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Abstract: Hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of hair
follicles from mice and humans and have been shown to differentiate to neurons, glia, keratinocytes,
smooth muscle cells, melanocytes and beating cardiac muscle cells in vitro. Subsequently, we
demonstrated that HAP stem cells could effect nerve and spinal-cord regeneration in mouse models,
differentiating to Schwann cells and neurons in this process. HAP stem cells can be banked by
cryopreservation and preserve their ability to differentiate. In the present study, we demonstrated
that mouse HAP stem cells cultured in neural-induction medium can extensively differentiate to
dopaminergic neurons, which express tyrosine hydroxylase and secrete dopamine. These results
indicate that the dopaminergic neurons differentiated from HAP stem cells may be useful in the
future to improve the symptoms of Parkinson’s disease in the clinic.

Keywords: hair follicle; stem cell; hair follicle stem cell area; differentiation; neuron; dopamine;
neurogenesis; neural stem cells

1. Introduction

Parkinson’s disease is progressive and decreases the quality of life of the patient over
time, and is often causing death. Standard of care is a carbidopa and levodopa combination,
which often poorly control the symptoms of Parkinson’s disease. Cell transplantation into
Parkinson’s disease patients to replace the lost dopaminergic neurons of the substantia
nigra pars compacta has been studied since the 1980s.

Hair-follicle-associated pluripotent (HAP) stem cells are located in the hair-follicle
bulge area and can differentiate into neurons, glia, keratinocytes, smooth muscle cells,
melanocytes, and beating cardiac muscle cells [1–5]. HAP stem cells express the neural
stem-cell marker nestin and the embryonic stem-cell markers Nanog and Oct4 [6].

HAP stem cells from mice have been used to repair the severed sciatic nerve in mouse
models [7–12]. The implanted HAP stem cells differentiated into Schwann cells in the
re-joined nerve and restored nerve and leg function. Human HAP stem cells, which have a
similar differentiation potential as mouse HAP stem cells, have also been used to restore
the structure and function of the severed sciatic nerve in mice [4,5,13]. HAP stem cells
have been used to repair the severed spinal cord in mice, leading to improved hindlimb
locomotion [8,14]. The implanted HAP stem cells in the re-joined spinal cord differentiated
to oligodendrocytes and βIII-tubulin-positive neuron-like cells [15].
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In the present study, we demonstrate that mouse HAP stem cells can extensively differ-
entiate to tyrosine-hydroxylase expressing, dopamine-secreting neurons. The dopaminergic
neurons differentiated from HAP stem cells have future potential to improve the symptoms
of Parkinson’s disease, as they can be readily isolated and banked from everyone.

2. Materials and Methods
2.1. C57BL/6 Mice

Six weeks old C57BL/6J female mice (20 g or more) (CLEA Japan, Tokyo, Japan)
were used to isolate vibrissa hair follicles [1,2]. The experimental animals were housed at
24 ± 1 ◦C, relative humidity of 50–60%, and 14 h of light and 10 h of dark intervals.

2.2. Isolation of Vibrissa Hair Follicles and Induction of Dopaminergic Neurons from HAP Stem
Cells In Vitro

Vibrissa hair follicles from mice were isolated as previously reported [16]: To isolate
the vibrissa hair follicles from C57BL/6 mice, the animals were anesthetized with a com-
bination anesthetic of 0.75 mg/kg medetomidine, 4.0 mg/kg midazolam and 5.0 mg/kg
butorphanol [17]. Their upper lip containing the vibrissa pad was cut, and the inner
surface was exposed. Intact vibrissa hair follicles were dissected under a binocular mi-
croscope and plucked from the pad by pulling them gently by the neck with fine forceps.
All surgical procedures were performed in a sterile environment. The upper part of vib-
rissa hair follicles was separated under a binocular microscope. HAP stem cells from
the isolated upper part of the vibrissa hair follicle were initially cultured in fresh DMEM
(Sigma, St. Louis, MO, USA) containing 10% fetal bovine serum (FBS), 50 µg/mL gentam-
icin (GIBCO, Grand Island, NY, USA), 2 mM L-glutamine (GIBCO), 10 mM HEPES (MP
Biomedicals, Santa Ana, CA, USA) for 7 days [16]. For differentiation to dopaminergic
neurons, HAP stem cells growing from the upper part of vibrissa hair follicle were switched
to neural-induction medium (STEMdiff Dopaminergic Neuron Differentiation Kit, STEM-
CELL Technologies, Vancouver, BC, Canada) containing neural-progenitor-cells-induction
medium, dopaminergic-neuron-differentiation medium, dopaminergic-neuron-maturation
medium-1, and dopaminergic-neuron-maturation medium-2 and cultured according to
the instructions of the manufactures (Figure 1). As a control, HAP stem cells were cul-
tured in non-induction medium (10% FBS DMEM). The cells differentiated from HAP
stem cells were prepared for immunofluorescence staining, FACS, and for measurement of
dopamine secretion.
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Figure 1. Scheme for differentiation of dopaminergic neurons from HAP stem cells. HAP stem cells were initially cultured
in neural-induction medium, which was changed as follows: Day 7, neural-progenitor-cells-induction medium (NIM); Day
12, dopaminergic-neuron-differentiation medium (DDM); Day 26, dopaminergic-neuron-maturation medium-1 (DMM1);
Day 31, dopaminergic- neuron-maturation medium-2 (DMM2).
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2.3. Immunofluorescence Staining

Immunofluorescence staining of differentiated cells was performed as previously
reported [2]: The primary antibodies used were anti-βIII-tubulin mouse monoclonal (1:500,
MMS-435P, Tuj1 clone, Covance, Princeton, NJ, USA); anti-tyrosine-hydroxylase (TH) rabbit
polyclonal (1:100, NB300-109, Novus Biologicals, Centennial, CO, USA); anti-dopamine
polyclonal antibody (1:250, IS1005, ImmuSmol, Pessac, France) with a STAINperfect imm-
nostaining kit A (SP A-1000, ImmuSmol); anti-dopamine-transporter (DAT) rabbit mon-
oclonal antibody (1:250, ab184451, Abcam, Cambridge, UK); and anti-Nurr1 rabbit poly-
clonal (1:50, 10975-2-AP, Proteintech, Rosemont, IL, USA). The secondary antibodies were
Alexa Fluor® 568-conjugated goat anti-mouse (1:400, A11004, Molecular Probes, Eugene,
OR, USA); Alexa Fluor® 488-conjugated goat anti-rabbit (1:400, A11008, Molecular Probes);
and Alexa Fluor® 568-conjugated goat anti-rabbit (1:400, A21069, Molecular Probes). Coun-
terstaining was performed with 4′, 6-diamino-2-phenylindole, dihydrochloride (DAPI)
(SE196, DOJINDO, Kumamoto, Japan). Images were collected using an LSM 710 microscope
System with ZEN software (Carl Zeiss, Oberkochen, Germany).

2.4. Fluorescence-Activated Cell Sorting (FACS)

FACS was performed as previously reported [1,2]: The primary antibodies used were
anti-tyrosine-hydroxylase (TH) monoclonal antibody (1:100, ab129991, Abcam) and anti-
βIII-tubulin mouse monoclonal antibody (1:500) The secondary antibodies used were
goat anti-mouse IgG H&L phycoerythrin (1:500, ab97041, Abcam) and Alexa Fluor®

488-conjugated goat anti-mouse (1:500, A11001, Molecular Probes). The cells were an-
alyzed by FACS Verse (BD Bioscience, San Jose, CA, USA), using FACS suiteTM software
(BD Bioscience). FACS analyses were repeated in triplicate.

2.5. High Performance Liquid Chromatography (HPLC)

Dopamine was analyzed using HPLC as previously reported [18]: HAP stem cells
that differentiated to dopaminergic neurons were lysed with PCA buffer (Perchloric acid
0.2 M, EDTA-2Na 100 µM), then measured by HPLC, using a TSK gel ODS-80TM column
(TOSOH BIOSCIENCE, Tokyo, Japan) and an electrochemical detector system EDC-100
(EICOM, Kyoto, Japan).

2.6. Ca2+ Imaging

Ca2+ imaging was performed on cells grown in 35 mm glass bottom microwell dishes
(MatTek, Ashland, MA, USA) with the calcium-sensitive dye Fluo 4-AM (DOJINDO)
1 µM and AM ester-dissolving reagent Pluronic F-127 (0.04%) (FUJIFILM Wako, Osaka,
Japan) in HEPES buffer (NaCl 145 mM; MgCl2 1 mM; KCl 5 mM; glucose 5.5 mM; CaCl2
1 mM; HEPES 10 mM; pH 7.4) [2]. Fluo-4 fluorescence images (488 nm excitation) were
collected and recorded at 100 frames. After 10 s of image acquisition, ATP was added.
We examined real-time movie files of continuously recorded data to assess changes in
cell fluorescence that occur in response to ATP stimulation. Fluorescence images were
collected and recorded using an LSM 710 microscope System with ZEN software (Carl
Zeiss, Oberkochen, Germany).

2.7. Statistical Analysis

The experimental data are expressed as the mean ± SD. Statistical analyses were
performed with the unpaired Student’s t-test. A probability (P) value of p ≤ 0.05 was
considered significant.

3. Results
3.1. HAP Stem Cells Differentiate Efficiently to Dopaminergic Neurons

HAP stem cells were cultured in neural-induction medium for 45 days. As a control,
HAP stem cells were cultured in non-induction medium for 28 days. HAP stem cell dif-
ferentiated to βIII tubulin-positive, tyrosine-hydroxylase-positive cells, which secreted
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dopamine by day 7 after switching to neural-induction medium, indicating they were
dopaminergic neurons (Figure 1). Tyrosine-hydroxylase, DAT and Nurr1 in the differen-
tiated dopaminergic neurons were observed by immunofluorescence staining (Figure 2).
Fluorescence-activated cell sorting (FACS) analysis showed that the percentage of cells
differentiating to dopaminergic neurons in neural-induction medium was 48.90 ± 4.64%
compared to 15.53 ± 7.47% in non-induction medium (p = 0.0014) (Figure 3A). The percent-
age of cells differentiating to βIII tubulin-positive neurons in neural-induction medium
was 62.64% (Figure 3A) and in non-induction medium it was 15.4% [1].

3.2. HAP Stem Cells Differentiated to Dopaminergic Neurons That Extensively Proliferate

HAP stem cells, differentiated to dopaminergic neurons, extensively proliferated in
neural-induction medium to 6.67 ± 3.06 × 103 cells/hair follicle.
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Figure 2. HAP stem cells differentiated to dopaminergic neurons. The left panels show HAP
stem cells cultured in non-induction medium. The right panels show HAP stem cells cultured in
neural-induction medium. (A) Immunofluorescence staining shows that HAP stem cells cultured
in neural-induction medium differentiated to βIII-tubulin-positive (red fluorescence) and tyrosine-
hydroxylase-positive (green fluorescence) neurons. (blue fluorescence = DAPI). Tyrosine-hydrox-
ylase was expressed much more strongly in neural-induction medium. (B) HAP stem cells cultured
in neural-induction medium differentiated to dopamine-positive (red fluorescence) dopaminergic
neurons. Dopamine was produced much more in neural-induction medium. (C) HAP stem cells
cultured in neural-induction medium differentiated to DAT positive (red fluorescence). (D) HAP
stem cells cultured in neural-induction medium differentiated to Nurr1 positive (red fluorescence).
Scale bar = 100 µM.

3.3. HAP Stem Cells Differentiated to Dopaminergic Neurons Secreted Dopamine at High Levels

HPLC analysis showed that HAP stem cells differentiated to dopaminergic neurons
that secreted dopamine at 3.73 ± 0.41 ng/hair follicle and 3,4-dihydroxyphenylacetic acid
(DOPAC) at 1.96 ± 0.04 ng/hair follicle in neural-induction medium. Significantly more
dopamine was secreted in neural-induction medium compared to non-induction medium
(p = 0.0002) (Figure 3B,C).

3.4. HAP Stem Cells Differentiated to Dopaminergic Neurons Have Increased Ca2+ Levels When
Treated with ATP

HAP stem cells differentiated to dopaminergic neurons increased their Ca2+ levels
when treated with 300 µM ATP (Figure 4, Supplementary Materials Video S1).
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Figure 3. Proliferation of dopaminergic neurons differentiated from HAP stem cells. (A) FACS
analysis showed that the dopaminergic neurons differentiated efficiently in neural-induction medium.
(PE-A = tyrosine-hydroxylase-phycoerythrin. FATC-A = βIII-tubulin). Dopaminergic neurons
differentiated from HAP stem cells secreted high levels of dopamine when cultured in neural-
induction medium. (B) HPLC shows that the dopaminergic neurons secreted large amounts of
dopamine. (C) Dopamine secretion significantly increased in neural-induction medium compared to
non-induction medium. DOPAC = 3,4-dihydroxyphenylacetic acid.
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Figure 4. Effect of ATP on Ca2+ levels in dopaminergic neurons differentiated from HAP stem cells.
(A) ATP caused Ca2+ concentration changes in the dopaminergic neurons with time observed. (B) The
line-plots in the bottom panels show the relative fluorescence ratio (F/F0), where F0 is fluorescence
before treatment with ATP, and F is fluorescence after treatment. Scale bar = 20 µM.
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4. Discussion

In 2020 a case report was published on a Parkinson’s patient transplanted with
dopamine-producing iPSC derived from the patient’s skin cells. The dopamine-producing
iPSC were transplanted into the putamen of the patient who showed stability and im-
provement [19]. However, it took seven steps to produce the dopamine-producing iPSC,
including forced miRNAs expression, transfect with reprogramming factors, and chemical
elimination of potential tumorigenic un-differentiated cells [20]. None of these genetic
steps to induce differentiation and chemical treatment to remove potential tumorigenic
cells are necessary with dopamine-producing HAP stem cells.

The present report demonstrates that HAP stem cells can efficiently differentiate to
dopaminergic neurons, which proliferate well and secrete high amounts of dopamine.
Furthermore, HAP stem cells matured as neurons when cultured in neural induction
medium demonstrated by increased levels of Ca2+ upon treatment with ATP. Future
studies need to shorten the culture period and increase the differentiation rate of dopamine-
producing neurons.

Doi et al. [21] and Kikuchi et al. [22] demonstrated that implanted human induced
pluripotent-stem-cell (hiPSC)-derived dopaminergic progenitor cells improved the mo-
tor behavior of 6-OHDA lesioned rats. Narytnyk et al. [23] demonstrated that human
epidermal neural-crest stem cells could form dopaminergic neurons. Alizadeh et al. [24]
demonstrated that when cultured olfactory bulb neural stem cells, from brain-dead donors,
were supplemented with sonic hedgehog, fibroblast growth factor-8, and glial-derived neu-
rotrophic factor, they differentiated to dopaminergic neurons. The differentiated dopamin-
ergic neurons expressed dopaminergic markers tyrosine-hydroxylase and aromatic L-amino
acid decarboxylase (AADC). Nakagawa et al. [25] demonstrated that human embryonic
stem cells and hiPSC, cultured in xeno-free medium, could differentiate to dopaminergic
neurons. Hartfield et al. [26] demonstrated that hiPSC differentiated to mature substantia
nigra pars compacta dopaminergic neurons. Human iPSC-derived dopaminergic progeni-
tor cells transplanted to the putamen of Macaca fascicularis monkeys that had Parkinson’s
symptoms alter neurotoxic treatment, improved their spontaneous movement. The trans-
plantation required immunosuppression [22]. 4.0 − 8.0 × 104 TH positive neurons in the
human brain may be required to achieve a meaningful therapeutic effect [27].

HAP stem cells, located in the hair follicle bulge area, used in the present study, are
the most accessible stem cells compared to other stem cell types. As shown in the present
report, HAP stem cells differentiated efficiently to dopaminergic neurons that extensively
proliferated, expressed tyrosine-hydroxylase and secreted large amounts of dopamine
without genetic manipulations or added growth factors, and do not form tumors [8].
Furthermore, human HAP stem cells differentiated into 5.0 ± 1.7 × 104 cells/hair follicle
for 4 weeks [5]. HAP stem cells, which were discovered by Li et al [28], may be most useful
in the future to improve the symptoms of Parkinson’s disease. The possibility of clinical
use of HAP stem cells for Parkinson’s disease is feasible and practical, since HAP stem
cells are readily available from everyone and can be cryopreserved and banked without
loss of pluripotency [5,16].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10040864/s1, Video S1: HAP stem cells differentiated to dopaminergic neurons have
increased Ca2+ levels.
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