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Abstract: We have previously showed that plasma membrane cholesterol and GM1 ganglioside
content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported
that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here,
we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and
P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively
correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation,
phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1,
and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The
relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating
cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo
led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-
induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in
CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes
of P2X7-induced cellular responses in T cells.

Keywords: cholesterol; high fat diet; P2X7 receptor; T-cell subsets

1. Introduction

The P2X purinergic receptor 7 (P2X7) is an ATP-gated cation channel that can trigger
numerous cellular and physiologic functions [1]. The types and amplitudes of P2X7-
induced cellular responses depend on the duration of stimulation by ≥150 µM of extracel-
lular ATP (eATP) in its tetraanionic form [2]. Short-term stimulation of P2X7 induces the
opening of ion channels [3] and phosphatidylserine (PS) externalization to the outer leaflet
of the plasma membrane [4]. Long-term stimulation of P2X7 results in the formation of
non-selective membrane pores, allowing entry of molecules with molecular masses of up
to 900 Da [5,6]. Continuous stimulation with eATP can lead to cell death by apoptosis [7,8]
or necrosis [9], depending on the cell type. In contrast, P2X7 activation may trigger an
antiapoptotic or mitogenic activity [10–12].

P2X7 plays a major role in various immune processes, such as the maturation of
proinflammatory cytokines [13], the proteolytic cleavage of transmembrane protein such
as CD62L and TNFα [14,15], and the activation of T cells [15]. We previously showed
that the regulation of the sensitivity of CD4+ and CD8+ T cells to eATP depends on their
stage of activation and differentiation [16,17]. Moreover, we found that pathogenic B220+

CD4−CD8− (DN) T cells that accumulate in lupus MRL/lpr and B6/lpr mice exhibit a large
reduction in P2X7 membrane expression and sensitivity to eATP [18]. The reduced sensitiv-
ity of pathogenic B220+ DN T cells, but not normal B220− T cells (either CD4+ or CD8+), to
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eATP could be due to the expression of a negative regulator of P2X7 that is still undefined.
Importantly, approximately 75% of the MRL genome is derived from the LG/J mouse strain,
which is characterized by large body size, rapid growth, elevated body weight, and high sus-
ceptibility to diet-induced obesity and atherosclerosis (https://www.jax.org/strain/000486,
accessed on 4 May 2022). Therefore, we suggest that metabolic dysregulation could lead
to reduced sensitivity of P2X7 to eATP. Indeed, lipid environment through its influence
on the plasma membrane composition is known to affect P2X7 functionality [1]. Mem-
brane cholesterol plays a critical role in regulating the activity of P2X7, which contains
several putative cholesterol recognition amino acid consensus motifs within its N-terminal
and proximal C-terminal regions [1]. The association of P2X7 with cholesterol-enriched
microdomains/lipid rafts of the plasma membrane has been reported in different cell
types [19]. The trafficking of P2X7 into lipid rafts seems to require caveolin-1 interaction
or palmitoylation, depending on the cell type [20,21]. Palmitoylation of the cytoplasmic
cysteine-rich region at the end of the second transmembrane domain is also involved in the
lack of desensitization of P2X7 after eATP binding [22] and pore formation [23]. Moreover,
phosphatidylglycerol and sphingomyelin were found to facilitate P2X7 pore formation [23].
In contrast, membrane cholesterol negatively regulates P2X7-mediated pore formation and
cell death [24]. However, the impact of membrane cholesterol content on eATP-induced
cellular functions had been extensively evaluated in P2X7-transfected fibroblast or HEK
293 cells and noticeably less in T cells.

The physiological and pathological importance of cholesterol metabolism in T-cell
immunity has been widely demonstrated [25]. For example, the immunological synapse
formed between a T cell and an antigen-presenting cell results from the aggregation of
lipid rafts [26], plasma membrane microdomains enriched in cholesterol that dissipate
when membrane cholesterol is depleted [27–30]. We recently showed that membrane
cholesterol levels have a strong impact on cellular responses induced by the stimulation
of eATP-gated P2X7 in T cells. Indeed, the modulation of membrane cholesterol level
(either positively or negatively) profoundly altered the functionality of the P2X7 receptor
expressed by the mouse leukemic EL4 and L1210 T-cell lines, which were either sensitive
or resistant to eATP in the basal state. Thus, we were able to restore the ability of eATP to
induce the opening of calcium ion channels and the formation of non-selective pores in
L1210 T cells by reducing their membrane cholesterol level using methyl-β-cyclodextrin
(MBCD). Conversely, we were able to inhibit the ability of EL4 cells to open calcium ion
channels and form non-selective pores following stimulation with eATP by increasing the
levels of membrane cholesterol using MBCD/cholesterol (MBCD/Chol) complexes [29].
In the present study, we extended these findings to CD4+ and CD8+ T cells from B6 mice.
In accordance with our data obtained in leukemic T-cell lines, CD4+ and CD8+ normal T
cells displayed a significantly reduced ability to form non-selective P2X7 pores and shed
CD62L molecules when their levels of plasma membrane cholesterol were increased ex
vivo. Moreover, we assessed the outcome of a high-fat/cholesterol (HFC) diet-induced
hypercholesterolemia on the plasma membrane cholesterol content and the functionality
of P2X7 in CD4+ and CD8+ T cells. Importantly, in B6 mice fed the HFC diet, the high
levels of circulating cholesterol were associated with decreased sensitivity to eATP in
CD4+ and CD8+ T cells, highlighting for the first time a relationship between cholesterol
intake and P2X7 functionality in T cells. We also show herein that pore formation and
CD62L shedding are not similarly affected by plasma membrane cholesterol. Indeed,
pore formation followed a dose-dependent effect, whereas CD62L shedding was highly
sensitive to cholesterol modulation, indicating that P2X7-mediated cellular responses are
not regulated in an all-or-none manner by plasma membrane cholesterol content.

https://www.jax.org/strain/000486
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2. Results
2.1. Plasma Membrane Levels of Cholesterol and GM1 Gangliosides in T Cells at Different Stages
of Differentiation and the Consequences on Their Sensitivity to eATP

As we previously reported [16,17], the sensitivity of CD4+ and CD8+ T cells from
B6 mice to eATP depends more on their stage of differentiation than the levels of P2X7
plasma membrane expression (Figure A1). Indeed, we showed that CD44lowCD45RBhigh

naïve T cells (either CD4+ or CD8+) efficiently shed their homing CD62L molecules and
form non-selective P2X7 pores, whereas CD44highCD45RBlow and CD44highCD45RBhigh

effector/memory T cells (either CD4+ or CD8+) were unable to shed CD62L and, to a
lesser extent, form non-selective P2X7 pores, although they express higher levels of P2X7
(Figure A1). Similarly, we recently showed that the EL4 and L1210 leukemic T cell lines
display similar high levels of P2X7 membrane expression but an opposite ability to trigger
channel opening, pore formation, and phosphatidyserine exposure upon eATP stimulation.
Importantly, we have observed that cholesterol and GM1 gangliosides levels at the plasma
membrane play a central role in the sensitivity of EL4 and L1210 T cells to eATP [29]. The
well-known role of cholesterol and GM1 gangliosides in the formation, maintenance, and
aggregation of lipid rafts [31,32] prompted us to evaluate the levels of plasma membrane
cholesterol and GM1 in naïve and effector/memory CD4+ and CD8+ T-cell subsets from
B6 mice (Figure 1). In addition, we performed correlation analyses to gain insights into
the respective roles of GM1 and cholesterol plasma membrane levels, as well as that of
P2X7 membrane expression, in the sensitivity of naïve and effector/memory T-cell subsets
(either CD4+ or CD8+) to eATP stimulation (Figure 2).
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Figure 1. Plasma membrane levels of GM1 gangliosides, cholesterol and P2X7 receptor in T cells
at different stages of differentiation. Plasma membrane levels of GM1, cholesterol, and P2X7
were quantified by flow cytometry using FITC-conjugated cholera toxin B subunit (CTB), filipin
III, and anti-P2X7 extracellular domain mAb, respectively. Results are presented as the mean MFI
values for GM1, cholesterol, and P2X7 in the CD4+ and CD8+ T-cell subpopulations (A) and in
CD44lowCD45RBhigh naïve and CD44highCD45RBlow or CD44highCD45RBhigh effector/memory CD4+

(B) and CD8+ (C) T-cell subsets. Data are expressed as the mean of percentages (±SEM, n ≥ 6 mice).
Asterisks denote statistically significant differences * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 **** p ≤ 0.0001;
ns: not significant.
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Figure 2. Relationship between the plasma membrane levels of GM1, cholesterol, and P2X7, and
cellular responses induced by eATP in T-cell subsets. (A) Pearson correlation matrix showing the
degree of correlation between the plasma membrane levels of GM1, cholesterol, and P2X7, pore for-
mation, CD62L shedding, PS externalization and cell death in CD4+ and CD8+ T-cell subpopulations
in the presence of 500 µM ATP for 30 min at 37 ◦C. The magnitude and direction of the correlation
coefficient is indicated on a color gradient that varies from +1 (positive correlation) to−1 (negative cor-
relation). White squares indicate the absence of a correlation. Red and blue squares represent positive
and negative correlations between two variables, respectively. Statistically significant correlations are
denoted by asterisks within squares: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. (B) Scatter
plots showing the phenotypic profile of CD44lowCD45RBhigh naïve and CD44highCD45RBlow or
CD44highCD45RBhigh effector/memory T-cell subsets (either CD4+ or CD8+) in terms of the ampli-
tude of ATP-induced pore formation and CD62L shedding (500 µM, 30 min, 37 ◦C) and the plasma
membrane levels of GM1, cholesterol, and P2X7. The T-cell subsets that were non-statistically differ-
ent for the abscissa parameter (either GM1, cholesterol, or P2X7 expression) are surrounded by a blue
ellipse. The black dotted line links the naïve subset (either CD4+ or CD8+) with its effector/memory
counterpart. Data are expressed as the mean of percentages (n ≥ 5 mice).
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Thus, flow cytometry analyses of filipin staining showed CD4+ and CD8+ T cells to dis-
play similar levels of plasma membrane cholesterol, whereas significantly higher levels of
GM1 (FITC-CTB labelling) and P2X7 were expressed by CD8+ than CD4+ T cells (Figure 1A).
Among CD4+ T-cell subsets, the CD44lowCD45RBhigh naïve and CD44highCD45RBlow

effector/memory subsets showed lower levels of plasma membrane GM1, cholesterol,
and P2X7 than the very minor (3.45% ± 0.57) CD44highCD45RBhigh effector/memory
subset (Figure 1B). Similarly, among CD8+ T cells, the CD44lowCD45RBhigh naïve sub-
set showed lower levels of plasma membrane GM1, cholesterol, and P2X7 than the
CD44highCD45RBhigh effector/memory subset (Figure 1C). As the CD4+ and CD8+ T-cell
subsets displayed significantly different sensitivity to P2X7-induced cellular responses
(Figure A1), we investigated a possible relationship between phenotypic (cholesterol, GM1,
and P2X7 membrane levels) and functional P2X7 characteristics (pore formation, CD62L
shedding, PS externalization, cell death) in CD4+ and CD8+ T-cell subpopulations by cre-
ating a matrix showing the correlation coefficient between these variables (Figure 2). For
CD8+ T cells, the phenotypic characteristics positively correlated with each other but nega-
tively correlated with functional P2X7 characteristics. Moreover, all P2X7-induced cellular
responses positively correlated with each other, suggesting that they are regulated in a
similar manner in CD8+ T cells (Figure 2A). Interestingly, for the CD4+ T-cell subpopulation,
P2X7-induced cellular responses correlated with plasma membrane cholesterol content
only. Moreover, cholesterol content negatively affected CD62L shedding but positively
affected pore formation, PS externalization, and cell death (Figure 2A). Therefore, our data
suggest that P2X7-induced cellular function are regulated differently in CD4+ and CD8+ T
cells. We generated scatter plots comparing the levels of pore formation or CD62L shedding
according to P2X7, GM1, or cholesterol plasma membrane content (Figure 2B) to obtain
insights into the relationship between the functional and phenotypic characteristics ex-
pressed by the various CD4+ and CD8+ T-cells subsets (either naïve or effector/memory). In
accordance with the correlation matrix analyses, the sensitivity of the CD8+ T-cell subsets to
eATP negatively correlated with all phenotypic parameters. Indeed, CD44highCD45RBhigh

effector/memory CD8+ T cells, which showed higher levels of plasma membrane P2X7,
GM1, and cholesterol than their CD44lowCD45RBhigh naïve counterpart, displayed the
lowest capacity to form pore and shed CD62L. By contrast, CD44lowCD45RBhigh naïve and
CD44highCD45RBlow effector/memory CD4+ T cells, although displaying similar levels
of P2X7 and GM1, expressed P2X7-induced cellular responses of significantly different
amplitude. Indeed, CD62L shedding was significantly more efficient than pore formation in
naïve CD4+ T cells than in their effector/memory counterpart. Our data suggest a limited
influence of P2X7 and GM1 levels on P2X7-induced cellular responses in CD4+ T cells.
Surprisingly, the levels of plasma membrane cholesterol were similarly low in naïve CD4+

and CD8+ T cells and high in their effector/memory counterpart (Figure 2B). Moreover,
although an increase in cholesterol content was associated with a decrease in both pore
formation and CD62L shedding in CD8+ T cells, it was associated with an increase in
pore formation and a decrease in CD62L shedding in CD4+ T cells. Altogether, our data
suggest that cholesterol content plays a key role in the amplitude of P2X7-induced cellular
responses in T-cells.

2.2. Amplitude of P2X7-Induced Cellular Responses in T Cells Following Plasma Membrane
Cholesterol Modulation

We next wished to confirm the involvement of cholesterol in the amplitude of P2X7-
induced cellular responses in CD4+ and CD8+ T cells. We thus modulated their plasma
membrane cholesterol content ex vivo by MBCD and MBCD/Chol treatment and in vivo
by HFC diet. When we treated spleen cells with 5 mM MBCD for 20 min at 37 ◦C,
more than 90% of both naïve and effector/memory CD4+ and CD8+ T cells were still
viable after treatment. Unexpectedly, cholesterol depletion from the plasma membrane
of splenocytes had no significant effect on the sensitivity of T cells to eATP, regardless
of the stage of differentiation (naïve, effector/memory) of the CD4+ and CD8+ T cells
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(Figure A2). By contrast, increasing plasma membrane cholesterol levels in splenocytes
from B6 mice using MBCD/Chol complexes resulted in a strong reduction in the ca-
pacity of both naïve and effector/memory CD4+ and CD8+ T cells to form the P2X7-
mediated pores in response to stimulation with 500 µM eATP (Figure 3). Moreover,
naïve T cells (either CD4+ or CD8+) showed a greater level of reduction in P2X7-mediated
pore formation than their CD44highCD45RBhigh effector/memory counterparts following
MBCD/Chol treatment (Figure 3A). Importantly, MBCD/Chol treatment also altered the
ability of naïve CD4+ and CD8+ T cells to shed CD62L molecules in response to 500 µM
eATP (Figure 3B). Finally, effector/memory CD4+ T cells, known to be much more re-
sponsive to eATP-induced cell death than CD8+ and naïve CD4+ T cells, displayed a
significantly reduced sensitivity to cell death following plasma membrane cholesterol
enrichment (Figure 3C). ATP-induced cellular responses could be prevented by the P2X7
inhibitor A438079 (Figure 3), confirming the specificity of pore formation, CD62L shed-
ding, and cell death. Altogether, our findings confirm that plasma membrane cholesterol
levels are a key factor in modulating the amplitude of P2X7-induced cellular function
in CD4+ and CD8+ T cells (either naïve or effector/memory).
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brane cholesterol modulation. Amplitude of P2X7-mediated pore formation (A), CD62L shedding
(B) and cell death (C) were evaluated among CD44lowCD45RBhigh naïve and CD44highCD45RBlow

or CD44highCD45RBhigh effector/memory CD4+ and CD8+ T-cell subsets in the presence of 500 µM
eATP for 30 min at 37 ◦C with or without pre-treatment with 10 µM of the P2X7 antagonist A438079
(+A438079), following ex vivo plasma membrane cholesterol enrichment using MBCD/Chol com-
plexes. Data are expressed as the mean of percentages (±SEM, n ≥ 6 mice). Asterisks denote
statistically significant differences * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: not
significant.

2.3. Diet-Induced Hypercholesterolemia Increase Effector/Memory CD4+ and CD8+ T Cell
Numbers in B6 Mice

We showed that increasing membrane cholesterol levels ex vivo negatively affects
T-cell sensitivity to eATP (Figure 3). We therefore evaluated whether diet-induced hyperc-
holesterolemia in B6 mice can modulate the amplitude of P2X7-mediated pore formation
and CD62L shedding in CD4+ and CD8+ T cells at different stages of differentiation. Two
independent experiments were performed for either 16 or 24 weeks, in which male B6 mice
were fed a normal diet, or a diet enriched in lipids and supplemented with cholesterol
(HFC diet) (Figure 4). In both experiments, HFC-fed mice displayed a marked increase in
body weight to reach 38 ± 0.13 g after 16 and 46 ± 0.18 g after 24 weeks of the diet, versus
27 ± 0.1 g for mice receiving a normal diet (Figure 4A), along with a significant alteration
in their ability to regulate glycaemia due to insulin resistance (Figure 4B). Importantly,
HFC-fed mice showed a significant increase in circulating cholesterol levels, leading to
chronic hypercholesterolemia, as shown by cholesterol blood measurements following a
24 h fast (Figure 4C). Interestingly, such metabolic dysregulation was associated with a
decrease in the size of the CD44lowCD45RBhigh naïve CD4+ T-cell subset and an increase in
that of their CD44highCD45RBlow effector/memory counterpart (Figure 5A). This increase
was already significant after 16 weeks of the diet and became even more marked when
the diet was extended to 24 weeks (Figure 5A). Unexpectedly, 24 weeks of the diet were
required to significantly increase the numbers of CD44highCD45RBhigh effector/memory T
cells in the CD8+ T-cell subpopulation (Figure 5B). We ascertained that the modification
in the ratio between naïve and effector/memory T-cells resulted from metabolic changes
induced by the HFC diet and not by direct alteration of the levels of CD44 and CD45RB
membrane expression due to plasma membrane remodeling. Indeed, the mean fluorescence
intensity (MFI) of CD44 and CD45RB membrane expression quantified by flow cytometry
was not affected by cholesterol enrichment in splenocytes from mice fed a normal diet
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treated with MBCD/Chol complexes ex vivo (data not shown). Moreover, MBCD/Chol
treatment did not influence the ratio between the naïve and effector/memory phenotypes of
either CD4+ or CD8+ T cell subpopulations relative to untreated splenocytes (Figure 5A,B),
confirming the effect observed following the HFC diet. We further evaluated the effect of
the HFC diet on membrane remodeling by evaluating the membrane levels of the lipid raft
marker GM1, cholesterol, and P2X7 receptor. Surprisingly, neither 16 or 24 weeks of the
HFC diet significantly modified the membrane levels of GM1, cholesterol, or P2X7 in T
cells (either CD4+ or CD8+) (Figure 5C). However, ex vivo treatment with MBCD/Chol
complexes, well known to induce a massive increase in plasma membrane cholesterol
content, resulted in a significant increase in both GM1 and cholesterol levels in the plasma
membranes of CD4+ and CD8+ T cells regardless of their state of differentiation (Figure 5C).
It is worth noting that treatment with MBCD/Chol complexes resulted in a significant
decrease in P2X7 membrane expression by both naïve and effector/memory CD8+ T cells
as well as by CD44highCD45RBhigh effector/memory CD4+ T cells (Figure 5C, right panel).
Altogether, our data suggest that diet-induced hypercholesterolemia was not sufficient to
significantly modify the levels of GM1, cholesterol, or P2X7 at the T-cell plasma membrane.
However, we cannot exclude the possibility that there were slight modifications that were
not detectable using our fluorescent probes.
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Figure 4. Diet-induced hypercholesterolemia in B6 mice. (A) Mean body weight of mice fed either
a normal diet (ND) or a high-fat diet (HFC) presented as the weekly evolution (left panel) or following
16 or 24 weeks of the diet (right panel). (B) Insulin tolerance test (ITT, left panel) and oral glucose
tolerance test (OGTT, right panel) performed on mice fed either a normal diet or a high-fat diet
maintained for 16 and 24 weeks. (C) Level of circulating cholesterol in the blood of mice fed either a
normal diet or a high-fat diet maintained for 24 weeks. Data are expressed as the mean of percentages
(±SEM, n ≥ 5 mice). Asterisks denote statistically significant differences: * p ≤ 0.05, *** p ≤ 0.001,
**** p ≤ 0.0001.
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Figure 5. Impact of diet-induced hypercholesterolemia on the proportion of CD4+ and CD8+

T-cell subsets in B6 mice. Percentage of CD4+ (A) and CD8+ (B) T-cell subsets quantified by flow
cytometry for mice fed either a normal diet (ND) or a high-fat diet (HFC) maintained for 16 (left panel)
or 24 weeks (right panel). Splenocytes from mice fed a normal diet were treated with MBCD/Chol
complexes (+Chol) ex vivo as a positive control for cholesterol enrichment. (C,D) Plasma membrane
levels of GM1, cholesterol, and P2X7 quantified by flow cytometry in splenocytes from mice fed either
a normal diet or a high-fat diet maintained for 16 (left panel) or 24 weeks (right panel). Results are pre-
sented as the mean MFI values for GM1, cholesterol, and P2X7 among CD44lowCD45RBhigh naïve and
CD44highCD45RBlow or CD44highCD45RBhigh effector/memory CD4+ (C) and CD8+ (D) T-cell sub-
sets. Data are expressed as the mean of percentages (±SEM, n≥ 5 mice). Asterisks denote statistically
significant differences: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: not significant.
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2.4. Diet-Induced Hypercholesterolemia Affected P2X7-Induced Cellular Responses in Naive and
Effector/Memory CD4+ and CD8+ T Cells

The influence of diet-induced hypercholesterolemia on P2X7-induced cellular re-
sponses was evaluated in CD4+ and CD8+ T-cell subsets from mice fed either a normal diet
or a HFC diet for 16 and 24 weeks at various differentiation stages by their ability to form
non-selective P2X7 pores, cleave homing CD62L molecules, externalize PS, and enter cell
death following stimulation with 500 µM eATP (Figures 6, 7 and A3). We treated spleno-
cytes from mice receiving a normal diet with MBCD/Chol complexes ex vivo as a positive
control of the cholesterol-dependent inhibition of P2X7-induced cellular responses in T cells.
Such massive cholesterol enrichment led to the strong inhibition of all P2X7-induced cellu-
lar responses in CD4+ and CD8+ T cells (either naïve or effector/memory) (Figures 6 and 7).
Interestingly, the naïve CD8+ T-cell subset showed a significantly reduced ability to form
P2X7-mediated pore following 16 weeks of the HFC diet, whereas 24 weeks of HFC diet
were required to observe a similar inhibition of pore formation in their naïve and effec-
tor/memory CD4+ T-cell counterpart (Figures 6A and 7A). Moreover, pore formation was
modulated in a dose-dependent manner as inhibition was higher following 24 rather than
16 weeks of the HFC diet and even stronger after ex vivo MBCD/Chol complexes treat-
ment. Among P2X7-induced cellular responses, CD62L shedding displayed the highest
sensitivity to plasma membrane cholesterol content. Indeed, 16 weeks of the HFC diet was
sufficient to significantly inhibit the ability of naïve CD8+ and CD4+ T cells to shed CD62L
molecules (Figures 6B and 7B). In addition, 24 weeks of the HFC diet or MBCD/Chol
treatment ex vivo did not amplify the inhibition of P2X7-induced CD62L shedding, sug-
gesting that maximum inhibition was already reached after 16 weeks (Figures 6B and 7B).
Moreover, the stimulation of CD4+ and CD8+ T cell subsets from B6 mice fed a normal
diet with 500 µM eATP for 30 min induced the externalization of PS, either in a reversible
manner or associated with a decrease in cell size (FSClow) and increase in cell granularity
(SSChigh), characteristics of dying cells. Interestingly, after 24 weeks of the HFC diet, living
FSChighSSClow CD8+ and CD4+ T cells displayed a significant reduction in their capacity
to externalize PS, regardless of their stage of differentiation, naïve or effector/memory
(Figures 6C and 7C). In accordance with our previous reports [16,17], under the condition
of the normal diet, CD4+ T cells showed higher sensitivity to P2X7-induced cell death than
CD8+ T cells (Figures 6D and 7D). After 16 weeks of the HFC diet, CD4+ T cells displayed
a similar sensitivity to cell death as these from mice fed a normal diet (data not shown).
However, after 24 weeks of the HFC diet, the percentages of CD44lowCD45RBhigh naïve
and both CD44highCD45RBlow and CD44highCD45RBhigh effector/memory CD4+ T cells en-
tering cell death significantly decreased following eATP stimulation (Figure 7D). Similarly,
24 weeks of the HFC diet significantly reduced the percentage of CD44lowCD45RBhigh naïve
CD8+ T cells entering cell death following eATP stimulation (Figure 6D). It is worth noting
that the CD44highCD45RBhigh effector/memory CD8+ T cell subset, which display both the
highest level of plasma membrane cholesterol and the lowest sensitivity to eATP among
the T-cell subpopulations (Figures 1, 2 and 6), did not show any significant inhibition of
P2X7-induced pore formation as well as CD62L shedding, PS externalization, or cell death
following 16 or 24 weeks of the HFC diet (Figure 6). ATP induced cellular responses could
be prevented by the P2X7 inhibitor A438079 (Figures 6 and 7) confirming the specificity
of pore formation, CD62L shedding, PS externalization, and cell death. Altogether, these
studies confirm the relationship between cholesterol intake and P2X7-induced cellular
responses. Moreover, we highlight that CD62L shedding is more sensitive to cholesterol
modulation than pore formation. Finally, we show that increased circulating cholesterol is
responsible for the reduction in T-cell sensitivity to eATP stimulation.
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Figure 6. Diet-induced hypercholesterolemia affects P2X7-induced cellular responses in naive
and effector/memory CD8+ T cells. Following stimulation with 500 µM eATP for 30 min at
37 ◦C with or without pre-treatment with 10 µM of the P2X7 antagonist A438079 (+A438079),
P2X7-dependent pore formation (A), CD62L shedding (B), reversible PS externalization in liv-
ing cells (FSChighAnnV+) (C), and cell death characterized by irreversible PS externalisation
(FSClowSSChighAnnV+) (D) were evaluated in CD44lowCD45RBhigh naive and CD44highCD45RBhigh

effector/memory CD8+ T cells from mice fed either a normal diet (ND) or a high-fat diet (HFC)
maintained for 16 (left panel) or 24 weeks (right panel). Splenocytes from mice fed a normal diet were
treated with MBCD/Chol complexes (+Chol) ex vivo as a positive control for cholesterol enrichment.
Data are expressed as the mean of percentages (±SEM, n ≥ 6 mice). Asterisks denote statistically
significant differences * p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001, ns: not significant.
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Figure 7. Diet-induced hypercholesterolemia affects P2X7-induced cellular responses in naive
and effector/memory CD4+ T cells. Following stimulation with 500 µM eATP for 30 min at
37 ◦C with or without pre-treatment with 10 µM of the P2X7 antagonist A438079 (+A438079),
P2X7-dependent pore formation (A), CD62L shedding (B), reversible PS externalization in liv-
ing cells (FSChighAnnV+) (C), and cell death characterized by irreversible PS externalisation
(FSClowSSChighAnnV+) (D) were evaluated in CD44lowCD45RBhigh naive and CD44highCD45RBhigh

and CD44highCD45RBlow effector/memory CD4+ T cells from mice fed either a normal diet (ND)
or a high-fat diet (HFC) maintained for 16 (left panel) or 24 weeks (right panel). Splenocytes from
normal diet-fed mice were treated with MBCD/Chol complexes (+Chol) ex vivo as positive control
of cholesterol enrichment. Data are expressed as the mean of percentages (±SEM, n ≥ 6 mice). As-
terisks denote statistically significant differences * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001, **** p ≤ 0.0001,
ns: not significant.
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3. Discussion

Previously, we reported that the sensitivity of the CD4+ and CD8+ T-cell subpop-
ulations to eATP depends more on their stage of activation and differentiation than on
their levels of membrane P2X7 [16,17]. Recently, we also showed that the sensitivity of
leukemic T-cell lines to eATP is directly affected by their membrane cholesterol content
and, therefore, by the localization of P2X7 within cholesterol-enriched microdomains [29].
Moreover, various studies have reported that plasma membrane cholesterol levels signif-
icantly fluctuate during the activation and differentiation of normal T cells [33]. Thus,
T-cell activation through TCR signaling is highly dependent on plasma membrane choles-
terol levels, well known to control immunological synapse formation through lipid raft
aggregation [26]. In the present study, which is focused on the understanding of P2X7
signaling at the T-cell membrane, we therefore investigated whether there is a link between
plasma membrane cholesterol levels and the cellular responses mediated by P2X7 in naïve
and effector/memory CD4+ and CD8+ T-cell subsets from B6 mice. BzATP is often used
as a ligand of P2X7. However, it has been reported that BzATP triggers pore formation
in lymphocytes with an EC50 value of about 15 µM compared to 85 µM for ATP. Thus,
BzATP stimulates P2X7-induced pore formation up to 30% more than ATP [34]. Therefore,
in all our experiments, splenocytes have been activated with the physiological agonist
ATP, instead of BzATP, to avoid an overstimulation of P2X7R-mediated cellular responses,
which could have masked potential differences between T-cell subsets (either CD4+ or
CD8+). For instance, the effector/memory CD44highCD45RBlow CD4+ T-cell subset,
which is particularly sensitive to ATP-induced cell death [16,17], is rapidly lost following
BzATP stimulation, rendering challenging the comparison with other T-cell subset. For the
first time, we highlight a negative correlation between P2X7-triggered cellular responses
(i.e., pore formation, CD62L shedding, PS externalization, cell death) and the levels of
plasma membrane cholesterol and the raft markers GM1 gangliosides in normal T cells.
Indeed, CD44lowCD45RBhigh naïve and CD44highCD45RBlow effector/memory CD4+ T-cell
subsets from B6 mice showed high sensitivity to eATP, along with low levels of plasma
membrane cholesterol and GM1 gangliosides. By contrast, CD44highCD45RBhigh effec-
tor/memory CD4+ subsets, as well as CD44lowCD45RBhigh naïve and CD44highCD45RBhigh

effector/memory CD8+ T-cell subsets, showed poor sensitivity to eATP stimulation and
high levels of both plasma membrane cholesterol and GM1 gangliosides. Importantly,
and in agreement with our previous reports [16,17], these CD4+ and CD8+ T-cell subsets
showed higher levels of membrane P2X7 than highly eATP responsive CD44lowCD45RBhigh

naïve and CD44highCD45RBlow effector/memory CD4+ T-cell subsets. Overall, our data
suggest that plasma membrane cholesterol and lipid rafts play a key role in the amplitude
of P2X7-induced cellular responses in T cells. Therefore, we next investigated whether the
modulation of plasma membrane cholesterol content can significantly affect the function-
ality of P2X7 in naïve and effector/memory CD4+ and CD8+ T-cell subsets from B6 mice.
Two experimental approaches were followed in the present study to modulate plasma
membrane cholesterol content in T cells: (1) in vitro cholesterol depletion or loading using
MBCD either alone or complexed with cholesterol; (2) in vivo diet-induced hypercholes-
terolemia. The use of MBCD to efficiently modulate plasma membrane cholesterol content
in vitro has been validated by many studies [19,27,35]. Cholesterol depletion using MBCD
alone did not allow us to significantly modify eATP sensitivity. This absence of an effect of
cholesterol depletion could be explained by the presence of a large number of erythrocytes
in the spleen-cell suspensions treated with MBCD, of which the plasma membrane is
known to contain high levels of cholesterol. Thus, the MBCD molecules could have been
saturated by erythrocyte cholesterol, rendering MBCD unable to reduce the cholesterol
content in T cell plasma membrane. We did not eliminate erythrocytes from the spleen-cell
suspension in our experiments because their lysis is well known to release large amounts of
eATP, which non-specifically activates P2X7. On the contrary, plasma membrane cholesterol
enrichment using MBCD/Chol complexes allowed a significant reduction in the amplitude
of all P2X7-induced cellular responses in naïve and effector/memory CD4+ and CD8+ T-cell
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subsets, confirming the key role of plasma membrane cholesterol in the sensitivity of T
cells to the eATP/P2X7 pathway. However, as the use of MBCD/Chol complexes is far
from being physiological, we performed in vivo experiments using a high-fat diet. Thus,
following 16 and 24 weeks of a HFC diet, B6 mice presented all the expected parameters
of diet-induced obesity. In particular, they showed a massive increase in body weight
(around 40%) and plasma levels of cholesterol (2-fold), as well as severe liver steatosis
shown by histology analysis. They also showed impaired insulin sensitivity associated with
glucose resistance. Therefore, our model was suitable for evaluating the link between P2X7
sensitivity in CD4+ and CD8+ T-cell subsets and increasing cholesterol levels in the plasma
membrane due to diet-induced hypercholesterolemia. In parallel, we treated splenocytes
from mice fed a normal diet using MBCD/Chol complexes ex vivo to ascertain that the re-
duction in P2X7 sensitivity of the CD4+ and CD8+ T cell subsets following the HFC diet was
mainly dependent on plasma membrane cholesterol modulation and not the consequences
of the modulation of various biological parameters linked to obesity. In addition, the MFI
for CD44 and CD45RB differentiation markers was not affected in splenocytes treated with
MBCD/Chol ex vivo, confirming that changes in the ratio between CD44lowCD45RBhigh

naïve and CD4+CD44highCD45RBlow and CD8+CD44highCD45RBhigh effector/memory T
cells observed following the HFC diet resulted from metabolic changes and not from di-
rect alterations of the levels of membrane CD44 and CD45RB due to plasma membrane
remodeling. Indeed, diet-induced obesity in B6 mice has been extensively reported to be
associated with a strong inflammatory response [36]. Moreover, MBCD/Chol treatment
is also used as a control of maximum cholesterol loading of T cells due to its ability to
increase plasma membrane cholesterol to a content that cannot be obtained through a HFC
diet. Satisfyingly, the reduction in P2X7 sensitivity observed in CD4+ and CD8+ T cells
from mice fed the HFC diet for 16 or 24 weeks showed a similar profile as that observed
after ex vivo plasma membrane cholesterol enrichment using MBCD/Chol complexes,
confirming that the effect of diet-induced obesity on T-cell sensitivity to eATP was mainly
due to plasma membrane cholesterol enrichment. Moreover, these results highlight the
positive correlation between circulating and plasma membrane cholesterol levels in T cells
and, consequently, the amplitude of P2X7-induced cellular responses. Interestingly, the
inhibition of P2X7 induced by plasma membrane cholesterol loading showed different
profiles depending on the cellular function considered. Thus, the levels of inhibition of
pore formation obtained in the MBCD/Chol group were significantly higher than those
obtained in the HFC diet groups maintained for 16 and even 24 weeks. By contrast, the
inhibition of CD62L shedding reached a maximum at 16 weeks of the HFC diet and could
not be increased following MBCD/Chol treatment. Moreover, CD4+ T-cell subsets, which
present both higher sensitivity to eATP and lower plasma membrane cholesterol content
than CD8+ T-cell subsets, appeared to be more highly affected by plasma membrane choles-
terol enrichment. These results suggest the existence of a dose-dependent effect on the
cholesterol inhibition of P2X7, in particular, concerning pore formation, but not CD62L
shedding, at least in our present experiments. As CD4+ and CD8+ T-cell subsets do not
show the same initial characteristics in terms of plasma membrane cholesterol and lipid
raft content, the direct and indirect effects of cholesterol could explain the differences
observed in the amplitude of P2X7-induced cellular responses among these various subsets.
Indeed, the modulation of protein function by plasma membrane cholesterol can either be
direct, through the binding of cholesterol to the protein, or indirect, through changes in the
fluidity and thickness of the plasma membrane. As we have previously shown, increases
in plasma membrane cholesterol levels negatively affected calcium entry in response to
eATP stimulation [29]. As the influx of calcium directly depends on changes in the P2X7
trimer conformation, these data suggest a direct influence of cholesterol on the sensitivity
of P2X7 in agreement with [22]. By contrast, other P2X7-induced cellular responses, in
particular PS externalization and CD62L shedding, appear to be more dependent on mem-
brane composition, although they required an initial intracellular signal such as Ca2+ influx.
Interestingly, CD62L shedding by ADAM 17 may be dependent on PS externalization [37].
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Therefore, the impact of plasma membrane cholesterol on these cellular responses may
be more highly associated with its influence on plasma membrane fluidity and protein
mobility than on direct P2X7 sensitivity. Finally, ADAM 17 is constitutively located within
cholesterol-enriched microdomains, but cholesterol depletion by MBCD increases ADAM
17-dependent shedding of membrane anchored proteins, which may be due to increased
substrate accessibility. However, intracellular signals such as Ca2+ influx or PKC signaling
are still required to initiate ADAM-dependent membrane protein shedding, even following
cholesterol depletion. Altogether, our data contribute to explain why the modulation of
plasma membrane cholesterol content does not similarly affect all P2X7-induced cellular
responses in CD4+ and CD8+ T-cell subsets.

4. Materials and Methods
4.1. Reagents

ATP4- (adenosine-5′-triphosphate), P2X7 receptor antagonist A438079, methyl-β-
cyclodextrin (MBCD), FITC-conjugated cholera toxin B subunit (CTB), filipin III from
Streptomyces filipinensis, cholesterol (≥99%), and bovine serum albumin (BSA) were all
purchased from Sigma Aldrich (St. Louis, MO, USA). The YO-PRO-3 fluorescent probe
(Molecular Probes) was purchased from Thermo Fisher Scientific (Les Ulis, France).

4.2. Mice

Wildtype C57BL/6J (B6) mice were obtained from The Jackson Laboratory (Bar Harbor,
ME, USA). Animal protocols were approved by local and national ethics committees
for research (agreement number: #20833). All mouse strains were maintained in our
animal facilities (Plateforme Animex, Animalerie de l’Institut Paris-Sud d’Innovation
thérapeutique).

4.3. Diet

Mice were either fed a normal diet (ND) or a high fat diet (34% lard, 8.3% saturated
fatty acids, 4.5% mono-unsaturated fatty acid and 5.8% poly-unsaturated fatty acids)
supplemented with 1% cholesterol (HFC) (Ssniff, Soest, Germany) [38]. All diets were
supplied ad libitum for 16 to 24 weeks. The weight of the mice was monitored every week.

4.4. Metabolic Assay

Glucose sensitivity was assessed by an oral glucose tolerance test (OGTT). The glucose
load (2 g/kg) was given by gavage after 6 h of fasting and blood samples were harvested at
0, 15, 30, 60, 90, and 120 min after gavage. Serum glucose concentrations were determined
using the Accu-Chek Performa test (Roche, Basel, Switzerland) and the area under the
glucose–time curve was calculated.

4.5. Serological Parameters

Circulating cholesterol levels were quantified in B6 mice serum using a AU400 chem-
istry analyzer (Olympus AU400, Biochemistry laboratory facility, UMR1149 INSERM-
Université Paris Diderot, Paris, France).

4.6. Plasma Membrane Cholesterol Modulation

Plasma membrane cholesterol content was increased ex vivo by treating spleen cells
from B6 mice with MBCD/Chol complexes at a 12:1 molar ratio in RPMI 1640 medium for
2 h at 37 ◦C. MBCD/Chol complexes were subsequently removed after extensively washing
the cells with ice-cold RPMI 1640 medium. Plasma membrane cholesterol content was
decreased by treating B6 spleen cells with 5 mM MBCD in RPMI 1640 medium for 20 min
at 37 ◦C and then removed by washing cells extensively with ice-cold RPMI 1640 medium.
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4.7. T Lymphocyte Phenotyping

Splenocyte From B6 mice fed a normal or high-fat diet were phenotyped by flow
cytometry using fluorescent-conjugated monoclonal antibodies (mAbs) directed against
the cell surface markers CD90.2/Thy1.2 (clone 30-H12), CD45RABC/B220 (clone RA3-6B2),
CD4 (clone GK1.5), CD8α (clone 53-6.7), CD45RB (clone C363.16A), CD44 (clone IM7),
CD62L (clone MEL-14), and P2X7 (clone 1F11) (all from eBioscience, San Diego, CA, USA).
Cell membrane cholesterol was stained with filipin III. Binding of FITC-labeled CTB was
used to measure ganglioside GM1 plasma membrane expression. Fluorescent-conjugated
rat or mouse IgG1, IgG2a, or IgG2b, Armenian hamster IgG mAbs, or rabbit IgG polyclonal
serum were used as isotype controls (eBioscience). Anti-mouse Fcγ receptor mAb (clone 93,
eBioscience) were used to avoid non-specific antibody binding. At least 20,000 events
were analyzed for each sample. Cell debris, dead cells, and doublets were gated out using
the physical characteristics of cell-like granularity (side scatter, SSC) and size (forward
scatter, FSC). Data acquisition was performed at the Flow Cytometry Core Facility at IPSIT
(Clamart, France). Flow cytometry data were analyzed using FlowJo v10.8.1 (BD, Ashland,
OR, USA) software.

4.8. ATP-Mediated Cellular Function Assays

Assays for P2X7-induced CD62L shedding, phosphatidylserine (PS) externalization,
and pore formation were performed as previously described [16–18,39]. Briefly, splenocytes
(106 cells/mL) suspended in RPMI 1640 culture medium were stimulated with 500 µM
eATP in a humidified 5% CO2 atmosphere at 37 ◦C for 30 min. Then, cells suspensions
were washed and labelled for 30 min on ice with phenotype-specific fluorescent mAbs
and fluorescent-conjugated anti-CD62L mAb, and Annexin V fluorescent probe to assess
CD62L shedding and PS externalization. To measure P2X7-mediated pore formation, eATP
stimulation was performed in the presence of YO-PRO-3 fluorescent dye (Thermo Fisher
Scientific). In certain experiments, cells were pre-treated with 10 µM of the competitive
P2X7 antagonist A438079 for 20 min before treatment with eATP. Data acquisition was
performed at the Flow Cytometry Core Facility at IPSIT (Clamart, France). Flow cytometry
data were analyzed using FlowJo v10.8.1 (BD, Ashland, OR, USA) software.

4.9. Statistical Analysis

Data are reported as the mean ± SEM. Experimental and control groups were com-
pared using unpaired two-tailed Student’s t-tests or ANOVA. Statistical significance is
indicated as follows: * p≤ 0.05; ** p≤ 0.01; *** p≤ 0.001, **** p≤ 0.0001, ns = not significant.
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panel) and shedding of CD62L (right panel) were evaluated for the various stages of differentiation 
of CD4+ and CD8+ T cells following stimulation with 500 µM eATP for 30 min at 37 °C. Results are 
presented as mean histograms and dot plots representative of the experiments. Data are expressed 
as the mean of percentages (±SEM, n ≥ 6 mice). Asterisks denote statistically significant differences * 
p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001. 

Figure A1. P2X7-mediated cellular responses depend on the differentiation stage of CD4+

and CD8+ T cells. (A) Gating strategy for the identification of CD44lowCD45RBhigh naive and
CD44highCD45RBhigh or CD44lowCD45RBhigh effector/memory CD4+ and CD8+ T-cell subsets from
mouse spleens. (B) Plasma membrane levels of P2X7 was quantified by flow cytometry using BV605-
conjugated anti-P2X7 extracellular domain mAb. (C) P2X7-dependent pore formation (left panel)
and shedding of CD62L (right panel) were evaluated for the various stages of differentiation of CD4+

and CD8+ T cells following stimulation with 500 µM eATP for 30 min at 37 ◦C. Results are presented
as mean histograms and dot plots representative of the experiments. Data are expressed as the mean
of percentages (±SEM, n ≥ 6 mice). Asterisks denote statistically significant differences * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: not significant.



Int. J. Mol. Sci. 2022, 23, 6730 18 of 21Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure A2. Amplitude of P2X7-induced cellular responses in T cells following plasma membrane 
cholesterol depletion by MBCD. Amplitude of P2X7-mediated pore formation (A) and CD62L 
shedding (B) were evaluated among CD44lowCD45RBhigh naïve and CD44highCD45RBlow or 
CD44highCD45RBhigh effector/memory CD4+ and CD8+ T-cell subsets in the presence of 500 µM eATP 
for 30 min at 37 °C following ex vivo plasma membrane cholesterol depletion using 5 mM MBCD 
for 20 min at 37 °C. Data are expressed as the mean of percentages (±SEM, n ≥ 6 mice). Asterisks 
denote statistically significant differences ** p ≤ 0.01, ns: not significant. 

Figure A2. Amplitude of P2X7-induced cellular responses in T cells following plasma mem-
brane cholesterol depletion by MBCD. Amplitude of P2X7-mediated pore formation (A) and
CD62L shedding (B) were evaluated among CD44lowCD45RBhigh naïve and CD44highCD45RBlow

or CD44highCD45RBhigh effector/memory CD4+ and CD8+ T-cell subsets in the presence of 500 µM
eATP for 30 min at 37 ◦C following ex vivo plasma membrane cholesterol depletion using 5 mM
MBCD for 20 min at 37 ◦C. Data are expressed as the mean of percentages (±SEM, n ≥ 6 mice).
Asterisks denote statistically significant differences ** p ≤ 0.01, ns: not significant.
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Figure A3. Diet-induced hypercholesterolemia affects P2X7-induced cellular responses in naive 
and effector/memory CD8+ and CD4+ T cells. Flow cytometry dot plots representative of the 
P2X7-induced cellular function assay performed on CD8+ (A) and CD4+ (B) T-cell subsets from mice 
fed either a normal diet (ND) or a high-fat diet (HFC) maintained for 16 weeks or on splenocytes 
from normal fed mice treated ex vivo with MBCD/Chol complexes (+Chol). 
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