targeting the COMMD3:BMI1 fusion gene with
siRNA leads to reduced c-MYC expression and decreased tumor cell proliferation both in vitro and in
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metastatic tumors in a xenograft mouse model of PCa [37]. Moreover, TMPRSS2:ERG gene fusion is
the most common genomic alteration identified in PCa, leading to overexpression of the transcription
factor ERG [38]. It was shown that TMPRSS2-ERG knockdown mediated by siRNA declines cell
viability and inhibits tumor growth. Treatment with flutamide, one of the gold-standard treatments of
PCa, and TMPRSS2-ERG siRNA results in similar inhibition of tumor growth in tumor-bearing mice,
signifying high efficacy of siRNA treatment in impeding PCa progression [38].

Several cell membrane proteins that are overexpressed in PCa have been shown to play decisive
roles in cell development and tumor progression. For example, transmembrane channel-like 5 (TMC5)
is upregulated in PCa cells, and knockdown of TMC5 using siRNA leads to inhibition of PCa cell
proliferation through cell cycle arrest at the G1 phase [39]. Moreover, cell sensitivity to 5-fluorouracil
is remarkably enhanced after silencing TMC5 [39]. Similarly, T-type calcium channels were revealed
to be a promising target for different cancers, particularly PCa, in light of their role in tumor growth.
SiRNA-based inhibition of these particular calcium channels was able to lessen PC-3 cell survival and
proliferation [40]. Transient receptor potential melastatin 2 is another calcium-permeable ion channel
and considered as a prognostic marker for PCa [41]. Gene silence of this receptor through siRNA
transfection results in altered expression of autophagic genes in PC-3 cells [41]. Nicotinic acetylcholine
receptor subunit α5 (α5-nAChR) was proven to participate in the pathogenesis of certain solid tumors
through induction of angiogenesis and metastasis [42]. To assess the precise role of α5-nAChR in PCa,
siRNA was used to silence α5-nAChR in PCa cell lines, DU145 and PC3. Results demonstrated that
knockdown of α5-nAChR causes reduced levels of phospho-AKT and phospho-ERK1/2, followed by a
significant decrease in cell migration and invasion and an induction of apoptosis, indicating the impact
of α5-nAChR on the proliferation and invasion of human PCa cells and the importance of its silencing
in PCa treatment [43]. Finally, six transmembrane epithelial antigens of the prostate 1 (STEAP1) was
shown to be overexpressed in various types of tumors, particularly in PCa, and knockdown of STEAP1
in LNCaP cells by siRNA decreases cell viability and proliferation, whilst promoting apoptosis [44].
All together, these data suggest that cell membrane proteins could serve as appropriate targets for
PCa treatment.

Hypoxia is one of the key characteristics of tumors and correlates with poor prognosis of cancer
patients. Dai et al. [45] demonstrated that hypoxia is capable of elevating metastatic-associated
cell functions via activating c-Src in PCa cells and that gene silence of Src with siRNA impairs
hypoxia-induced metastasis, implying an important role for Src in the progression of prostate
malignancy. Pyruvate kinase M2 (PKM2) is a vital enzyme in aerobic glycolysis in normal tissues;
however, overexpression of this protein has been reported in various cancers. Knockdown of PKM2 via
siRNA was reported to reduce viability and colony formation ability of human PCa DU145 cells [46].
Further investigations revealed that depletion of PKM2 has a major impact on the PKB/mTOR pathway;
hence, as a result, reducing the expression of glycolytic enzymes lactate dehydrogenase A and glucose
transporter 1. In addition, an enhancement in autophagic cell death was observed after treating cancer
cells with PKM2-siRNA, signifying new perspectives in terms of PCa therapy [46]. Consistent with
these findings, it was demonstrated that knockdown of hypoxia-inducible factor-1 alpha (HIF-1α) by
siRNA elicits antitumor activity of cisplatin in a PC-3 xenograft model [47]. Intravenous injection of
attenuated Salmonella carrying an HIF-1α siRNA-expressing plasmid in tumor-bearing mice increases
the response of PCa cells to cisplatin through promoting the production of reactive oxygen species
(ROS) [47].

There are several proteins in cells that are overexpressed during prostate malignancy and play
crucial roles in both tumor formation and invasion. For instance, the association between overexpression
of a small ribosomal protein subunit 7 (RPS7) with tumor growth has been highlighted in various
studies [48,49]. It was reported that silencing RPS7 using specific siRNA attenuates prostate tumor
growth and migration, associated with upregulation in E-cadherin and downregulation in N-cadherin
and Snail [50]. Sal-like 4 is a transcription factor that is upregulated in several types of cancers [51].
Research revealed that targeting Sal-like 4 with specific siRNA decreases proliferation and colony
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formation, and induces apoptosis in PCa C4-2 cells, likely through regulation of the expression of
Bcl-2 and Bax [52]. Macrophage-capping protein (CAPG), encoded by the CapG gene, is recognized as
an actin regulatory protein [53]. Li et al. [54] showed that silence of CapG using siRNA significantly
reduces migratory and invasive capacities of DU145 cells and leads to a noticeable reduction in
proliferation and metastasis of DU145 cells. ELK3 is an ETS domain-containing transcription factor
involved in diverse physiological and pathological processes from cell proliferation and migration to
malignant progression [55]. Silencing ELK3 by siRNA results in increased apoptosis and decreased
cell proliferation and migration in DU145 cells, partially owing to upregulation of an endogenous
serine protease inhibitor, as well as causes reduced tumor growth in xenograft mice [56]. The histone
chaperone protein, anti-silencing function 1B (ASF1B), is also highly expressed in PCa tissues and
siRNA knockdown of ASF1B was shown to result in a significant decline in viability and colony
formation as well as an increase in apoptosis and cell cycle arrest of both LNCap and C4-2 cells [57].

Another imperative factor in tumor progression is a proteoglycan protein named endothelial
cell-specific molecule-1 (ESM-1). It is overexpressed in various malignancies and mediated by
inflammatory cytokines and proangiogenic growth factors [58]. Interestingly, it was verified that
treatment of PCa cells with ESM-1-siRNA significantly diminishes cell migration with no observable
impacts on proliferation [59]. Further investigations revealed that ESM-1-siRNA downregulates the
transcriptional and protein levels of the angiogenic chemokine CXCL3, suggesting a role for CXCL3 in
ESM-1-mediated cell migration [59].

In summary, there are myriad genes that are overexpressed during prostate malignancy and
participate actively in cell proliferation, invasiveness, and tumor progression. Targeting these upregulated
genes offers a promising strategy for preventing tumor progression and increasing survival among
patients suffering from PCa. As validated in various studies, designing and developing siRNAs that
can effectively silence genes involved in tumor pathogenesis has shown encouraging outcomes in PCa
treatment. Hence, they might be applied as alternative tools to conventional treatments or be used in
combination with other treatments to improve their efficacy. Table 1 summarizes different genes that
are involved in PCa formation and pathogenesis, which could be potential targets for siRNAs.

Table 1. Potential targets for siRNA treatment in prostate cancer.

SiRNA-Target Gene Knockdown Consequences Ref.

Dual specificity protein kinase TTK
Reduces proliferation, invasion, and migration,

as well as initiates cell death process in PC-3 and
DU145 PCa cells.

[31]

BMI1: COMMD3 fusion gene
Diminishes c-MYC expression in PC-3 cells

resistant to BRD/BET-inhibitor and suppresses
metastasis of tumor in xenograft mouse models.

[37]

TMPRSS2:ERG fusion gene Declines cell viability and inhibits tumor growth of
VCaP PCa cells. [38]

Transmembrane channel-like 5 (TMC5)
Inhibits cell proliferation and enhances cell

sensitivity to 5-fluorouracil in PC-3 and
DU145 cells.

[39]

T-type calcium channels Lessens cell survival and proliferation of PC-3 cells. [40]

Transient receptor potential
melastatin 2 (TRPM2) Induces autophagy in PC-3 cells. [41]

Src Impairs hypoxia-induced metastasis of PC-3ML
and C4-2B cells. [45]

Pyruvate kinase M2 (PKM2)
Inhibits cell viability and the ability of colony

formation, as well as induces autophagic cell death
in DU145 cells.

[46]

Rho-associated protein kinase (ROCK) Reduces migration and invasion of PC-3 and
DU145 cells. [32]
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Table 1. Cont.

SiRNA-Target Gene Knockdown Consequences Ref.

Protein phosphatase 2A (PP2A) Elicits sensitivity of PC-3 cells to docetaxel. [33]

Poly (ADP-ribose) polymerase 1 (PARP-1) Reduces PC-3 cell migration and invasion,
and decreases xenograft tumor size. [35]

Endothelial cell-specific molecule-1 (ESM-1) Diminishes cell migration with no impact on
proliferation of PC-3 cells. [59]

Small ribosomal protein subunit 7 Attenuates PCa growth and migration of PC-3 cells. [50]

Sal-like 4 (SALL4) Decreases proliferation and colony formation
capacity of C4-2 cells. [52]

Macrophage-capping protein (CAPG) Reduces proliferatory, migratory, and invasive
capacities of DU145 cells [54]

Nicotinic acetylcholine receptor (nAChR) Decreases cell migratory and invasive activities,
and induces apoptosis of DU145 and PC-3 cells. [43]

Six transmembrane epithelial antigen of the
prostate 1 (STEAP1)

Declines cell viability and proliferation whilst
promoting apoptosis of LnCap PCa cells. [44]

4. Attenuating Drug Resistance in Prostate Cancer Using siRNA

Drug resistance in tumor cells remains the central cause of treatment failure, leading to tumor
recurrence and metastasis [60]. Drug resistance in cancer occurs due to one of these two scenarios:
inherent resistance (without any drug treatment due to genetic mutations) or acquired drug resistance
(as a result of tumor adaptation following cancer treatment) [60]. Combination therapies particularly
targeting genes involved in drug resistance have emerged as novel strategies for cancer therapy [61].
Castration-resistant prostate cancer (CRPC) is associated with the vast majority of PCa-related deaths
worldwide. Patients suffering from CRPC have typically shown resistance to common chemotherapeutic
agents. Recently, combination therapies using chemotherapeutic drugs and siRNA have served as
a promising procedure for the treatment of drug-resistant PCa. In line with this, Zhang et al. [62]
developed a nanoparticle delivery system, consisting of a calcium phosphate core, dioleoyl phosphatidic
acid and arginine-glycine-aspartic acid peptide-modified polyethylene glycol, for co-delivery of the
78-kDa glucose-regulated protein (GRP78)-specific siRNA and docetaxel as a combination therapy
against PC-3 CRPC. Results signify that co-administration of docetaxel and GRP78-siRNA to PC-3 cells
elicits enhanced sensitivity of cancer cells to docetaxel both in vitro and in vivo, which might be a result
of cell cycle arrest, apoptosis, and autophagy mediated by GRP78 knockdown [62]. Similar to this,
knockdown of deubiquitinating enzyme ubiquitin-specific protease 33 (USP33), which is overexpressed
in PCa cells, with siRNA considerably induces apoptosis mediated by docetaxel in CRPC [63].
In addition, siRNA-mediated knockdown of USP9X notably decreases anchorage-independent growth
of prostate carcinoma cells, possibly through increasing ubiquitination and decreasing protein levels
of IGFR (insulin-like growth factor receptor) and IRS-2 (insulin receptor substrate-2), indicating the
importance of targeting certain ubiquitin-specific proteases in PCa treatment [64]. The gene associated
with retinoid-interferon mortality (GRIM-19) has been shown to be related to drug resistance in a
number of cancers [65]. The mRNA and protein levels of GRIM-19 were reported to be lower in PCa
tissues and cells compared with those in normal tissues [65]. Downregulation of GRIM-19 with designed
siRNA increases the resistance of PCa cells to docetaxel, whilst overexpression of GRIM-19 improves
the sensitivity through downregulating the expression of Rad23b, a survival gene that facilities DNA
damage repair [65]. These data suggest that enhanced expression of GRIM-19, in combination with
chemotherapy, could serve as a better strategy of chemotherapy for PCa. Epidermal growth factor
receptor (EGFR) is a well-known factor in prostatic tumorigenesis; however, its role in chemoresistance
in human PCa is still ambiguous. Hour et al. [66] revealed that there is a direct association between
EGFR level and docetaxel resistance in docetaxel-resistant PCa cells, which could occur through
Akt-dependent ABCB1 expression in PC cells. It was proven that silencing EGFR expression through
siRNA can significantly increase docetaxel sensitivity of docetaxel-resistant PCa cells, while induction
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of EGFR expression or applying recombinant EGF protein diminishes cytotoxicity of docetaxel toward
PC3 cells [66]. Together, these studies have provided increasing evidence that combined administration
of chemotherapeutic agents with specific siRNAs can augment the function of chemotherapeutic drugs
and recover the sensitivity of resistant cells to conventional drugs such as docetaxel.

5. Improving Antitumoral Immune Response by siRNA

In recent years, cancer immunotherapy has gained vast attention in light of its capabilities of
augmenting the host immune response towards cancer cells [67]. siRNA has emerged as a powerful
approach for cancer immunotherapy [68]. siRNA can target different molecules, such as programmed
cell death-1 (PD-1) and its ligand (PD-L1), as well as interleukin 10 receptor, STAT3, and transforming
growth factor-β receptor, on the surface of immune cells and/or tumor cells, which participate actively
in the process of immune activation, to lessen tumor evasion from the host’s immune system and boost
the immune response against tumors [69–72]. Consistently, myeloid-derived suppressor cells (MDSC)
are recognized as imperative inhibitors of T-cell responses in numerous malignancies, including PCa.
Therefore, alleviation of MDSC-mediated immunosuppression is an effective method to restore immune
activity against cancer. It has been confirmed that STAT3 is activated in circulating MDSCs and has a
decisive role in MDSC-mediated immunosuppression [73]. It was shown that immunosuppressive
impacts of patient-derived MDSCs on effector CD8 (+) T cells can be abrogated through delivery of
STAT3-siRNA to MDSCs [74]. Further investigation revealed that inhibitory effects of STAT3-siRNA
are contingent on decreased expression and enzymatic activity of arginase-1, a downstream target gene
of STAT3 and a potent T cell inhibitor [74]. These results indicate that gene silencing of STAT3, a central
immune checkpoint regulator, is a promising strategy to enhance the immune response against PCa.
Moreover, the E3 ubiquitin ligase Cbl-b is expressed in all leukocyte subsets and mediates various
signaling pathways. Targeting the Cbl-b gene in T lymphocytes by specific siRNA was reported to
increase the production of interleukin (IL)-2 and interferon (IFN)-γ and stimulate T cell cytotoxicity
towards RM-1 PCa cells, resulting in a noticeable decline of tumor size in immune competent mice
compared with controls [75]. Collectively, despite these promising results, further investigations are
required to identify more molecules that are associated with tumor evasion to design siRNA in order
to target them with high selectivity.

6. Targeted siRNA Delivery

Despite the fact that siRNA therapy is a promising strategy for cancer treatment, there are
some concerns regarding their applications in clinical therapy. Naked siRNAs have very short
half-lives in vivo and undergo rapid clearance [76]. Moreover, they induce immune responses after
in vivo injection [77]. In recent years, advancements in the field of nanotechnology and progress
in designing nanocarriers have significantly improved the efficacy of siRNA delivery into cancer
cells [78] (Figure 1). For instance, Shi et al. [79] developed a nanocarrier system based on human
monoclonal prostate-specific membrane antigen antibody (PSMAab) for targeted delivery of tripartite
motif-containing 24 (TRIM24)-siRNA. It was proven that developed nanoparticles not only protect
siRNA from enzymatic digestion, but also efficiently deliver siRNA into PCa cells in vitro and in vivo.
Release of TRIM24-siRNA, followed by knockdown of TRIM24, significantly suppresses proliferation,
colony-formation, and invasion of PSMA+ CRPC cells in vitro, and inhibits tumor growth of PSMA+

CRPC xenografts and bone loss in a PSMA+ CRPC bone metastasis model [79]. Similarly, Lee et al. [80]
developed a delivery system composed of Glu-urea-Lys PSMA-targeting ligand/siRNA incorporated
into a lipid nanoparticle to target androgen receptors on the surface of PCa. It was demonstrated that,
compared with naked siRNA, this system is able to decrease serum prostate-specific antigen, tumor
cellular proliferation, and androgen receptor levels significantly. This implies the importance of a
targeted delivery system compared with nontarget strategies for treating PCa cells with siRNA [80].
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Owing to their unique and easy modification properties, dendrimers have emerged as a promising
system for gene/drug delivery in cancer therapy [81,82]. For instance, it has been shown that
encapsulation of Hsp27-sticky siRNA in dendrimers significantly enhances the efficacy of gene
silencing in different prostate cancer cells [83]. Research by the same group revealed that further
modification of these dendrimers with the RGDK peptide allows for selective targeting of ανβ3
integrin and neuropilin-1 (Nrp-1) receptors, which are overexpressed on tumor cells, and effectively
prevents tumor cell proliferation in a PC-3 xenograft mouse model [81]. Carbon nanotubes are
another type of nanoparticles that are widely applied as superior carriers for siRNA due to their
exceptional characteristics such as large surface areas, rich surface chemical functionalities, and good
biocompatibility [84]. siRNAs can be attached on the surface of carbon nanotubes through both
electrostatic and covalent interaction and effectively delivered to desired regions [85]. Alongside these
nanocarriers, it was shown that targeted delivery of NFκB-siRNA through gold nanoparticles capped
with polyethylenimine (PEI) and PEGylated anisamide (a ligand known to target the sigma receptor)
causes effectual endosomal escape of siRNA and subsequently reduces NFκB gene expression [86].
As a result, considerable tumor growth suppression in a PC-3 xenograft mouse model was achieved.
Furthermore, systemic exposure to siRNA parallel with paclitaxel delivery results in a synergistic
therapeutic response in terms of tumor growth inhibition [86]. In another study, to evaluate the effect of
a combination therapy, docetaxel and ERK1/2-siRNA were loaded into PSMA-conjugated bovine serum
albumin-branched polyethylenimine nanoparticles [87]. Co-delivery of docetaxel and ERK1/2-siRNA
leads to a marked decrease in α-tubulin and ERK1/2 in CWR22R PCa cells. As a result, cell growth
is significantly inhibited as compared to docetaxel alone. Moreover, combined administration of
docetaxel and ERK1/2-siRNA remarkably enhances median survival from 18 days to around 45 days in
comparison with mice that receive the same dose of free docetaxel. These findings signify the impact
of a combined therapy involving siRNA and conventional chemotherapy drug and the development
of an effective delivery system in the treatment of PCa [87].

Both the EGFR signaling pathway and survivin are involved in cancer cell proliferation,
tumor vascularization, and metastasis [88]. Lui et al. [89] constructed an RNA-based aptamer-siRNA
chimera that specifically binds PSMA and targets both EGFR and survivin. This chimera was shown
to induce apoptosis effectively both in vitro and in vivo, and inhibit tumor growth and angiogenesis
in the C4-2 PCa xenograft model by an EGFR-HIF1α-VEGF-dependent mechanism. These results
support that targeted delivery of two siRNAs could be a therapeutic strategy for the treatment of
PCa [89]. Serum response factor (SRF) is known as a vital transcription factor and has a significant role
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in regulating expression of genes involved in cell growth and differentiation [90]. Research revealed
that knockdown of both RelA (also known as nuclear factor NFκB p65 subunit) and SRF by specific
siRNAs through a non-virally modified cyclodextrin vector causes significant reductions in the invasion
potential of the highly metastatic PC-3 cells, partly due to the reduction of MMP-9 [91]. Similar results
in terms of a decrease in cell viability of PC-3 cells were achieved through a delivery of siRNAs targeting
disintegrin and metalloproteinase 10 (ADAM10) by polyethylene glycol–polyethylenimine–Fe3O4
nanoparticles [92]. Furthermore, Choi et al. [93] discovered that gene silence of Bcl-2, survivin,
and androgen receptor with siRNAs, which are encapsulated in pluronic F-68 polymer, along with
treatment with benzethonium chloride, triggers apoptosis of human PCa LNCaP-LN3 cells more
efficiently in comparison with the silencing of individual gene, suggesting that multiple gene-targeting
siRNA/drug delivery system could be a feasible and promising way to combat PCa [93]. Taken together,
results obtained by these studies and other investigations in different malignancies revealed that a
nanoparticle-mediated delivery system may serve as an effective platform for combined gene therapies
with conventional chemotherapies to enhance antitumoral efficacy. Table 2 summarizes recent delivery
platforms that are employed for effective and safe delivery of various siRNAs to PCa cells.

Table 2. siRNA delivery strategies.

siRNA Target Delivery Platform Effects Ref.

Tripartite
motif-containing 24 PSMAab

Suppresses proliferation, colony formation,
and invasion of PSMA+ CRPC cells in vitro,

and inhibits tumor growth of PSMA+
CRPC xenografts and bone loss in a PSMA+

CRPC bone metastasis model.

[79]

Androgen receptor Glu-urea-Lys
PSMA-lipid nanoparticle

Inhibits serum prostate-specific antigen,
tumor cellular proliferation, and androgen

receptor levels.
[80]

NFκB Gold nanoparticle-PEI
PEGylated anisamide

Suppresses tumor growth in a PC-3
xenograft mouse model. Its combination

with paclitaxel leads to a synergistic
therapeutic response in terms of tumor

growth inhibition.

[86]

p44/42 mitogen-activated
protein kinase

PSMAab-Bovine Serum
Albumin branched
polyethylenimine

Inhibits cancer cell proliferation. [87]

EGFR and survivin RNA-based
aptamer-siRNA chimera

Induces apoptosis both in vitro and in vivo,
and diminishes tumor growth and

angiogenesis in the C4-2 PCa
xenograft model.

[89]

RelA and serum
response factor

Non-viral modified
cyclodextrin vector

Reduces metastatic potential of PC-3 cells
without noticeable impacts on cell viability. [91]

7. Conclusions

Since its discovery, siRNA holds great promise to treat a number of diseases, including cancer,
owing to its specificity to target and silence genes that are correlated with the pathogenesis of cancer,
from cell proliferation and invasion to immunosuppression [94]. Recently, combinatory administration
of gene-specific siRNAs with other conventional therapies such as chemotherapy and radiotherapy has
shown synergistic effects in the treatment of PCa [79]. More importantly, several studies confirmed that
targeting specific genes by siRNA could noticeably restore or even enhance the sensitivity of resistant
PCa cells to chemotherapeutic drugs such as docetaxel [95]. Clinical studies have been initiated to
evaluate the efficiency of siRNA in various solid tumors either alone or in combination with other
therapeutic agents (NCT03087591, NCT00672542). Here we summarized the molecules that could be
potential targets of siRNAs for PCa treatment. Despite the promising results, the clinical application
of naked siRNAs has demonstrated some limitations because of their labile nature, ability to induce
immune responses, and anionic properties [96]. To protect siRNAs from enzymatic cleavage and rapid
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clearance, it is imperative to shield them in a proper way. Advancements in the field of nanotechnology
have provided this opportunity for efficient delivery of siRNAs to target cells and to increase their
in vivo cellular uptake [97,98]. Moreover, it is beneficial in terms of combining siRNAs with other
therapeutic agents [99]. Further investigations in molecular profiling of patient tumors are needed to
determine molecules that are involved in tumor pathogenesis and could be potentially targeted by
siRNA, and to explore novel strategies for delivery of siRNAs with high selectivity and safety.
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