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Abstract: We describe the screening of a set of cryptopleurine derivatives, namely thienoquinolizidine
derivatives and (epi-)benzo analogs with bioactive phenanthroquinolizidine alkaloids that induce
cytotoxic effects in the mouse lymphocytic leukemia cell line L1210. We used three variants of L1210
cells: i) parental cells (S) negative for P-glycoprotein (P-gp) expression; ii) P-glycoprotein positive
cells (R), obtained by selection with vincristine; iii) P-glycoprotein positive cells (T), obtained by stable
transfection with a human gene encoding P-glycoprotein. We identified the most effective derivative
11 with a median lethal concentration of ≈13 µM in all three L1210 cell variants. The analysis of the
apoptosis/necrosis induced by derivative 11 revealed that cell death was the result of apoptosis with
late apoptosis characteristics. Derivative 11 did not induce a strong alteration in the proportion of
cells in the G1, S or G2/M phase of the cell cycle, but a strong increase in the number of S, R and T
cells in the subG1 phase was detected. These findings indicated that we identified the most effective
inducer of cell death, derivative 11, and this derivative effectively induced cell death in S, R and T
cells at similar inhibitory concentrations independent of P-gp expression.
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1. Introduction

While much attention has been paid to finding effective anticancer agents, these discoveries
remain important for future improvements in cancer treatment. In order to find novel derivatives
of naturally occurring compounds with potentiated cytotoxic effects, neoplastic cells are important
for rational anticancer drug development [1]. Moreover, neoplastic cells can develop pleiotropic cell
resistance based on multifactorial inducement [2]. Such resistance leads to reduced drug-induced
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cytotoxicity, which enables cells to escape drug-induced death. This cell survival points to the necessity
to include knowledge about the induction and/or development of this resistance when designing and
preparing drugs with the potential for use as novel anticancer therapies [3].

Plant alkaloids represent a large but well-defined group of nitrogen-containing substances that
have been used in both traditional and alternative medical practice to treat many diseases because of
their wide range of biological activities. Currently, plant alkaloids are at the forefront of therapeutic
discovery and serve mainly as suitable structures for the derivatization and development of new drugs
with potential use in modern medicine. The derivatization of well-known natural compounds/plant
metabolites with a wide range of biological activities is a promising way for focusing on their specific
effectiveness [4]. A rich source of plant alkaloids with a wide range of biological activities is found
in the Leguminosae family. Cryptopleurine, a phenanthroquinolizidine alkaloid, was isolated from
Cryptocarya and Boehmeria species [5] as a compound with potent antiviral [6], anti-inflammatory [7] and
antiproliferative activity [8,9]. It is representative of natural compounds with a common pentacyclic
structure such that the phenanthrene ring is conjugated with quinolizidine. Phenanthroquinolizidines
have gained renewed attention because of their described mode of action, which differs from that of
currently used drugs [10]. Many potential biological targets of phenanthroquinolizidines have been
reported. The antiproliferative action of phenanthroquinolizidines seems to be associated with the
downregulation of cell cycle regulatory proteins such as cyclin and cyclin-dependent kinases [11].
Several other quinolizine structures have been reported as inhibitors of DNA topoisomerase I activity
such that the cell cycle is arrested at the G0/G1 phase [12].

In the present paper, we report the cytotoxic effects of a set of cryptopleurine derivatives
(thienoquinolizidine derivatives and (epi-)benzo analogs with bioactive phenanthroquinolizidine
alkaloids) obtained by organic synthesis [13,14] on the lymphocytic leukemia cell line L1210. When
looking for new active structures with potential antileukemic activity, it is important to think about the
potential risks of multidrug resistance (MDR) development. The most often observed mechanism of
neoplastic cell resistance stems from the enhanced expression or activity of plasma membrane efflux
pumps, classified as ABC transporters [15], that are able to eliminate various unrelated chemicals with
diverse structures from intracellular space. The overexpression of these efflux pumps is one of the
molecular-based causes of MDR. Therefore, it is important to test new, active molecular structures as
substrates for efflux pumps. The overexpression of P-glycoprotein (P-gp), the most frequently occurring
drug efflux pump of the plasma membrane (an ABCB1 member of the ABC transporter gene family),
in neoplastic cells is generally accepted as the molecular mechanism behind the dramatically reduced
cell sensitivity to a well-defined group of anticancer drugs known as P-gp substrates [16]. Therefore,
we aimed to test for the cytotoxic effects of thienoquinolizidine derivatives and the (epi-)benzo analogs
of bioactive phenanthroquinolizidine alkaloids on cells with and without expression- or drug-induced
P-gp efflux activity. The biological model used in the current study is based on three variants of L1210
cells: parental drug-sensitive cells that do not express P-gp (S) and two drug-resistant P-gp-positive
cell variants obtained by either S cell adaptation to vincristine (R) or transfection of S cells with the
human gene encoding P-gp (T) [17].

2. Results

2.1. Characterization of L1210 Cell Variants

The cytotoxic effects of a newly prepared set of quinolizidine derivatives QDs were evaluated on
three variants of L1210 cells that differed in their expression of P-gp. These variants included parental
P-gp-negative (S) cells and two P-gp-positive cell variants obtained either by selection with vincristine
(R) [18] or by transfection with a gene encoding P-gp (T) [17]. We detected massive amounts of P-gp
mRNA and protein by RT-PCR and Western blotting, respectively, in P-gp-positive R and T variants.
In contrast, the detection of P-gp mRNA expression and protein levels gave only weak (if any) signals in
S cells [17]. Moreover, we also demonstrated that the P-gp efflux activities that led to decreased calcein
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retention within R and T cells were lacking in S cells. Consistent with this finding, R and T cells were
much less sensitive to P-gp substrates, such as VCR, doxorubicin, and mitoxantrone, than S cells [19].
P-gp was detected by immunofluorescence confocal microscopy in R and T cells predominantly in the
plasma membrane [20]. In contrast, no immunoreactive materials were visible in S cells. All these
features are consistent with previously published data [17,19,21,22] and were periodically controlled
in our laboratory in the experiments described in the current paper. Taken together, the characteristics
of S, R and T cells make them a suitable cell model for studying the differences between the responses
of P-gp-negative and P-gp-positive leukemia cells to various chemicals.

2.2. Characterization of QD Derivatives

Thirteen isomeric (epi)-thieno analogs of phenanthroquinolizidine (TQD, denoted as cis10Aa,
cis10Ab, trans10Aa, trans10Ab, trans10Bb, 11Ba, 11Bb, 11Aa, 11Ab, 15a, 15b, 18Aa and 18Ab) with
structural motifs similar to those of naturally occurring cryptopleurine and hydroxycryptopleurine
were used in this study (Table 1).

Table 1. Structures of the assayed derivatives.

(epi)-thieno analogs of phenanthroquinolizidine alkaloids (TQDs)

Derivative Structure Derivative Structure

11Ba1

Mw = 193.31 g/mol
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that led to decreased calcein retention within R and T cells were lacking in S cells. Consistent with 
this finding, R and T cells were much less sensitive to P-gp substrates, such as VCR, doxorubicin, and 
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that led to decreased calcein retention within R and T cells were lacking in S cells. Consistent with 
this finding, R and T cells were much less sensitive to P-gp substrates, such as VCR, doxorubicin, and 
mitoxantrone, than S cells [19]. P-gp was detected by immunofluorescence confocal microscopy in R 
and T cells predominantly in the plasma membrane [20]. In contrast, no immunoreactive materials 
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that led to decreased calcein retention within R and T cells were lacking in S cells. Consistent with 
this finding, R and T cells were much less sensitive to P-gp substrates, such as VCR, doxorubicin, and 
mitoxantrone, than S cells [19]. P-gp was detected by immunofluorescence confocal microscopy in R 
and T cells predominantly in the plasma membrane [20]. In contrast, no immunoreactive materials 
were visible in S cells. All these features are consistent with previously published data [17,19,21,22] 
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that led to decreased calcein retention within R and T cells were lacking in S cells. Consistent with 
this finding, R and T cells were much less sensitive to P-gp substrates, such as VCR, doxorubicin, and 
mitoxantrone, than S cells [19]. P-gp was detected by immunofluorescence confocal microscopy in R 
and T cells predominantly in the plasma membrane [20]. In contrast, no immunoreactive materials 
were visible in S cells. All these features are consistent with previously published data [17,19,21,22] 
and were periodically controlled in our laboratory in the experiments described in the current paper. 
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structural motifs similar to those of naturally occurring cryptopleurine and hydroxycryptopleurine 
were used in this study (Table 1). 
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Synthesis and substance characterizations are described elsewhere: 1–[13]; 2–[23], 3–[14]. 

The analogs were synthesized from L-2-aminoadipic acid and the corresponding thiophen-2-
carbaldehyde or thiophen-3-carbaldehyde. L-2-aminoadipic acid was used as a source of chirality as 
well as for the nitrogen necessary for further applications, specifically for the synthesis of these types 
of compounds. N-methylthienoquinolizinium iodides A4, B9, and B10 were obtained by N-alkylation 
of the corresponding thienoquinolizidines 10Bb, 11Ba, and 11Bb [23]. The asymmetric synthesis of 
(epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and (-)-
(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from 
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted 
structure and characterization are published elsewhere [13,14,23]. 

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells 

All derivatives were assayed for their cytotoxic effects on leukemia cells. The IC50 (median of 
lethal concentration) values were calculated from growth inhibition curves and are presented in Table 
2. Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to 
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells, 
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding 
100 μΜ. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba 
(Table 2). 

Table 2. The IC50 values for the growth inhibition of S, R and T cells by quinolizidine derivatives. 

(epi)-thieno analogs of phenanthroquinolizidine 
Derivative IC50 (µmol/l) 

 S R T 
11Ba 130 ± 9 na na 
11Bb na na na 
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Synthesis and substance characterizations are described elsewhere: 1–[13]; 2–[23], 3–[14]. 

The analogs were synthesized from L-2-aminoadipic acid and the corresponding thiophen-2-
carbaldehyde or thiophen-3-carbaldehyde. L-2-aminoadipic acid was used as a source of chirality as 
well as for the nitrogen necessary for further applications, specifically for the synthesis of these types 
of compounds. N-methylthienoquinolizinium iodides A4, B9, and B10 were obtained by N-alkylation 
of the corresponding thienoquinolizidines 10Bb, 11Ba, and 11Bb [23]. The asymmetric synthesis of 
(epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and (-)-
(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from 
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted 
structure and characterization are published elsewhere [13,14,23]. 

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells 

All derivatives were assayed for their cytotoxic effects on leukemia cells. The IC50 (median of 
lethal concentration) values were calculated from growth inhibition curves and are presented in Table 
2. Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to 
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells, 
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding 
100 μΜ. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba 
(Table 2). 

Table 2. The IC50 values for the growth inhibition of S, R and T cells by quinolizidine derivatives. 

(epi)-thieno analogs of phenanthroquinolizidine 
Derivative IC50 (µmol/l) 

 S R T 
11Ba 130 ± 9 na na 
11Bb na na na 
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Synthesis and substance characterizations are described elsewhere: 1–[13]; 2–[23], 3–[14]. 

The analogs were synthesized from L-2-aminoadipic acid and the corresponding thiophen-2-
carbaldehyde or thiophen-3-carbaldehyde. L-2-aminoadipic acid was used as a source of chirality as 
well as for the nitrogen necessary for further applications, specifically for the synthesis of these types 
of compounds. N-methylthienoquinolizinium iodides A4, B9, and B10 were obtained by N-alkylation 
of the corresponding thienoquinolizidines 10Bb, 11Ba, and 11Bb [23]. The asymmetric synthesis of 
(epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and (-)-
(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from 
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted 
structure and characterization are published elsewhere [13,14,23]. 

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells 

All derivatives were assayed for their cytotoxic effects on leukemia cells. The IC50 (median of 
lethal concentration) values were calculated from growth inhibition curves and are presented in Table 
2. Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to 
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells, 
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding 
100 μΜ. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba 
(Table 2). 

Table 2. The IC50 values for the growth inhibition of S, R and T cells by quinolizidine derivatives. 

(epi)-thieno analogs of phenanthroquinolizidine 
Derivative IC50 (µmol/l) 

 S R T 
11Ba 130 ± 9 na na 
11Bb na na na 
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The analogs were synthesized from L-2-aminoadipic acid and the corresponding thiophen-2-
carbaldehyde or thiophen-3-carbaldehyde. L-2-aminoadipic acid was used as a source of chirality as 
well as for the nitrogen necessary for further applications, specifically for the synthesis of these types 
of compounds. N-methylthienoquinolizinium iodides A4, B9, and B10 were obtained by N-alkylation 
of the corresponding thienoquinolizidines 10Bb, 11Ba, and 11Bb [23]. The asymmetric synthesis of 
(epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and (-)-
(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from 
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted 
structure and characterization are published elsewhere [13,14,23]. 

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells 

All derivatives were assayed for their cytotoxic effects on leukemia cells. The IC50 (median of 
lethal concentration) values were calculated from growth inhibition curves and are presented in Table 
2. Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to 
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells, 
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding 
100 μΜ. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba 
(Table 2). 

Table 2. The IC50 values for the growth inhibition of S, R and T cells by quinolizidine derivatives. 

(epi)-thieno analogs of phenanthroquinolizidine 
Derivative IC50 (µmol/l) 
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The analogs were synthesized from L-2-aminoadipic acid and the corresponding thiophen-2-
carbaldehyde or thiophen-3-carbaldehyde. L-2-aminoadipic acid was used as a source of chirality as 
well as for the nitrogen necessary for further applications, specifically for the synthesis of these types 
of compounds. N-methylthienoquinolizinium iodides A4, B9, and B10 were obtained by N-alkylation 
of the corresponding thienoquinolizidines 10Bb, 11Ba, and 11Bb [23]. The asymmetric synthesis of 
(epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and (-)-
(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from 
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted 
structure and characterization are published elsewhere [13,14,23]. 

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells 
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lethal concentration) values were calculated from growth inhibition curves and are presented in Table 
2. Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to 
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells, 
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding 
100 μΜ. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba 
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(epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and (-)-
(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from 
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted 
structure and characterization are published elsewhere [13,14,23]. 

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells 
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2. Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to 
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells, 
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding 
100 μΜ. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba 
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Synthesis and substance characterizations are described elsewhere: 1–[13]; 2–[23], 3–[14].

The analogs were synthesized from L-2-aminoadipic acid and the corresponding thiophen-2-
carbaldehyde or thiophen-3-carbaldehyde. L-2-aminoadipic acid was used as a source of chirality as
well as for the nitrogen necessary for further applications, specifically for the synthesis of these types
of compounds. N-methylthienoquinolizinium iodides A4, B9, and B10 were obtained by N-alkylation
of the corresponding thienoquinolizidines 10Bb, 11Ba, and 11Bb [23]. The asymmetric synthesis
of (epi)-benzo analogs of the phenanthroquinolizidine bioactive alkaloids (-)-cryptopleurine and
(-)-(15R)-hydroxycryptopleurine 5a, 5b, 6a, 7a, 7b, 9, 10 and 11 (BQD) (Table 1) was achieved from
enantiopure L-2-aminoadipic acid and benzaldehyde [14]. Details about the synthesis, accepted
structure and characterization are published elsewhere [13,14,23].

2.3. Effectiveness of QDs to Induce Cell Death of S, R and T Cells

All derivatives were assayed for their cytotoxic effects on leukemia cells. The IC50 (median of
lethal concentration) values were calculated from growth inhibition curves and are presented in Table 2.
Our results show that a higher cytotoxic effect was induced with the BQD derivatives compared to
the TQD derivatives. In the TQD group, only derivative 11Ba was effective on P-gp-negative S cells,
and no measurable cytotoxic effect was found in R and T cells at derivative concentrations exceeding
100 µM. This finding was used to predict the resistance of P-gp-positive cell variants against 11Ba
(Table 2).

In the BQD group, four effective derivatives were identified; among them, cell death was more
effectively induced in P-gp-negative S cells, compared to P-gp positive R and T cells, by derivative 6b
(the IC50 values were 192 µM for S cells and 385 µM for both R and T cells). Derivative 10 seems to be
more effective in S than in R and T cells but only at much higher concentrations (the IC50 value was
490 µM). In contrast to previously tested derivatives, two BQD derivatives, 9 and 11, induced almost
similar levels of cell death on all three cell variants. Moreover, these derivatives were found to be very
effective, with IC50 values of approximately 72–82 µM for derivative 9 and 13 µM for derivative 11
(Table 2). Due to their efficacy, both derivatives were assayed on the human acute myeloid leukemia
SKM-1 and MOLM-13 cells, and their respective IC50 values were similar to those obtained for S, R and
T cells, i.e., approximately 60–90 µM for derivative 9 and 10–15 µM for derivative 11. In our previous
paper [14], the cytotoxic effects induced by derivatives 9 and 11 were tested with two non-neoplastic
cell lines (hamster kidney fibroblast cell line BHK-21 and African green monkey kidney fibroblast-like
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cell line VERO). Derivative 11 reached the IC50 value in the higher concentration range of 213 µM for
BHK-21 cells and 266 µM for VERO cells. Neither cell line was affected by derivative 9. Thus, it could
be concluded that these two derivatives induced more effective cell death in neoplastic cells than in
normal cells. The best antiproliferative activity found in S, R and T cells was induced by derivative
11, and this effect was not influenced by the presence of P-gp in either the R or T cells. Therefore,
additional studies of several features associated with the cell death of S, R and T were focused on
derivative 11.

Table 2. The IC50 values for the growth inhibition of S, R and T cells by quinolizidine derivatives.

(epi)-thieno analogs of phenanthroquinolizidine

Derivative IC50 (µmol/l)

S R T

11Ba 130 ± 9 na na
11Bb na na na
11Aa na na na
11Ab na na na

A4 na na na
B10 na na na
B9 na na na

trans10Bb na na na
trans10Aa na na na
trans10Ab na na na

cis10Aa na na na
cis10Ab na na na

15a na na na
15b na na na

18Aa na na na
18Ab na na na

(epi)-benzo analogs of phenanthroquinolizidine alkaloids

5a na na na
5b na na na
6b 192 ± 12 385 ± 16 385 ± 19
7a na na na
7b na na na
9 81 ± 5 81 ± 4 74 ± 3
10 490 ± 43 na na
11 13.1 ± 2.5 13.4 ± 3.1 12.8 ± 2.7

na–not active.

2.4. Effectiveness of Derivative 11 on Expression and Efflux Activity of P-gp in R and T Cells

Derivative 11 induced a visible increase in transcripts encoding P-gp in R and T cells, namely, at a
concentration of 13 µM, which is equal to that for inducing the IC50 value (Figure 1A). This amount
was quantified by qRT-PCR, which revealed an approximate doubling of the cellular amount of
this transcript (Figure 1B). The transport activity of P-gp was monitored by the retention of the
calcein originating from calcein-AM (a P-gp substrate) after esterified carboxylic group liberation with
intracellular esterases [20,24]. In S cells, we observed a massive retention of calcein within the cells that
could not be influenced by verapamil (a known P-gp inhibitor) or derivative 11 (Figure 1C). In contrast,
retention of calcein in both P-gp positive cell variants (R and T) was less pronounced, and could be
achieved to an extent similar to that in S cells by verapamil. Contrary to verapamil, derivative 11 did
not influence the retention of calcein in R and T cells.
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2.5. Measurements of the Effectiveness of Derivative 11 to Induce Cell Death Based on FITC-Annexin V and 
Propidium Iodide Double Staining 

Annexin V linked with fluorescein isothiocyanate (FAV), which specifically labels externalized 
phosphatidylserine on the surface of apoptotic cells, and propidium iodide (PI), which labels DNA 
in necrotic cells with disrupted plasma membranes [25], were used as markers of apoptosis and 
necrosis, respectively. Proportions of viable S, R and T cells (i.e., cells that did not bind FAV or PI) 

Figure 1. Effect of derivative 11, applied at concentrations of 0.0 (c), 5.2 and 13.0 µM, on the
expression and activity of P-gp. (A) Cell contents of ABCB1 gene transcripts encoding P-gp by RT-PCR
(reverse transcription polymerase chain reaction). The results are representative of three independent
measurements of triplicate experiments, and transcripts for GAPDH were used as housekeepers.
(B) Quantification of mRNA content by qRT-PCR. Data represent the mean ± S.E.M. from three
independent measurements. The amount of detected PCR product in R cells incubated in the presence
of derivative 11 at a concentration of 13.0 µM differed significantly from the corresponding value
in the absence of substance (c) at the level of p<0.05. Other results did not fulfill the criteria for
statistical significance. (C) Median values of calcein retention in S, R and T cells in the presence or
absence of verapamil (V, 10.0 µM) and derivative 11 (11.0, 13.0 µM). Median values were obtained from
corresponding cytometry histograms of calcein fluorescence using BD-Accuri C6 software. Verapamil
at this concentration fully restores calcein retention in R and T cells to the extent characteristic of S
cells [17]. Data represent the mean ± S.E.M. from three independent measurements. Median values
registered for R and T cells in the absence of inhibiting compounds or in the presence of derivative 11
differ significantly (at least on the level of p < 0.02) from median values obtained either from S cells
independent of the presence of verapamil) or for R and T cells obtained in the presence of verapamil.

2.5. Measurements of the Effectiveness of Derivative 11 to Induce Cell Death Based on FITC-Annexin V and
Propidium Iodide Double Staining

Annexin V linked with fluorescein isothiocyanate (FAV), which specifically labels externalized
phosphatidylserine on the surface of apoptotic cells, and propidium iodide (PI), which labels DNA in
necrotic cells with disrupted plasma membranes [25], were used as markers of apoptosis and necrosis,
respectively. Proportions of viable S, R and T cells (i.e., cells that did not bind FAV or PI) after a 24 h
incubation period in cultivation medium without derivative 11 (under standard cultivation conditions)
consistently exceeded 90% (Figure 2).
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Figure 2. Measurement of S, R and T cell proportions during apoptosis and necrosis as measured
using an FAV/PI apoptosis necrosis kit. The cells were cultivated for 24 h in cultivation medium in the
presence or absence of derivative 11 at the given concentrations. The dot blots are representative of
three independent measurements.

The presence of derivative 11 (at a concentration range of 5–25 µM) in the cultivation medium
induced an increase in either the proportion of cells labeled with FAV (indicating apoptotic cells) or
the proportion of cells labeled by both FAV and PI (indicating cells in late apoptosis). These effects
seem to be concentration dependent. The labeling of cells by PI alone (i.e., necrotic cells) was not as
pronounced (Figure 2).

2.6. Derivative 11 Induced Changes Expression of Bcl-2 and Bax as Well as Expression and Activation of Caspase-3

To study the mechanisms of cell death induced by derivative 11, we further estimated cell
expression of the proapoptotic Bax protein and the antiapoptotic Bcl-2 protein as well as cell content
and activation of caspase-3 in S, R and T cells cultivated for 24 h in the absence or presence of 6.5 and
13.0 µM derivative 11 (Figure 3). The expression of Bcl-2 protein is considerably higher in R and T cells
than in S cells, as measured by mRNA (Figure 3A) or protein (Figure 3B) levels. In contrast, no similar
differences in proapoptotic Bax protein expression between P-gp-negative and P-gp-positive cells were
observed either at the mRNA or protein level. The presence of derivative 11 in the cultivation medium
did not induce changes in the expression of either protein in S, R or T cells. The massive protein content
of procaspase-3 is present in S, R and T cells, and a small proportion of it is proteolytically activated to
caspase-3 in all three variants of L1210 cells (Figure 3). However, no statistically significant changes in
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procaspase-3 content or its cleavage products were detected after S R and T cells were incubated in
medium containing derivative 11 at concentrations of 6.5 and 13.0 µM for 24 h.
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18 μM for all three variants of L1210 cells. This finding is consistent with the data documented in 
Table 2 as obtained using an MTT test of cell viability, in which the median effective concentration 
was approximately 13.0 μM. According to a previously published recommendation [19], only viable 
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Figure 3. Detection of Bcl-2 and BAX expression as well as caspase-3 expression and activation in S, R
and T cells incubated for 24 h in cultivation medium in the absence (1) or presence of derivative 11 at
concentrations of 6.5 (2) and 13.0 (3) µM. (A) Detection of Bcl-2 and BAX transcripts using RT-PCR
in gel (upper part, data are representative of three independent measurements) and its densitometric
quantification values (lower part, data are expressed as the mean ± S.E.M. for three measurements).
The amount of Bcl-2 transcript detected in S cells differed significantly from the corresponding values
for R and T cells (at least at the level of p<0.02) independent of derivative 11. (B) Western blot detection
of Bcl-2, Bax, procaspase-3 and caspase-3 in S, R and T cells. The blot records are representative of three
independent measurements (upper part), the protein bands were quantified using densitometry (lower
part), and the data are expressed as the mean ± S.E.M. for three measurements. The quantities of Bcl-2
protein differ significantly from corresponding values for R and T cells (at least at the level of p < 0.01)
independent of derivative 11. GAPDH mRNA and protein were used as internal standards for RT-PCR
and Western blotting.

2.7. Effect of Derivative 11 on Cell Cycle Progression of S, R and T Cells

The incubation of S, R and T cells for 24 h in the presence of derivative 11 at a concentration
of 13.0 µM induced visible cell damage associated with an elevation of the proportion of cells in
the subG1 phase (Figure 4) when cell cycle progression was monitored by cytometry using DNA
cell content detection by PI. Cells in the subG1 phase represent the proportion of cells that have
enter the progression of programmed cell death and have partially fragmented or degraded DNA.
The proportions of S, R and T cells in the subG1 phase increased depending on the concentration
of derivative 11 (Figure 4B), with an almost identical median effective concentration in the range of
12-18 µM for all three variants of L1210 cells. This finding is consistent with the data documented in
Table 2 as obtained using an MTT test of cell viability, in which the median effective concentration was
approximately 13.0 µM. According to a previously published recommendation [19], only viable cells,
i.e., cells that are not in subG1 phase, were used for the analysis of the cell cycle (Figure 4C). Analysis of
the cell cycle did not reveal differences between the proportions of S, R and T cells in the respective (G1,
S or G2/M) cell cycle phases. Moreover, the incubation of S, R and T cells in the presence of derivative
11 did not induce an expressed alteration in the proportion of cells in the respective cell cycle phases.
An exception of this cell cycle-related behavior, R cells incubated in the presence of derivative 11 at
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a concentration of 13.0 µM showed an increased proportion of cells in the G1 phase (approximately
25%), which was associated with corresponding decreases in the proportion of cells in the S and G2/M
phases (Figure 4C).
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3. Discussion

Multiple drug resistance of neoplastic cells leads to reduced cell sensitivity toward different
drugs and represents a real obstacle in the effective chemotherapy of neoplastic diseases, including
blood malignancies [26]. Until now, diverse but well-understood mechanisms of MDR have been
identified [16] of which the efflux activity of overexpressed P-gp in the plasma membrane of neoplastic
cells is the most frequently occurring [27]. Therefore, searching for substances that cannot be eliminated
from the inner space of cells by overexpressed P-gp is a rational undertaking in medicinal chemistry.
For this reason, we have oriented ourselves to study the effective means of cell death induced by
phenanthroquinolizidine alkaloid derivatives related to P-gp expression in leukemia cells. We used
sets of 13 TQDs, 3 of which are N-methylthienoquinolizinium iodides, and 8 BQDs (Table 1) for which
the synthesis and chemical characterization have been described elsewhere [13,14,23]. Only derivative
11Ba was effective from among all the TQD in S cells (with IC50 ≈ 130 µM). This derivative did not
induce cell death in R and T cells. The corresponding substance A4, with permanent quaternary
nitrogen derived from 11Ba by N-methylation, lost cell death effectiveness in S cells, indicating the
importance of localized free electron pair on the nitrogen atom of the quinolizidine skeleton. However,
permanent positive charge on nitrogen atom may depress ability of substance to enter the cell via
passive diffusion, which may be responsible for lack of effectiveness. Derivative 11Bb, which differs
from derivative 11Ba only in the orientation of the sulfur atom in the thienyl ring, also failed to induce
cell death in S cells. Therefore, the proper structural orientation of the thienyl-ring seems to be another
crucial feature important for TQD effectiveness in inducing cell death of S cells. It is reasonable to
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expect that the position of the conjugated π-electron system of the thienyl ring may be important
for effecting cell death. Similarities in the conjugated π-electron density at a similar position as in
the thienyl-ring of derivative 11Ba also exist on the benzene ring of BQD derivatives. Derivative 11
exhibits both of the features described above in relation to derivative 11Ba, i.e., a localized free electron
pair on the nitrogen atom of the quinolizidine skeleton and a π-electron system on the benzene ring.
This derivative showed the most pronounced effectiveness for inducing cell death in all three variants
of L1210 cells, with an IC50 ≈ 13 µM independent of P-glycoprotein expression. Derivative 10 differs
from derivative 11 by the existence of a formyl group located on carbon atom 3, i.e., in the position
directly adjacent to the nitrogen atom of quinolizidine, thus inducing strong delocalization of the free
electron pair associated with the nitrogen. This derivative induced only negligible cell death in S
cells (IC50 ≈ 500 µM) and was ineffective in R and T cells (Table 2). There are also two other effective
derivatives, 9 with IC50 values 81, 81 and 74 µM for S, R and T cells, respectively, as well as 6b with
IC50 values of 192, 385 and 385 µM for S, R and T cells, respectively. Both of these derivatives contain
the formyl group, described above, in position 3, and substituents (S-methyl xanthate or O-acetyl)
in position 10 that could give the derivatives additional ability to cause cell death, most likely by
inducing oxidative stress. The property attributed to the localized free electron pair on the nitrogen
atom of the quinolizidine skeleton could be parametrized by the respective pKa value of the respective
derivative [28]. Therefore, we calculated pKa values for the derivatives 11Ba and 11 using the online
pKa calculator at Instant Cheminformatics Solutions on web (Table 3). Other derivatives with the
ability to induce cell death, at least in S cells (6b, 9 and 10), due to the delocalization of free electrons
around the nitrogen caused by the existence of a formyl group at position 3 did not have the same
acid-base parameterizing characteristics as derivatives 11Ba and 11.

Table 3. Physicochemical properties of effective derivatives.

Derivative Effective on (µM) pKa
1 Log P2

S R T

11Ba ≈130 Na Na 8.89 2.93 ± 0.35
6b ≈190 ≈385 ≈385 - 1.05 ± 0.62
9 ≈80 ≈80 ≈74 - 2.52 ± 0.69
10 ≈490 Na Na - 1.62 ± 0.56
11 ≈13 ≈13 ≈13 9.20 3.25 ± 0.32

1 Calculated using the online pKa calculator Instant Cheminformatics Solutions on web. 2 Calculated using
ACD/ChemSketch for academic and personal use (Advanced Chemistry Development, Inc. Toronto, Ontario, Canada).

Another important property that could be evaluated when predicting the effectiveness of substances
to cause cell death is hydrophobicity, which enables them to enter the inner space of the cell through
the plasma membrane by passive diffusion. These properties could be parametrized by the value of
the partition coefficient in a two-phase system (frequently water: n-octanol, [29]). For this reason, we
calculate the partition coefficient logarithm values in this two-phase system using ACD/ChemSketch
for academic and personal use (Advanced Chemistry Development, Inc., Toronto, Ontario, Canada).
The most effective at inducing cell death by this parameter, derivative 11 achieved the highest value
of logP (3.25) among all derivatives studied (Table 3). Derivative 9 was effective at concentrations
below 100 µM and has a logP value of 2.52. The only effective derivative from the TQD group in S
cells, 11Ba, had the second highest logP value (2.93). These facts enable us to propose rules for further
design of such derivatives as potential agents for induction of cytotoxic effects in leukemia cells: i. to
improve localization of the electron density associated with the nitrogen in the quinolizidine skeleton
by introducing electron-donating groups (Figure 5); ii. to potentiate the conjugated π-electron system
density on the benzene (thienyl-) part of molecule by introducing electron-donating groups (Figure 5);
iii. to modify molecules with structures by improving the hydrophobicity of the substance.
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Recently, phenanthroindolizidine alkaloids with similar localized free electron pairs on the
nitrogen atom of the indolizidine skeleton and more complex side aromatic systems were shown
to induce strong growth inhibitory activity toward a large panel of neoplastic cell lines, including
P-gp-overexpressing cells [30].

Derivatives 6b, 11Ba and, to a lesser extent, derivative 10 induced cell death more effectively in
S than in R and T cells. Differences between the effectiveness of substances on P-gp-negative S and
P-gp-positive R and T cells could be caused by the efflux activity of this drug transporter and by simple
elimination of substances from the inner space of P-gp-positive cells such that they cannot induce cell
death processes [16,27,31]. However, P-gp seems to play a secondary role in silencing apoptosis, and
this side effect of P-gp expression is independent of P-gp drug efflux activity [16,31,32]. Thus, this
suspected secondary role of P-gp that operates against apoptosis progression may induce differences
between the effectiveness of substances that are not substrates of this efflux pump [33].

The most effective cell death-inducing substance we registered was derivative 11, which is effective
at a 10-5 M concentration independent of the expression of P-gp. This finding indicated that the
presence of P-gp in R and T cells did not protect cells against derivative 11-induced cell death. Thus,
derivative 11 does not seem to be a substrate for P-gp-mediated drug efflux. This derivative induced
an elevation of ABCB1 gene (encoding P-gp) transcription in both P-gp-positive L1210 cell variants
(Figure 1). However, this derivative did not alter calcein retention in R and T cells. This finding
indicated that derivative 11 does not alter P-gp-mediated substance efflux activity.

In subsequent sets of experiments, we examined the mode of cell death induced by this derivative
using a FAV/PI detection kit, which enabled the cytometric quantification of apoptotic (labeled by
FAV), necrotic (labeled by PI) and late apoptotic/necrotic cells (labeled by both these markers) [34].
This procedure revealed the elevation of cells labeled with either FAV alone or both FAV and PI and
only a negligible proportion of cells labeled with PI alone (Figure 2). This outcome is consistent with
apoptotic cell death. Both P-gp positive cell variants (R and T) cultivated in the absence of derivative
11 contained higher levels of antiapoptotic Bcl-2 protein than found in P-gp-negative S cells (Figure 3).
The coexpression of Bcl-2 and P-gp confers resistance against the induction of apoptosis in leukemia
cells originating from alterations in the lymphoid pathway of hematopoiesis [35]. This difference
in Bcl-2 expression also persists in the presence of derivative 11. We further observed a massive
amount of procaspase-3, which was partially cleaved to the active 17 kDa form (Figure 3). This caspase
activates caspase-dependent DNase, which fragments DNA as a result of both the intrinsic and extrinsic
pathways of caspase-dependent apoptosis [36]. Therefore, our results indicated the readiness of S, R
and T cells to initiate apoptosis. However, all three cell variants failed to upregulate this apoptotic
marker after treatment with derivative 11.
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During the cultivation of S, R and T cells in medium containing derivative 11, we observed an
increase in the proportion of dead cells in subG1 with fragmented/degraded DNA (when cell DNA
content was quantified with PI), which is often attributed to initiation and progression of apoptosis [37].
Viable cells after incubation with derivative 11 did not differ significantly in cell proportion by position
in the G1, S or G2/M phase of the cell cycle.

4. Materials and Methods

4.1. Chemicals

In the present paper, sets of previously synthesized and characterized quinolizidine derivatives
were tested for cytotoxic effects on P-gp-negative and P-gp-positive L1210 cells (Table 1): i. 13 (epi)-
thieno analogs of phenanthroquinolizidines with similar structural motifs as the naturally occurring
cryptopleurine and hydroxycryptopleurine [13]; ii. three N-methylthienoquinolizinium iodides
obtained by N-alkylation of corresponding thienoquinolizidines [23]; iii. eight benzo analogs and
epi-benzo analogs of bioactive phenanthroquinolizidine alkaloids, which were prepared by asymmetric
synthesis as described elsewhere [14].

4.1.1. Components of Cultivation Medium

RPMI 1640 medium with L-glutamine (1 mg/mL), 8% fetal bovine serum, 100,000 units/l of
penicillin and 50 mg/l of streptomycin were from Merck in Slovakia (Bratislava, Slovakia) and 1 µg/mL
gentamycin was from Thermo Fisher Scientific s.r.o.

4.1.2. Kits

The apoptosis/necrosis kit based on cell labeling with FAV and PI, the ProteomeExtract Subcellular
Proteome Extraction Kit were from Calbiochem (San Diego, CA, USA) and GenElute™Mammalian
Total RNA Miniprep Kit (Sigma-Aldrich through Merck in Slovakia, Bratislava, Slovakia)

4.1.3. PCR Primers

The following primers were used for RT-PCR and qRT-PCR: GAPDH F: 5′-TGA ACG GGA AGC
TCA CTG G-3′and R: 5′-TCC ACC ACC CTG TTG CTG TA-3′, which produced a 307 bp product;
mouse P-gp F: 5′-GGC TGT TAA AGG TAA CTC C-3′ and R: 5′- TGT TCT CTT ATG AAT CAC GTA-3′,
which produced a 152 bp product; human P-GP, F: 5′-CTC CTG TCG CAT TAT AGC-3′, R: 5′-AGA
CAT GAC CAG GTA TGC-3′, which produced a 151 bp product; Bcl-2 F: 5’-GGC TGG GGA TGA CTT
CTC TC-3´, R: 5´-GCA TGCT GGG GCC ATA TAG TT-3´, which produced a 323 bp product; and Bax F:
5´-ATC CAA GAC CAG GGT GGC T-3´, which produced a 197 bp product.

4.1.4. Antibodies

For visualization of protein bands on Western blots, the following antibodies were used: N-20
(sc-493) rabbit polyclonal antibody against Bax, C-2 (sc-7382) mouse monoclonal antibody from Santa
Cruz Biotechnology (Dallas, TX, USA); rabbit polyclonal antibody (9662S) against caspase-3 from Cell
Signaling Technology Europe (Leiden, The Netherlands); and mouse monoclonal antibody against
GAPDH (MAM 374) from Merc in Slovakia. Antimouse recombination antibody (sc-516102) or mouse
anti-rabbit affinity purified polyclonal antibody linked with horseradish peroxidase (HRP) were used
as secondary antibodies and were purchased from Santa Cruz Biotechnology. HRP signals were
visualized using an ECL detection system (GE Healthcare Europe GmbH, Vienna, Austria) and an
Amersham Imager 600 (GE Healthcare Europe GmbH, Pittsburgh, PA, USA).

4.1.5. Other Chemicals

MTT ([3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyltetrazolium bromide]), and calcein/AM, verapamil,
vincristine, propidium iodide and Triton X-100 were purchased from Merck in Slovakia (Bratislava,
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Slovakia). RNase A was from Thermo Fisher Scientific s.r.o. (Bratislava, Slovakia). All other chemicals
were from Merck in Slovakia (previously Sigma Aldrich).

4.2. Cell Culture Conditions

We used three variants of the mouse lymphocytic leukemia cell line L1210: i. P-gp-negative
drug-sensitive parental L1210 cells (ACC-123, S) obtained from Leibniz-Institut DSMZ-Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany); ii. P-gp-positive,
drug-resistant cells (R) overexpressing P-gp due to selection with vincristine [18]; P-gp-positive,
drug-resistant cells (T) overexpressing P-gp due to stable transfection with Addgene plasmid
10957 (pHaMDRwt), and a retrovirus encoding full-length P-gp cDNA [38]). Transfection and
cell characterization were completed as described elsewhere [17].

All variants of L1210 cells (S, R and T) were cultured in the RPMI medium described above at 37 ◦C
in a humidified atmosphere with 5% CO2. This procedure is termed passage and was repeated three
times a week. R cells were periodically passaged each second in the presence of vincristine (250 nM),
and were harvested for experiments during the second passage without vincristine. Cell viability was
monitored using Countess™ II FL, Invitrogen through Thermo Fisher Scientific s.r.o. R cells were
cultured for two passages without VCR prior to the experiments. The expression/activity/localization
of P-gp was periodically analyzed by RT-PCR, Western blotting, calcein retention assay and confocal
immunocytochemistry [24]). All cell variants (S, R and T) were cultivated in the absence or presence
of the respective quinolizidine derivatives at a concentration range of 1-500 µM and were used for
further examination.

4.3. Measurements of Cytotoxic Effects of Quinolizidine Derivatives on S, R and T Cells

S, R and T L1210 cells (5× 104 cells/well) were incubated with TQD or BQD in a concentration range
of 1–500 µM in 96-well culture plates for 48 h. Tested quinolizidine derivatives were added directly
to 200 µL of RPMI culture media, and cell viability was assessed using an MTT assay [39]. In brief,
after 48 h, the plates were centrifuged for 10 min at 2500 rpm; the cells were resuspended in 200 µL
RPMI without fetal bovine serum, and MTT (0.25 mg/mL, i.e., 50 µg per well) was added for 2 h in the
dark at 37 ◦C and then centrifuged for 10 min (3000 rpm); cell sediments were extracted with 150 µL
dimethyl sulfoxide (DMSO), and absorbance at 540 nm was measured using the Universal Microplate
Spectrophotometer mQuant (BioTek Instruments, Inc., Winooski, VT, USA). Dose-responsiveness
curves were fitted according to an exponential decay equation (Eq. (1)) by nonlinear regression as
previously described [21]:

N = 100% × exp[ln(0.5) × (c/IC50)] (1)

where N represents the percentage (from a control in the absence of drugs) of cell viability after culturing
in the presence of the tested derivates at concentration c; IC50 is the concentration of a substance when
N = 50%; IC50 values were calculated from three independent measurements. The significance of
differences was analyzed using an unpaired Student’s t-test.

4.4. Detection of the Effect of Derivative 11 on P-gp, Bcl-2 and Bax Transcription

4.4.1. RT-PCR

Total RNA was isolated from S, R and T L1210 cells using the GenElute™ Mammalian Total
RNA Miniprep Kit (Sigma-Aldrich through Merck in Slovakia) according to the manufacturer’s
instructions. Reverse transcription was performed using 2 µg of template RNA, Random Hexamer
primers (100 pmol) (Thermo Fisher Scientific s.r.o., Waltham, MA, USA) and DEPC-treated water at a
total volume of 12.5 µL according to the manufacturer’s protocol.

PCR was performed in a 25 µL total volume containing 4 µL of reaction buffer 250 mM Tris-HCl,
250 mM KCl, 20 mM MgCl2, 50 mM DTT, and 0.5 µL Thermo Scientific™ RiboLock™ RNase Inhibitor,
2 µL dNTP mix, 10 mM each and 1 µL RevertAid H Minus Reverse Transcriptase (all from Thermo
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Fisher Scientific s.r.o., Waltham, MA, USA). After heating at 95 ◦C for 5 min to inactivate the reverse
transcriptase, the samples were subjected to 35 cycles of denaturation (95 ◦C for 45 s), annealing (57 ◦C
Mus musculus and Homo sapiens P-gp and 58 ◦C GAPDH, Bcl-2 and Bax for 30 s) and extension (72 ◦C,
90 s), followed by a final extension at 72 ◦C for 10 min. The PCR products were separated on a 2%
agarose gel (Merck in Slovakia) and visualized with GelRed™ nucleic acid gel stain (Biotium, Fremont,
CA, USA) using an Amersham™ Imager 600 (GE Healthcare Europe GmbH, Pittsburgh, PA, USA).
The data were expressed as the relative level of each mRNA normalized to that of the housekeeping
gene GAPDH. Statistical significance was analyzed using an unpaired Student’s t-test.

4.4.2. qRT-PCR

Total RNA isolation, reverse transcription and the PCR primers were the same as described for
RT-PCR. qPCR was run on a 96-well microtitration plate using a CFX96 TouchTM real-time PCR
Detection System (Bio Rad, USA). PCR was run in a 10 µL solution containing 500 ng of cDNA, 5 µL of
2x iTaq Universal SYBR® Green Supermix (Bio-Rad), 1 µL of primer solution at a concentration of
5 µmol/L and 2.5 µL of RNase-free UltraPureTM DEPC-treated water for 39 cycles at 57 ◦C. The samples
were measured in triplicate.

4.5. Western Blot Procedures

After incubation, the cells were harvested, and crude membrane fractions were prepared
with a ProteomeExtract Subcellular Proteome Extraction Kit according to the manufacturer’s
instructions. The proteins from the samples were separated by sodium dodecyl sulfate-polyacrylamide
electrophoresis using 10% polyacrylamide gels according to the classic Laemmli [40] protocol and then
transferred by electroblotting to a polyvinylidene difluoride (PVDF) membrane (GE Healthcare Europe
GmbH). Finally, proteins were detected with specific primary and secondary antibodies linked with
horseradish peroxidase. Electroblotting and interaction with antibodies were performed using the
classic Towbin protocol [41], and HRP signals were visualized with the ECL system.

4.6. Estimation of P-gp Transport Activity by Calcein/AM Retention Assay

P-gp transport activity was measured using a previously described protocol for the calcein
retention assay [42]. After cultivation, S, R and T Ll1210 cells were harvested by centrifugation (500× g),
and 5 × 105 cells were incubated with derivative 11 for 1 h at final concentrations of 5.2 and 13.0 µM.
Then, the cells were centrifuged (500× g), washed three times with PBS containing 0.2% BSA and then
resuspended in 500 µL of the same buffer. Calcein/AM (final concentration 0.1 µmol/L) was added
directly to the buffer, and the samples were incubated for 20 min at 37 ◦C in a CO2 incubator. Calcein
retention assays were performed in the absence or presence of derivative 11 at final concentrations (5.2
and 13.0 µM). For an inhibitor of P-gp, we used verapamil (final concentration of 10 µM), which was
added to the samples together with calcein/AM. Finally, cells were incubated with propidium iodide
(final concentration 0.9 µmol/L, Sigma-Aldrich) for an additional 10 min and then washed twice with
ice-cold PBS. Fluorescence was measured using an Accuri C6 flow cytometer (BD Bioscience, San Jose,
CA, USA). Only viable, propidium iodide-negative cells were counted.

4.7. Measurement of Apoptosis/Necrosis Induced by Derivative 11 in S, R and T Cells

Cells (1 × 106/mL) were incubated for a 24-h incubation with or without derivative 11 (5–50 µM)
under standard culture conditions. The proportions of apoptotic and necrotic cells were then detected
using an FAV and PI kit. According to the procedure described by the manufacturer, the cells were
washed twice with PBS and gently resuspended in binding buffer (obtained from the manufacturer)
containing 0.5 µg/mL FAV. The mixture was then incubated in the dark for 15 min at room temperature
and centrifuged (500× g, 15 min). The resulting sediments were resuspended in binding buffer, and
propidium iodide (final concentration 0.6 µg/mL) was added to each sample, which was analyzed by
flow cytometry using an Accuri C6 flow cytometer.
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4.8. Detection of Cell Proportions in Different Phases of the Cell Cycle

Cells (1 × 106/mL) were incubated for 24 in the absence or presence of derivative 11 (5–50 µM)
under standard cultivation conditions. Then, the cells were washed with PBS, resuspended in 0.05%
Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) dissolved in PBS containing 0.1 mg/mL RNase A
and incubated for 20 min at 37 ◦C. The final mixtures were cooled on ice for 10 min, and propidium
iodide (40 µg/mL) was added to each sample, which was then incubated on ice for another 30 min.
Finally, the specimens were evaluated by flow cytometry on an Accuri C6 flow cytometer.

5. Conclusions

We identified derivative 11 as the most effective among those in a set of derivatized quinolizidines.
The derivative-induced cell death in L1210 mice lymphocytic cells independent of the expression
of P-glycoprotein at a concentration of 13 µM. This derivative is much less effective on the normal
fibroblast VERO and BHK-21 cells, for which the effective concentration exceeded 200 µM. Therefore,
derivative 11 represents a sufficient starting point for the future design of effective structures.
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