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ABSTRACT

Competitive endogenous RNAs (ceRNAs) are a newly proposed RNA interaction 
mechanism that has been associated with the initiation and progression of various 
cancers. In this study, we constructed an ageing gene related ceRNA network 
(AgeingCeNet) in bladder cancer. Network analysis revealed that ageing gene ceRNAs 
have a larger degree and closeness centrality than ageing genes themselves. Notably, 
the difference of betweenness centrality of ageing genes and their ceRNAs is not 
significant, suggesting that the ceRNAs of ageing genes and ageing genes themselves 
both play important communication roles in AgeingCeNet. KEGG pathway enrichment 
analysis for genes in AgeingCeNet revealed that AgeingCeNet genes are enriched in 
cancer pathways and several cancer related singaling pathways. We also identified 
37 core modules from AgeingCeNet using CFinder software. Next, we identified 2 
potential prognostic modules, named K11M14 and K13M4, whose prognostic ability 
is better than that of age and gender. Finally, we identified microRNAs (miRNAs) 
regulating the two modules, which include miR-15b-5p, miR-195-5p, miR-30 family 
members, and several other cancer-related miRNAs. Our study demonstrated that 
constructing an ageing gene related ceRNA network is a feasible strategy to explore 
the mechanism of initiation and progression of bladder cancer, which might benefit 
the treatment of this disease.

INTRODUCTION

Bladder cancer is the highest incident cancer in 
urinary system tumours followed by kidney in the United 
States, with 79,030 new cases projected to be diagnosed 
(60,490 in male and 18,540 in female) and 16,870 
deaths (12,240 in male and 4,630 in female) in 2017 [1]. 
Currently, the main treatment for bladder cancer is surgery. 
Unfortunately, high recurrence is one characteristic of 
bladder cancer [2, 3]. Therefore, it is urgent to identify 
novel therapeutic targets to improve the diagnosis, 
prognostic prediction, and ultimately survival outcomes 
in bladder cancer.

Age is one of the most important risk factors for 
cancer [4, 5]. Risk for cancer increases significantly after 

50 years of age, and half of all cancers occur at 66 years 
and above. The precise molecular mechanisms by which 
older people are at higher risk for cancer are an active area 
of investigation. One current theory posits that as aging 
occurs, mutations accumulate and long-term chronic 
inflammation persists, cancer-promoting DNA mutations 
increase and DNA-damage repair mechanisms weaken. 
Eventually, a compromised immune and repair system can 
no longer cope with long term exposure to carcinogens 
such as sunlight, radiation and environmental chemicals 
leading to onset of cancer [6]. Nonetheless, a complete 
understanding of the link between ageing and cancer 
remains poorly understood. Our study therefore focuses 
on novel bladder cancer prognostic biomarkers from the 
perspective of ageing.
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MicroRNA is an abundant class of 21-22 nucleotide 
non-coding RNA that negatively regulates gene expression 
by inhibiting messenger RNA (mRNA) translation or 
affecting its stability [7]. The seed region, defined by 
nucleotides 2-8 of the 5’ portion of the mature miRNA, 
is crucial for mRNA recognition and silencing. Notably, 
the interaction between the seed region and mRNA is not 
unidirectional. mRNA, long noncoding RNA (lncRNA) 
and other RNA molecules can compete for miRNA to 
inhibit its activity or to regulated RNAs within their own 
class. These competitive endogenous RNAs (ceRNAs) act 
as molecular sponges for a miRNA through their miRNA 
binding sites (also known as miRNA response elements, 
MRE), thereby de-repressing target genes of the respective 
miRNA family. Several studies have verified that PTEN, 
a tumor suppressor gene, can be regulated by ceRNAs 
in prostate cancer, glioblastoma and melanoma, via cell 
proliferation and cancer-related signaling pathways [8]. 
Our study aims to explore ageing gene related ceRNA 
modules that have significant prognostic function for 
bladder cancer patients.

In the present study, we constructed an ageing 
gene related ceRNA network (AgeingCeNet) specific 
to bladder cancer. Bladder cancer related mRNA and 
long non-coding RNA (lncRNA) expression data were 
obtained from The Cancer Genome Atlas (TCGA) [9] 
and The Atlas of non-coding RNA in Cancer (TANRIC) 
[10]. A bladder cancer-specific ceRNA network 
composed of mRNA and lncRNA was constructed 
using mRNA/lncRNA expression data, along with 
experimentally validated miRNA-mRNA and miRNA-
lncRNA interaction data. We then constructed an 
ageing gene related ceRNA network (AgeingCeNet). 
Network analysis revealed that ageing gene ceRNAs 
have a larger degree and closeness centrality than aging 
genes themselves. However, the difference between the 
betweenness centrality of ageing genes and their ceRNAs 
is not significant, suggesting that ageing genes and their 
ceRNAs both play important communication roles in 
AgeingCeNet. KEGG pathway enrichment analysis for 
genes in AgeingCeNet revealed that AgeingCeNet genes 
are enriched in cancer pathways and several cancers 
related by signaling pathways. Based on CFinder and 
survival analysis, we obtained two potential prognostic 
modules. Our results suggest that constructing an ageing 
gene related ceRNA network could be a novel strategy 
to identify bladder cancer related prognostic biomarkers.

RESULTS

Topological properties analysis and functional 
enrichment analysis of AgeingCeNet in bladder 
cancer

We analysed mRNA/lncRNA expression data from 
251 bladder cancer samples, along with experimentally 

validated miRNA-mRNA interaction data and miRNA-
lncRNA interaction data to construct a functional 
miRNA mediated ceRNA network in bladder cancer. In 
total, 32415 miRNA mediated ceRNA interactions were 
identified, including 34 lncRNA-lncRNA, 193 lncRNA-
mRNA, and 32188 mRNA-mRNA ceRNA pairs, which 
was used to build a bladder cancer specific ceRNA 
network. We then extracted an ageing gene associated 
ceRNA network, AgeingCeNet, which includes 1322 
nodes (4 lncRNAs, 1 ageing lncRNA; 1197 mRNAs, 120 
ageing mRNAs) and 13563 ceRNA pairs (82 lncRNA-
mRNA ceRNA pairs, 13481 mRNA-mRNA ceRNA 
pairs. Figure 1A, Supplementary Table 1). We validated 
the correlation between the ageing genes and their 
ceRNAs using an independent dataset GSE87304, which 
contains 305 bladder cancer samples. About 95 percent of 
correlations between ageing genes and their ceRNAs that 
have expression data in this dataset were verified (p value 
< 0.05. Supplementary Table 2). In order to study the 
topological properties of AgeingCeNet, degree distribution 
analysis was performed for all nodes, mRNAs, and ageing 
genes (Figure 1B-1D). The degree distribution analysis 
reveals that all nodes, either ageing genes or their ceRNAs 
in AgeingCeNet all follow a power law distribution, which 
indicates that a majority of nodes in AgeingCeNet have 
few interactions with other nodes in AgeingCeNet, while 
a minority of nodes have large numbers of interactions 
with others.

We also performed functional enrichment analysis 
for all genes in AgeingCeNet based on Gene Ontology 
biological process terms and Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) pathways [11]. AgeingCeNet 
was enriched in 338 GO biological terms and 31 KEGG 
pathways (p-vaule cutoff = 0.01, Supplementary Table 
3). The top 20 enriched GO biological terms and KEGG 
pathways were visualized (Supplementary Figure 1A-
1B). We also visualized and clustered the enriched KEGG 
pathways using EnrichmentMap (Figure 1E). Of these, 
12 were cancer pathways including bladder and renal cell 
cancer and 9 were cancer signaling pathways including 
P53 [12], mTOR [13], and MAPK [14]. The GO term and 
KEGG pathway enrichment analyses revealed that genes 
in AgeingCeNet were closely associated with a variety of 
cancers including bladder cancer.

The roles of ageing genes (mRNA/lncRNA), 
ceRNAs and hub nodes in AgeingCeNet

We found that ceRNAs of ageing genes have a 
significantly higher degree than ageing genes themselves 
in AgeingCeNet (p-value = 1.594e-05, Figure 2A), which 
indicates ceRNAs of ageing genes have more interactions 
with other nodes than ageing genes in AgeingCeNet. 
Closeness centralities (CC) of ceRNAs of ageing genes 
are also significantly larger than that of ageing genes 
(p-value = 4.022e-10, Figure 2B), which reveals that 
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ceRNAs of ageing genes have smaller average length of 
the shortest paths to all the other nodes than ageing genes 
in AgeingCeNet. Notably, the betweenness centrality 
difference between ageing genes (Figure 2C) and their 
ceRNAs is not significant (p-value = 0.656), indicating 
that they may have a similar communication function in 
AgeingCeNet.

For further analysis, we took the hub nodes defined 
as the top 10% highest degree nodes of AgeingCeNet to 
construct a hub network (hubNet). The network contains 

132 nodes (11 ageing mRNAs and 121 ageing gene 
ceRNAs) and 1489 edges (Figure 2D). Although the 
difference of degree centrality between ageing mRNAs 
and their ceRNAs is not significant in hubNet (p-value 
= 0.146, Figure 2E). The closeness and betweenness 
centrality of ageing mRNAs ceRNAs are significantly 
larger than that of ageing mRNAs themselves (p-value = 
0.012 and 0.001, respectively, Figure 2F, 2G), suggesting 
that these ageing mRNAs associated ceRNAs function in 
a crucial communication role in hubNet of AgeingCeNet.

Figure 1: Topological properties of the ageing gene-associated ceRNA network (AgeingCeNet). (A) The overview of 
AgeingCeNet. (B-D) The degree distribution of all nodes, mRNA, and ageing genes in AgeingCeNet. Node colour was set according to the 
node colour in AgeingCeNet. (E) The enrichment map of KEGG pathways that enriched by genes in AgeingCeNet. Node size represents 
the number of genes in specific KEGG pathway. The edge thickness represents the number of genes shared by the two KEGG pathway 
linked by the edge.
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There were several verified cancer-related ageing 
mRNAs in the hubNet of AgeingCeNet. CLOCK gene 
(Ageing gene) as the node with the highest degree in 
AgeingCeNet was verified to be associated with urothelial 
cancer [15]. BRCA1, another hub ageing gene, is associated 
with breast, ovarian, prostate, pancreas and stomach cancer 
[16]. MAPK8, MAP kinase family, is associated with 
cell proliferation, apoptosis and differentiation and was 
confirmed to be associated with a variety of cancers [17].

Identification of prognostic module biomarkers 
from AgeingCeNet in bladder cancer

We obtained 37 modules from AgeingCeNet 
using CFinder software with threshold K-clique > 10 
(Supplementary Table 4). For each module, we used 
multivariate Cox regression model with overall survival 
time as the dependent variable and module genes as 
covariates. A risk score for each module gene was 

Figure 2: Comparison analysis of topological properties between ageing genes and their ceRNAs in AgeingCeNet and 
hubNet of AgeingCeNet. (A-C) Boxplot of degree, closeness centrality and betweenness centrality of ageing genes and their ceRNAs 
in AgeingCeNet. (D) The hub network (hubNet) of AgeingCeNet. (E-G) Boxplot of degree, closeness centrality and betweenness centrality 
of ageing genes and their ceRNAs in hubNet.
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measured by the regression coefficient derived from the 
multivariate Cox regression analysis (Supplementary 
Table 5). The risk score for each module was obtained 
by a linear combination of module gene expression value 
weighted by the gene risk score (regression coefficient 
mentioned above). Two hundred-fifty one (251) bladder 
samples having mRNA/lncRNA expression and clinical 
data were randomly divided into two subsets [18]: a 
training set (125 samples) and a test set (126 samples). 
For each module, we used the average module risk score 
of the training set samples to divide both the training set 
and test set into two subsets: high risk score samples and 
low risk score samples. We identified two modules that 

had significant prognostic ability both in training and test 
set (Supplementary Table 6). One module, comprised 
of 12 genes, was the fourteenth module derived from 
CFinder with K-clique = 11, named K11M14. For this 
module, the numbers of high risk samples were 60 in 
the training dataset and 58 in the test dataset, and the 
numbers of low risk samples were 65 in the training 
dataset and 68 in the test dataset. The high risk score 
samples had a significantly shorter survival time than the 
low risk score samples both in the training set and the 
test set (log rank p-value = 0.002 and 0.003, respectively, 
Figure 3A, 3B). The other module that included 16 genes 
(15 mRNAs and 1 lncRNA) is the fourth module derived 

Figure 3: Survival curves and risk score analysis of module K11M14 and K13M4 in training and test dataset. (A-
D) Kaplan-Meier survival curve for overall survival of training and test data set with high and low risk score of K11M14 and K13M4, 
respectively. (E-H) Risk score analysis of K11M14 and K13M4 for training and test dataset. (I-L) Receiver operating characteristic (ROC) 
curve analysis and area under the curve (AUC) value of the ROC curve indicating the sensitivity and specificity of K11M14 and K13M4 
for survival prediction in training and test dataset, respectively.
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from CFinder with K-clique = 13, named K13M4. For 
this module, the numbers of high risk samples were 66 
in the training dataset and 65 in the test dataset, while 
the numbers of low risk samples were 59 in the training 
dataset and 61 in the test dataset. The high risk score 
samples had significantly shorter survival time than 
the low risk score samples both in the training set and 
the test set (log rank p-value = 1.442e-05 and 0.004, 
respectively, Figure 3C, 3D). The distribution of gene 
risk scores and the survival statuses for the two modules 
in training dataset and test dataset are shown in Figure 
3E-3H. Patients with high-risk scores tended to present 
poorer clinical outcomes compared to patients with low-
risk scores. To evaluate the sensitivity and specificity of 
the survival prediction of the two modules, we adopted a 
time-dependent receiver operating characteristic (ROC) 
curve analysis for training dataset and test dataset. The 
values of area under the curve (AUC) for K11M14 
module were 0.597 and 0.651 in the training and test 
dataset, respectively (Figure 3I, 3J). The values of area 
under the curve (AUC) for K13M4 module were 0.675 
and 0.638 in the training and test dataset, respectively 
(Figure 3K, 3L). These results indicate that the two 
modules both have a superior prediction performance.

Cancer statistics data projected that 143,190 new 
cases were to be diagnosed (58,950 in male and 18,010 
in female) and 31,540 deaths were to be reported (11,820 
in male and 4,570 in female) in 2016 [19]. The number of 
newly diagnosed or deaths from bladder cancer in male is 
twice of that in female, which suggests that gender should 
be a factor for bladder cancer. Age is also a risk factor 

for bladder cancer. Therefore, univariate Cox regression 
was performed for module risk score, gender, and age 
for each module in the training and test dataset. We also 
performed another multivariate Cox regression model with 
overall survival time as the dependent variable and module 
risk score, age and gender as covariates for K11M14 and 
K13M4 in the training set and test set. The results are shown 
as Table 1 and demonstrate that K11M14 and K13M4 both 
have more significant prognostic ability than gender and 
age in each data set.

miRNAs that regulate prognostic module

To explore which miRNAs play crucial roles in 
regulation of the two prognostic modules. We listed the 
miRNAs that were shared by ceRNA pairs in the two 
modules (Supplementary Table 7). We found the top 10 
miRNAs that were shared by ceRNA pairs in the two 
modules, respectively (Figure 4A, 4B). Notably, five 
miRNAs of top 10 K11M14 regulating miRNAs belong 
to miR-30 family, which can regulate the growth of 
cancer cells [20]. miR-142-3p was shown to be a tumour 
suppressor for several cancers [21, 22]. miR-15b-5p 
was identified as a potential urine biomarker for bladder 
cancer [23]. miR-195-5p was shown to suppress cell 
proliferation in bladder cancer [24]. K13M4 regulating 
miRNAs miR-17-5p and miR-20a were found previously 
to be overexpressed in bladder cancer [25]. In summary, 
our method not only identified two prognostic modules, 
but also at least 3 potential miRNA biomarkers for bladder 
cancer.

Table 1: Univariate and multivariate Cox regression analysis of module K11M14 and K13M4 in bladder cancer 
patients

Variables
Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value

K11M14 
training dataset

Risk Score 2.718 1.680-4.398 4.63E-05 2.701 1.692-4.309 3.09E-05

Gender 0.668 0.369-1.212 0.184 0.641 0.353-1.164 0.144

Age 1.018 0.989-1.047 0.229 1.018 0.989-1.048 0.225

K11M14 test 
dataset

Risk Score 1.632 1.213-2.196 0.001 1.689 1.233-2.313 0.001

Gender 1.538 0.768-3.080 0.225 1.840 0.895-3.784 0.097

Age 1.013 0.984-1.043 0.374 1.009 0.980-1.039 0.538

K13M4 training 
dataset

Risk Score 2.718 1.514-4.881 0.001 2.761 1.522-5.009 0.001

Gender 0.668 0.369-1.212 0.184 0.799 0.436-1.466 0.469

Age 1.018 0.989-1.047 0.229 1.022 0.992-1.053 0.150

K13M4 test 
dataset

Risk Score 1.873 1.182-2.969 0.008 1.884 1.177-3.015 0.008

Gender 1.538 0.768-3.080 0.225 1.393 0.688-2.820 0.357

Age 1.013 0.984-1.043 0.374 1.020 0.990-1.052 0.190

Note: HR represents hazard ratio, CI represents confidence interval.
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DISCUSSION

There is considerable urgency to identify 
novel therapeutic targets to improve the diagnosis, 
prognosis prediction, and ultimately survival outcomes 
in bladder cancer. Considering age is one of the 
most important risk factors for cancer and a ceRNA 
mechanism has been verified to play an important 
role in cancer biology, we constructed an ageing 
gene related ceRNA network (AgeingCeNet) specific 
to bladder cancer. KEGG Enrichment analysis for 
AgeingCeNet genes indicated that these genes were 
enriched in specific types of signaling and cancer 
pathways (including bladder cancer). Network analysis 
results implied that ceRNAs of ageing genes have 
significantly more interactions than ageing genes in 
AgeingCeNet. Moreover, ceRNAs of ageing genes tend 
to be in the centre of AgeingCeNet and play a similar 
communication role with ageing genes indicating both 
play important roles in the network.

Furthermore, we identified two potential 
prognostic modules (K11M14 and K13M4) in 
AgeingCeNet. Both modules had a better prognostic 
ability than age and gender which are considered as 
common risk factors for bladder cancer [26]. The two 
modules contain several validated cancer-associated 
genes. MAPK8, the only ageing gene in K11M14, is 
a member of the MAP kinase family, which play roles 
in cell proliferation, differentiation and other cellular 

processes. It’s also an essential member of the MAPK 
signaling pathway, which is a common mutational 
activation signaling pathway in bladder cancer [27]. 
The MAPK8 ceRNAs in K11M14 can regulate the 
expression of MAPK8 by competing shared miRNAs, 
which might be potential biomarkers for bladder cancer. 
PDPK1, an ageing gene in K13M4, is a master kinase, 
which can function downstream of PI3K through 
PDPK1’s interaction with membrane phospholipids. 
PI3K pathway is another mutational activation signaling 
pathway in bladder cancer [27]. The ceRNAs of PDPK1 
in K13M4 might be potential biomarkers for bladder 
cancer. Notably, the only lncRNA ENSG00000175701.6 
(also known as LINC00116), one ceRNA of PDPK1, in 
K13M4 was identified as a potential biomarker for lung 
cancer [28]. By constructing an ageing gene related 
ceRNA network for bladder cancer, we identified two 
prognostic modules that have a close relationship with 
two common mutational activation signaling pathways, 
which suggests that exploring the mechanism from the 
perspective of ageing might be a feasible strategy.

In conclusion, by constructing an ageing gene 
related ceRNA network, we identified two prognostic 
modules and related regulating miRNAs in bladder cancer, 
which both contain several cancer related molecules. 
Ageing gene ceRNA network construction and analysis 
was shown as a feasible strategy to explore the mechanism 
of bladder cancer and might benefit its diagnosis and 
treatment.

Figure 4: miRNA regulation of prognostic modules network. (A, B) miRNA regulation of prognostic modules network for 
K11M14 and K13M4, respectively. The purple, red, orange, and blue nodes represent miRNA, ageing mRNA, ageing lncRNA and ageing 
gene associated ceRNA, respectively.



Oncotarget111749www.impactjournals.com/oncotarget

Figure 5: Workflow of the study. Different colour frames represent processes in this study, including data collection, network 
construction, module discovery, survival analysis and biomarker discovery.
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MATERIALS AND METHODS

Workflow

The workflow is shown in Figure 5 and includes 
mRNA/lncRNA expression data, miRNA targets data and 
ageing associated mRNA/lncRNA collection, bladder 
cancer specific ceRNA construction, AgeingCeNet 
construction, network analysis, identification of prognostic 
modules and potential biomarkers for bladder cancer.

Data collection

The RNASeq V2 level 3 data and clinical data 
for bladder cancer were downloaded from The Cancer 
Genome Atlas (TCGA). We obtained 427 samples with 
gene expression data based on the “gene_exp_rpkm” value 
and 412 samples with clinical data. We removed 4 samples 
from clinical samples with negative overall survival 
time. To filter genes that were not expressed across 
most samples in RNA-seq datasets, we removed genes 
with expression value = 0 in more than 50% of samples. 
The gene expression values were log2 transformed. The 
lncRNA expression data of 271 samples were downloaded 
from TANRIC, which is an interactive open platform to 
explore the function of lncRNAs in cancer. TANRIC 
used the dataset from TCGA. Finally, we obtained 251 
overlapping samples with gene expression data, lncRNA 
expression data and clinical data.

Another mRNA expression dataset GSE87304 on 
the Affymetrix HuEx-1_0-st platform was downloaded 
from Gene Expression Omnibus (GEO) database [29]. 
The dataset contains 305 bladder cancer samples and was 
used to validate the correlation between aging genes and 
their ceRNAs.

Experimentally verified human miRNAs and targets 
were obtained from miRTarBase (version 6.1) [30]. A 
total of 324,219 non-redundant experimentally verified 
miRNA-target interactions were used in our analysis. The 
experimentally validated miRNA-lncRNA interactions 
were downloaded from starBase v2.0 [31] including 
10,212 miRNA-lncRNA interactions.

Human ageing associated mRNAs were downloaded 
from The Ageing Gene Database (GenAge) [32]. In 
addition, ageing associated lncRNAs were extracted 
from a published report [33]. In total, 305 human ageing 
associated mRNAs and 30 ageing associated lncRNAs 
(Supplementary Table 8) were used as the seed nodes to 
construct AgeingCeNet.

Construction of ageing genes associated ceRNA 
network

Our hypothesis was that ceRNA pairs should 
satisfy two criteria: one is the pair should have high 
miRNA regulation similarity. The other is that the pair 

should have strong co-expression [18, 34, 35]. Firstly, a 
hypergeometric test was used to evaluate the significance 
of shared miRNAs for each possible ceRNA pair. For 
a given RNA pair A and B, we identified the RNA pair 
of shared miRNAs at first. Then, we calculated the 
probability of sharing miRNAs for A and B as follows:
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Where N represents the number of all miRNAs in 
study. K and M represents the number of miRNAs that target 
RNA A and RNA B, respectively. x represents the number 
of miRNAs targeting both RNA A and RNA B. Only the 
pairs that satisfy x ≥3 and FDR-adjusted p-value < 0.01, 
were reserved for the following analysis. Secondly, Pearson 
correlation coefficient was used to evaluate the co-expression 
of RNA A and RNA B. The formula is shown below:

P A B cov A B
A B

,
( , )

( ) ( )σ σ( ) =

Where cov(A, B) represents the covariance of gene 
expression values of RNA A and B. σ(A) and σ(B) represent 
the standard deviation for gene expression values of RNA 
A and B, respectively. Only the pairs that satisfy absolute 
Pearson correlation coefficient > 0.5 and FDR-adjusted 
p-value < 0.01, were considered as ceRNA candidates.

According to the two principles, a bladder cancer 
specific ceRNA network was constructed. Ageing genes and 
RNAs directly interacting with ageing genes in the ceRNA 
network were selected and extracted as a new subnetwork 
using Cytoscape 3.5.1 [36]. The maximal connected 
component of the subnetwork was defined as AgeingCeNet.

Network analysis

To study the structure of AgeingCeNet, we 
performed topological properties analysis including 
degree, closeness centrality (CC) and betweenness 
centrality (BC). Degree of a node is the number of nodes 
that interact with the node. CC is defined as:

CC v
d

( )
1

j v v j,∑
=

≠

Where dv, j represents the shortest path from node 
v to node j. In brief, a node with big CC is much closer 
to other nodes. In other words, a node with a big CC 
tends to be at the centre of the network. BC of a node v is 
measured as below:

BC v v( )
s t v

st∑σ( ) =
≠ ≠

Where σst(v) represents the number of shortest paths 
from node s to node t that passes node v. In brief, BC can 
reflect the role of a node in communication [37].
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The network analysis, visualisation, and modules 
discovery was implemented by a R package “igraph”, 
Cytoscape and CFinder [38].

Functional enrichment analysis

KEGG pathway enrichment analysis was 
implemented using DAVID Bioinformatics Resources 
version 6.7 (https://david-d.ncifcrf.gov) [39, 40]. 
Functional categories were visualized and clustered using 
the EnrichmentMap [41], a plugin in Cytoscape 3.5.1.

Survival analysis

The risk score (RS) of a module was calculated 
using the formula:

RS R i Exp i( ) ( )
i

n

1
∑=

=

Where n represents the number of module RNAs. 
R(i) represents the estimated regression coefficient of RNA 
i from the multivariate Cox regression analysis. Exp(i) 
is the expression value of RNA i. If the RS of a given 
sample is bigger than the mean of RS of all samples, then 
the sample is classified as a high risk sample. Otherwise, 
the sample is classified as a low risk sample. The Kaplan-
Meier (KM) method was used to estimate the survival 
curves between high risk and low risk groups. The two-
sided log-rank test was used to evaluate the statistical 
significance of the survival curves. Additionally, receiver 
operating characteristic (ROC) curve analysis and the area 
under the ROC curve (AUC) were used to evaluate the 
sensitivity and specificity of survival prediction.
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