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ABSTRACT: Constantly advancing computer simulations of bio-
molecules provide huge amounts of data that are difficult to interpret.
In particular, obtaining insights into functional aspects of macro-
molecular dynamics, often related to cascades of transient events, calls
for methodologies that depart from the well-grounded framework of
equilibrium statistical physics. One of the approaches toward the
analysis of complex temporal data which has found applications in the
fields of neuroscience and econometrics is Granger causality analysis.
It allows determining which components of multidimensional time
series are most influential for the evolution of the entire system, thus
providing insights into causal relations within the dynamic structure of
interest. In this work, we apply Granger analysis to a long molecular
dynamics trajectory depicting repetitive folding and unfolding of a
mini β-hairpin protein, CLN025. We find objective, quantitative evidence indicating that rearrangements within the hairpin turn
region are determinant for protein folding and unfolding. On the contrary, interactions between hairpin arms score low on the
causality scale. Taken together, these findings clearly favor the concept of zipperlike folding, which is one of two postulated β-hairpin
folding mechanisms. More importantly, the results demonstrate the possibility of a conclusive application of Granger causality
analysis to a biomolecular system.

1. INTRODUCTION

Molecular dynamics (MD) simulations provide increasingly
comprehensive insights into the functioning of biomolecular
systems.1−3 One prominent area which has been fruitfully
explored by means of MD is the problem of protein folding.4−7

Numerous studies have demonstrated that polypeptide chains
described by atomistic force fields can successfully reach
experimentally determined native states guided solely by
sequence-based effects.8−11 Although less powerful in terms
of practical ability to deliver sequence-based structure
predictions compared to specialized approaches, in particular
those based on extremely successful application of machine
learning techniques,12 MD simulations are unique in that they
provide means to trace and, possibly, explain the details of the
actual folding process. Still, even having access to atomistic,
time-resolved folding trajectories does not always ensure
unambiguous, objective interpretation of events that occur
along the folding pathway or a clear understanding of the
underlying biophysical driving forces.13−15

In this respect, even the folding of short β-hairpin structures
is far from being clear.16,17 Regarded as minimalistic protein
models for their ability to achieve well-defined native states
while having as few as 10 amino acids, they have been
extensively investigated.18−23 So far, two major theories
concerning the sequence of events have been formulated.
The first one assumes that the folding pathway starts with the
appearance of a turn in the middle of the polypeptide chain

and advances by outward propagation of hairpin contacts in a
zipperlike manner.24 The second one postulates the collapse of
hydrophobic residues within hairpin arms as the primary event,
followed by series of structural rearrangements that lead to
turn stabilization and the formation of interstrand contacts.25,26

Notably, both views received support from experimental and
computational studies of a few β-hairpin structures, which
possibly implies that in fact there is no single, uniform
mechanism of β-hairpin formation.
Particularly well-suited systems for computer-based inves-

tigation of hairpin folding are a human-designed miniprotein
called chignolin27 and its later variant CLN025.28 Both
comprise only 10 amino acids, form stable hairpin structures
amenable for nuclear magnetic resonance and X-ray
crystallography, and, with experimentally confirmed folding
times of only a few hundred nanoseconds, can be exhaustively
sampled by fully atomistic simulations.29−31 Accordingly, a
number of studies have addressed chignolin and CLN025
reversible folding in an explicit aqueous solvent, finding
support for both the zipperlike29,32−34 and the hydrophobic
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collapse driven35 mechanisms, but also suggesting variability9

and possible force field dependence of available pathways.31,36

Certainly the lack of consensus concerning chignolin and
CLN025 folding, at least to some extent, stems from
discrepancies between force field models. Whereas the native
state is generally well captured by all major models, only very
subtle differences are enough to change the properties of the
unfolded ensemble37 as well as the nature and sequence of
intermediate states, as has been demonstrated in a recent
study.31 In addition to that, however, there exist only limited
analysis options providing insights into detailed temporal
characteristics of biomolecular structure rearrangements.
Major efforts in this respect have been devoted to the
development of Markov state models (MSMs) and associated
methodologies for objective determination of relevant system
representation.38 The resulting framework allows assembling
information from multiple, relatively short simulations into a
complete kinetic model which can then be used to characterize
significantly longer relaxation processes and their associated
structural changes. While extremely powerful in determining
pathways interconnecting meaningful system states and
associated time scales, MSMs do not reveal, however, the
significance of temporal relations between the occurring
events. As a result, even having captured the kinetically
relevant reaction coordinate, it is still difficult to determine
which elements of system dynamics are of importance for its
propagation along the path.
A possible way to draw conclusions about temporal relations

in complex processes is provided by Granger causality analysis
(GC). It was first proposed in 196939 and has found
applications predominantly in economics, finance, and neuro-
science.40−45 Given a process described by multidimensional
time series, GC determines whether, based on the knowledge
of one time series, X, it is possible to probabilistically predict
the behavior of another time series, Y. Causality considered in
this way, expressed in the following as X Granger-causes (G-
causes) Y, avoids the deeply philosophical question of the “true
cause” of a given phenomenon and, more importantly,
provides an effective statistical procedure for measuring the
strength of temporal relationships. The original formulation of
GC was founded on the framework of multivariate
autoregressive models, thus relying on the existence of linear
couplings within the system. The general idea was further
extended to include nonlinear effects by means of information
theory, employing transfer entropy46 instead of time-shifted
correlation to measure temporal dependencies between data
channels.47 Both formalisms have been applied to the analysis
of molecular dynamics simulations utilizing source data in the
form of time series describing fluctuations of atomic positions
in Cartesian space,48−50 residue-based fraction of native
contacts,51 or custom molecular descriptors.52,53 Most recently,
causal relations have been inferred from a transfer entropy
measure which, instead of directly using time-resolved signals,
operated on probability distributions involving elements of
transition matrices representing local Markov state models,
constructed for disjoined regions of a protein structure.54

In this article, we perform GC analysis of CLN025 folding
based on a 106 μs long atomistic simulation performed by
Lindorff-Larsen et al.9 The resulting trajectory contains
multiple folding and unfolding events allowing for para-
metrization of a converged GC model. Instead of focusing on
individual residues, we consider inter-residue distances, as
putative causal relations between them can be interpreted in

terms of dependences between the formation and disruption of
particular physical interactions in the course of the (un)folding
process. We demonstrate that without any preliminary
knowledge-based assumptions the model clearly favors one
of the debated chignolin folding mechanisms and points to the
importance of transient structural motifs in the unfolded
ensemble for subsequent steps toward the native state.

2. METHODS
2.1. Multivariate Autoregressive Model. Multivariate

autoregressive models (MVARs) are used to describe and
analyze multidimensional temporal signals exploiting the
existence of time-shifted correlations between individual
components. In particular, they can be applied to forecast
signal evolution based on linear combination of past values in
respective channels. Given a multidimensional time series x(t)
= {x1(t), ..., xK(t)} propagated with a time step Δt, a
prediction, xpred(t), of signal value at time t can be attempted
based on P preceding steps in the following manner:

t t p tx A x( ) ( )
p

P

ppred
1

∑= − Δ
= (1)

Here, Ap are K × K real matrices containing parameters
defining an MVAR model of order P, which are determined
under the assumption that the residual difference between real
and predicted signals, Δx(t) = x(t) − xpred(t), remains a white
noise with stationary variance.
One of the possible ways to estimate model parameters is

provided by the Yule−Walker method.55,56 Having obtained
matrices of mixed second statistical moments of signal
components Γ(r) = ΓT(−r) = ⟨x(t) xT(t − rΔt)⟩ for r ∈ {0,
..., P}, the parameters are calculated by solving the following
set of P + 1 linear equations (see the Supporting Information
for practical details):

r r pA V( ) ( )
p

P

p r
1

,0∑ δΓ Γ= − +
= (2)

where V = ⟨Δx(t) ΔxT(t)⟩ is the white noise covariance matrix
and δr,0 is the Kronecker delta function.

2.2. Granger Causality. The elements of the residual
white noise covariance matrix, V, in a parametrized MVAR
model (eq 1) can be considered as quality indicators of model
predictions for their respective signal components, based on
data contained in preceding steps, in all signal channels. The
Granger measure for a causal relation between two channels i
and j is based on the assessment of how much the prediction
error for the component Xi increases once the component Xj is
excluded from model parametrization. Formally, the Granger
causality from channel j to i, denoted as Jj→i, is expressed as

J
V

V
1j i

i

i
j( )

= −→
(3)

where Vi and Vi
(j) are ith diagonal elements of covariance

matrices V and V(j), obtained for the MVAR model
parametrized with all the channels and excluding the jth
channel, respectively. Jj→i constitute elements of the generally
asymmetric Granger causality matrix, J, and can vary between 0
and 1. Jj→i = 0 indicates no G-causal relationship between given
signal components, meaning that the omission of the jth
channel does not affect the model’s ability to predict the ith
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channel. In turn, Jj→i = 1 reveals full coupling, implying that the
model loses its ability to predict the ith channel, if the jth
channel is excluded from parametrization.
2.3. Simulation Data and Processing Methods. The

source trajectory representing 106 μs of the CLN025 β-hairpin
fully atomistic molecular dynamics simulation in explicit
solvent was obtained on request from D. E. Shaw Research.9

The trajectory comprised 534 743 frames saved with a time
step of 0.2 ns. The peptide sequence Tyr-Tyr-Asp-Pro-Glu-
Thr-Gly-Thr-Trp-Tyr was parametrized with the
CHARMM22* force field, and the TIP3P model was used
for water. Unassisted, spontaneous folding into a stable
structure in good agreement with the crystallographic
geometry (0.1 nm of Cα root-mean-square deviation,
RMSD) was observed. A simulation temperature of 340 K
was chosen to obtain multiple, reversible (un)folding events.
Technical details of the simulation are given in the original
report.9

In order to select a representative folded structure, the
subset of trajectory frames spaced every 20 ns was clustered
according to an all-atom RMSD using the Gromos algorithm
as implemented in the Gromacs package, with a cutoff of 0.3
nm, and the reference geometry was determined as the central
structure of the largest cluster. Subsequently, in order to
determine a continuous reaction coordinate, ξ, for the
(un)folding process, the all-atom RMSD with respect to this
structure was used together with sines and cosines of peptide
backbone ϕ and ψ angles as components in time independent
component analysis (TICA).57,58 The TICA analysis in the
resulting 37 dimensions was conducted with the kinetic
mapping weighting scheme and a lag time of 120 ns, and its
dominant independent component (IC) was used as a reaction
coordinate. The choice of particular parameters was based on
the method proposed by Best and Hummer,59 which provides
objective criteria to optimize a reaction coordinate to properly
capture reactive trajectories between stable states of interest
(see Results and Discussion). To this end, we considered a
number of trial reaction coordinates and selected the best
among them (see the Supporting Information for details). We
note that GC analysis itself does not require the definition of
any reaction coordinate; however, it is useful to do so for the
interpretation of results.
The potential of mean force (PMF) as a function of ξ was

obtained based on the probability, p(ξ), of finding the
trajectory at ξ, assuming PMF(ξ) = − ln p(ξ) + F0, with F0
constant and chosen such that the global minimum was 0. The
PMF uncertainty is reported as plus or minus one standard
deviation, based on calculations for the original trajectory split
into five consecutive blocks.
To characterize intermediate steps and their representative

structures, illustrating the (un)folding process, the ξ region
between free energy minima corresponding to the folded, F,
and the unfolded, U, states was split using six equidistant
centers, and each trajectory frame was assigned to its closest
center. Representative structures for such defined folding steps
were determined as medoids of respective sets of frames, using
distances in kinetically weighted, 37-dimensional TICA space.
For the calculation of the transition matrix and commitor

function (CF), the trajectory was converted into an integer
sequence based on discrete state numbers assigned to each
frame according to the procedure described above, and it was
processed using a median filter of 1 ns width. The CF was
calculated as a probability that, upon leaving the state of

interest, the trajectory reaches the F state prior to visiting the
U state. Uncertainty of CF estimation at each point is reported
as a range between minimal and maximal values obtained in
independent calculations for the trajectory split into five
consecutive blocks. The calculations of TICA, CF, and the
transition matrix and their visualization were performed with
the PyEMMA Python package.60

For the calculation of conditional probability, p(TP|ξ), of
the system being on a transition path (TP) between F and U
states at a given ξ,59 TPs were identified as continuous
trajectory fragments connecting those two states in either
direction, with no recrossing. The reaction coordinate region
between F and U states was discretized into 50 bins, ξi, and
numbers of frames in each bin, Ni and Ni

TP, were recorded for
the entire trajectory, as well as for TP fragments only,
respectively, and were used to estimate p(TP|ξi) = Ni

TP/Ni. An
error of the estimate is reported as plus or minus one standard
deviation obtained for independent calculations involving Ni,
and Ni

TP evaluation for five consecutive trajectory blocks.
Inter-residue distances were calculated as the shortest

separation between the respective heavy atom sets. Hydrogen
bonds were defined on the basis of geometric criteria involving
an acceptor−donor distance of ≤0.32 nm and an acceptor−
hydrogen donor angle in the range [130, 180] deg.61

The overlap, Ω(ξ) ∈ [0, 1], between the distribution of
inter-residue distances at a given ξ value, discretized in 21 bins
between F and U free energy minima, and their ensemble at
state F (corresponding to the bin centered on the global PMF
minimum) was calculated as an overlap area of two normal
distributions of respective mean values and standard deviations
using an overlap function implemented in the Python statistics
library. It was further normalized such that the range of its
variation along the transition path spanned the entire range
between 0 and 1.

2.4. Granger Causality Analysis. To provide useful data
for Granger analysis, the original molecular dynamics trajectory
was featurized into a set of all 45 inter-residue distances, as
defined above. The trajectory was split into two consecutive,
equal parts, and each of them was processed independently to
assess the convergence of results. Prior to performing the
Granger analysis, the distances were normalized to have 0
mean and variance 1. MVAR parametrization and residual
covariance matrix evaluation was carried out by using the
Yule−Walker method as implemented in the Time Series 1.4
package of Mathematica 7.0. The optimal order, P, of the
MVAR model was determined on the basis of the Schwarz−
Bayes criterion,62 which seeks to minimize the following
expression:

P
KP N

N
VSBC( ) 2 log(det( ))

log( )
= +

(4)

with N being the number of time steps considered. Here, the
first term on the right-hand side accounts for possibly accurate
model predictions, while the second term penalizes model
complexity. In our case, SBC(P) was stable with growing P, so
we adopted P = 1. The low order of the resulting optimal
MVAR model may be related to the relatively long trajectory
time step.
In order to obtain insights into the involvement of particular

contacts in G-causal relations, rather than to consider
dependencies between all 990 possible contact pairs, we
introduced the following measures:
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• Gi
← =∑kJk→i, called predictability to, indicating the extent

to which the behavior of the ith contact can be predicted
based on the evolution of all remaining contacts

• Gi
→ = ∑kJI→k, called predictability f rom, indicating the

extent to which information encoded by the evolution of
the ith contact is useful for the prediction of all
remaining contacts

• Gi
1
2

° = (Gi
→ − Gi

←), called origin predictability, indicating
whether a contact is a source, or an initiator, of events
(Gi° > 0), or rather a sink, or a terminator, of events (Gi°
< 0)

• Gi
1
2

=+ (Gi
→ + Gi

←), called predictability indicator,
indicating the extent of general participance in G-causal
relations

3. RESULTS AND DISCUSSION
3.1. Folding Pathway. Even though GC analysis itself

does not depend on prior determination of representative
states or processes within the system of interest, their
knowledge is essential for meaningful interpretation of the
results. Thus, in order to capture relevant intermediate
configurations of CLN025 (un)folding, we first devised a
reaction coordinate, ξ, that would possibly well follow
transition paths, TPs. To this end, we considered a number
of descriptors characterizing peptide structure and validated
their suitability to serve as a reaction coordinate using the
method proposed by Best and Hummer.59 Briefly, the
approach is based on the estimation of conditional probability
that the system is on a TP, given its particular position along
the reaction coordinate, p(TP|ξ). The extent to which the
maximum of the resulting probability profile is able to reach
the theoretical limit of 0.5 is then used to gauge the quality of
the underlying reaction coordinate.
From various considered candidates for ξ (see the

Supporting Information for details), we chose a combination
of heavy atom RMSD from the representative native state
structure with sines and cosines of backbone dihedral angles,
transformed with the use of TICA.58 A two-dimensional free
energy map as a function of the two first ICs of the TICA
solution with a lag time of 120 ns (Figure 1A) indicates two
unique minima corresponding to the folded and the unfolded
states. The minimum free energy path between them leads
predominantly along the first IC, and it was adopted as a one-
dimensional reaction coordinate. The resulting PMF (Figure
1B) indicates folding free energy in the range of −2.5kBT, in
agreement with previous studies based on the same
trajectory.9,31 The height of the free energy barrier for
unfolding, ∼5kBT, is, however, higher by ∼1kBT than that
reported by Lindorff-Larsen in the original study.9 We attribute
this difference to the possibility that the originally considered
reaction coordinate based on the fraction of native contacts, Q,
may not provide optimal resolution for the case of 10 residues
only miniprotein, likely enriching the transition region with
configurations that, in fact, do not belong to reactive
trajectories. Indeed, whereas the maximum in p(TP|ξ)
obtained for our proposed reaction coordinate is close to 0.5
(Figure 1C), this is not the case for our trial reaction
coordinate based on Q (see the Supporting Information for
details), in line with similar result reported for the same
trajectory.63

In order to obtain representative structures of CLN025
along its (un)folding paths that would aid in the interpretation
of GC results, we chose to select a set of states that (a) covers
the reaction coordinate between the free energy minima for
folded and unfolded states, (b) captures a geometry typical for
the transition state region, and (c) is sufficiently small to
enable visual analysis. We note that, as opposed to models
aimed at the analysis of system kinetics, it is not necessary that
the sets of states and related transition probabilities pass the
Chapman−Kolmogorov test.64 Instead, as we seek to interpret
putative causal relations in continuous processes such as
(un)folding, it is desirable to obtain a set of steps that occur
sequentially one by one during reactive trajectories. Given the
above, we arbitrarily partitioned the reaction coordinate into
six bins with centers evenly spaced between free energy
minima and determined their representative structures as
medoids in TICA space (Figure 1A). The resulting steps along
the (un)folding pathway characterize folded (F), close to
folded (F1), transition (T), preliminary (P), close to unfolded
(U1), and unfolded (U) states. Assuming that hairpin folding
is a process that leaves state U and reaches state F prior to
coming back, we found in total 46 such folding events in the
entire trajectory, with a mean duration of 9 ± 1 ns. In turn, the
average duration of 46 unfolding processes was 14 ± 3 ns.
The relevance of the adopted reaction coordinate and

chosen discrete states is further supported by the fact that the
value of the reaction coordinate at which the CF calculated
directly from trajectory passes the value of 0.5 (Figure 1D) is
consistent with the location of the transition state suggested by
the PMF maximum (Figure 1A). In addition, as evidenced by
inspection of the accompanying transition matrix (Figure 1E),
jumps between nonadjacent states are infrequent, with the
highest rate of 0.03 observed for the transition from T directly

Figure 1. (A) Free energy map as a function of two dominant TICA
ICs. Red dots indicate the location of representative frames for six
(un)folding steps. (B−D) Descriptors of the folding process as
functions of the reaction coordinate. Shaded areas indicate estimation
errors (see text for details). (E) Transition matrix between six folding
steps, with circle areas proportional to corresponding populations of
simulation frames (transitions with probability < 0.03 not shown).
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to F, bypassing F1. This implies that the majority of
(un)folding events indeed proceeds by visiting all consecutive
steps.
3.2. Structural Characterization of Folding Steps.

Structural rearrangements between subsequent folding steps
are analyzed on the basis of a set of representative geometries
together with corresponding fractions of inter-residue contacts
(Figure 2) as well as the most stable hydrogen bonds (Figure
3). As can be expected for a short peptide, the ensemble of
unfolded structures is rather wide with practically no trace of
the native geometry. Notably, though, there are two structural
elements that are unique for the unfolded state (Figure 2U).
The first one is a network of temporary hydrogen bonds at the
N-terminus between Tyr1 and Asp3 that engages the aspartic
acid side chain and pulls it away from its nativelike

configuration. The second is a hydrogen bond between Glu5
and Thr8, which is responsible for the stabilization of a shallow
turn in the region of residue 7, which is displaced with respect
to the native hairpin turn located around residue 5.
In the part of the unfolded ensemble that is closer to the

transition state (Figure 2U1), the dominant turn region shifts
to residue 6, being supported by increasingly frequent main
chain hydrogen bonds between Pro4 and Gly7, additionally
augmented by new interactions between the Asp3 main chain
oxygen atom and Thr6 and Gly7 amide nitrogen atoms.
This repositioning of the turn region toward residue 5 is

continued in the preliminary step (Figure 2P), in which the
interaction between Glu5 and Thr8 disappears in favor of
further enhanced hydrogen bonds between Pro4 and Gly7 as
well as the Asp3 main chain with Thr6 and Gly7. Notably, the

Figure 2. Representative structures for subsequent folding steps and schematic depiction of inter-residue contact frequencies. Shown are major
hydrogen bonds captured in particular structures. Gray stars indicate turn locations in polypeptide backbone. Detailed frequencies of contact
formation and the distribution of turn angles are provided in the Supporting Information.

Figure 3. Fractions of hydrogen bonds formed in subsequent CLN025 (un)folding steps. Bonds formed in <5% of respective simulation frames are
not shown.
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prevalence of the latter increases along with the destabilization
of Tyr1−Asp3 interaction, illustrating gradual shifting of Asp3
engagement from the N-terminus to the turn region.
In the transition state phase (Figure 2T), the N-terminal

hydrogen bond network, which is observed in the U−P states,
becomes entirely absent, liberating the Asp3 side chain, which
now repositions and starts maintaining key hydrogen bonds
through its carboxyl group with residues 5−7. These
interactions take over the role in the stabilization of the turn
region from previously mentioned Pro4 and Gly7 which now
breaks due to main chain reorientation. In this phase, also both
hairpin arms start to interact through main chain hydrogen
bonds between Asp3 and Thr8, as well as yet transient
hydrogen bonds that connect the N-terminal Tyr1 to the C-
terminal Tyr10, and are accompanied by a hydrophobic
contact between Tyr2 and Trp9 side chains.
In the folded phases (Figure 2F1,F) the aforementioned

interactions solidify and fix hairpin arms in their native
configuration. The transition between close to folded, F1, and
fully native, F, structures is related to the permanent
stabilization of the hydrophobic interaction formed by Tyr2
and Trp9 and rotation of the Tyr1 phenol ring such that it
covers hairpin termini, thus sealing the terminal salt bridge
through its dehydration.
3.3. Granger Causality for CLN025. The values of

descriptors calculated for individual inter-residue contacts
based on the complete Granger causality matrix, J (Supporting
Information), are presented in Figure 4.
In general, the obtained amplitudes are rather low, indicating

only subtle G-causal relations within the peptide. Nevertheless,
independent results based on the first half and the second half
of the trajectory (error bars in Figure 4) appear to be
consistent, suggesting that the analysis has indeed converged.
Notably, all contacts between directly neighboring residues
(Figure 4, black) invariably receive 0 scores, as should be
expected based on the independence of their contact distances

determined by covalent bonds from peptide conformations. In
order to further validate the significance of the results, we
repeated all calculations for a trajectory in which frames were
randomly shuffled, thus destroying all existing correlations.
Having checked that the distribution of such determined G
values in their respective categories is Gaussian, we used the
Student’s t test to estimate the probability of a null hypothesis
that the true results belong to the same ensemble (see the
Supporting Information for details). Such obtained p values
turned out to be significantly lower than 0.01 in the case of all
contacts in all categories, except for contacts between
neighboring residues.
An upper range of the G→ and G← parameter spectrum is

dominated by contacts belonging to the hairpin turn region
(Figure 4, magenta). It is consequently reflected by their
dominant G+ predictability indicator values, manifesting the
highest overall involvement in G-causal relations. The above
findings imply that rearrangements within this region
foreshadow downstream conformational changes (high G→)
and also that they are a culmination of preceding steps (high
G←). Taken together, this suggests that turn rearrangements
may play a major role during the transition state, constituting
the threshold between folded and unfolded states. Indeed, one
of the highest scoring contacts, Asp3−Thr6, which is
(un)formed during the transition phase (Figure 2), has been
identified to play a major role in the turn nucleation and
stabilization in our analysis (section 3.2) as well as other19,31

analyses of CLN025 folding.
On the contrary, ladderlike contacts between opposite

hairpin arms (Figure 4, green) are characterized by overall
much lower G+ values. In particular, their G→ indices are low,
implying that on the basis of events occurring within this group
of contacts little can be predicted concerning general peptide
dynamics. This leads to a conclusion that neither unfolding nor
folding processes proceed as the sole result of fluctuations in
ladderlike interactions until changes within the turn region take

Figure 4. Contact-based descriptors of Granger causality. Color codes for contact groups: magenta, turn; blue, arms; green, ladder; black, direct.
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place. Notably, Tyr1−Tyr10 and Tyr2−Trp9 contacts,
considered in the context of chignolin and CLN025 folding
as a proxy for the hydrophobic core,27,28,31−33 do not achieve
distinct scores in any category. Thus, in addition to relatively
high predictability indices, in particular G→ for contacts in the
turn region described above, our analysis clearly supports the
zipperlike rather than the hydrophobic collapse driven
mechanism of CLN025 folding, at least based on the
simulation under study.
A parameter that is meant to distinguish between contacts

that are rather the source of G-causal relations (i.e., their time
evolution carries information useful in the prediction of other
contact behavior) from those that are predominantly a sink of
such relations (i.e., their behavior can be predicted based on
the evolution of other contacts) is G° (section 2.4), which
adopts positive values in the former case and negative values in
the latter case.
It seems reasonable that structural changes followed by most

distinct downstream effects should take place while the system
is crossing a transition state barrier since their occurrence is
expected to trigger downhill evolution along the free energy
gradient, typically of higher magnitude than fluctuations within
any stable state. Indeed, if the state of four contacts with the
highest G° values is followed as a function of the folding
reaction coordinate (Figure 5, left plot), it can be observed that
most significant changes on their route from the U state to the
F state (measured as a change in the degree of overlap, Ω) with
the folded state ensemble occur in the T state, closely
following the CF. Furthermore, the degree of similarity of
Ω(RMSD) to CF(RMSD) apparently correlates positively with
the G° value. In contrast, major changes within four contacts at
the negative end of the G° spectrum are consistently shifted
with respect to CF toward the folded state (Figure 5, right
plot).
Three out of five contacts with the highest G° values,

including the already mentioned Asp3−Thr6 interaction, are
located within the hairpin turn (Figure 5), again highlighting
the importance of this region in simulated CLN025 folding
under study. Notably, contacts of Glu5 with both Gly7 and
Thr8 residues are involved in non-native turn stabilization
(section 3.2) and need to break before the turn properly
centers at Glu5. Similarly, a highly scored Tyr1−Asp3
interaction is involved in a hydrogen bond network within
the N-terminal hairpin arm observed in the U, U1, P, and T
states, and its vanishing enables Asp3 repositioning that is
necessary for turn nucleation. These observations underscore
the fact that Granger analysis is sensitive just to changes in
signal components and, being also agnostic to the actual

direction of the (un)folding process, does not distinguish
between contact making and contact breaking.
The group of contacts with G° < 0 is clearly dominated by

residue pairs that form parallel interactions between opposite
hairpin arms, including the components of the hydrophobic
core (Figure 5). This suggests that the formation of this
structure completes rather than initiates folding and that its
fluctuations in the folded state, e.g., temporal disruption, do
not imply the commencement of the unfolding process.
There remains a question to what extent the above

characterization of the folding process depends on the choice
of the particular reaction coordinate. To this end we analyzed a
set of six representative structures obtained for the worst (i.e.,
having the lowest maximum p(TP|ξ) value) of the considered
trial reaction coordinates, which was based on the RMSD with
respect to the native hairpin geometry. We found that it
captures essentially the same sequence of structural rearrange-
ments as the original one (see Figures S2 and S8), providing
for the same interpretation of causal relations.

4. CONCLUSIONS
Temporal relations in complex biomolecules are inherently
difficult to capture and to express in a quantitative manner.
Our application of Granger causality analysis to chignolin
allowed ranking its structural elements according to their
contributions to the (un)folding process. We found that most
determinant for chignolin dynamics are residues that form the
β hairpin turn. Their high scores in descriptors that express
involvement in causal relations are reflected in the independent
observation that the major part of their transformation
between folded and unfolded states occurs when the system
traverses the transition state barrier. In contrast, the dynamics
of contacts that are formed between hairpin arms, including
those contributing to the peptide’s hydrophobic core, turn out
to encode comparably little information concerning the time
evolution of the system. Taken together, these results support
the conclusion that the molecular dynamics trajectory under
study depicts chignolin folding in agreement with a zipperlike
rather than a hydrophobic collapse mechanism.
The above findings indicate the potential of Granger

causality analysis to provide objective measures useful in the
interpretation of biomolecular dynamics in the context of
already existing hypotheses, such as the debated mechanism of
β hairpin folding. Notably, however, the method is not
dependent on prior knowledge or assumptions concerning the
system of interest that in the case of typical MD analysis are
necessary to devise suitable descriptors. This gives a possibility
for obtaining insights that otherwise might be left unnoticed,

Figure 5. Degree of distance overlap with the native ensemble, Ω(ξ), for four contacts with highest (left plot) and lowest (right plot) G° values.
CF, commitor function. Hairpin scheme: G° values for all contacts.
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such as the apparently important role of contacts within the N-
terminal hairpin arm, whose breaking proved to be necessary
to initiate the repositioning of the hairpin turn and subsequent
folding.
A limitation of the considered approach is the need for long

MD trajectories that contain multiple realizations of the
process under study. Obtaining sufficient sampling for more
complex systems than the one considered here will remain
challenging. In this respect, an interesting route may involve
the adaptation of multiple, short runs in conjunction with
Markov state models to provide proper weighting of individual
transitions between metastable system states. Another possible
improvement may be based on the replacement of the
autoregressive model used to determine the Granger causality
matrix with a more powerful approach. Aside from already
mentioned entropy transfer, machine learning based forecast-
ing methods, which are constantly gaining advantage over
classic statistical approaches,65 may be considered to increase
the sensitivity of the causality analysis.
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