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DNA sequences performs 
as natural language processing 
by exploiting deep learning 
algorithm for the identification 
of N4‑methylcytosine
Abdul Wahab1,5, Hilal Tayara2,5, Zhenyu Xuan3* & Kil To Chong1,4*

N4-methylcytosine is a biochemical alteration of DNA that affects the genetic operations without 
modifying the DNA nucleotides such as gene expression, genomic imprinting, chromosome stability, 
and the development of the cell. In the proposed work, a computational model, 4mCNLP-Deep, 
used the word embedding approach as a vector formulation by exploiting deep learning based 
CNN algorithm to predict 4mC and non-4mC sites on the C.elegans genome dataset. Diversity of 
ranges employed for the experimental such as corpus k-mer and k-fold cross-validation to obtain the 
prevailing capabilities. The 4mCNLP-Deep outperform from the state-of-the-art predictor by achieving 
the results in five evaluation metrics by following; Accuracy (ACC) as 0.9354, Mathew’s correlation 
coefficient (MCC) as 0.8608, Specificity (Sp) as 0.89.96, Sensitivity (Sn) as 0.9563, and Area under 
curve (AUC) as 0.9731 by using 3-mer corpus word2vec and 3-fold cross-validation and attained the 
increment of 1.1%, 0.6%, 0.58%, 0.77%, and 4.89%, respectively. At last, we developed the online 
webserver http://nsclb​io.jbnu.ac.kr/tools​/4mCNL​P-Deep/, for the experimental researchers to get the 
results easily.

DNA methylation is a mechanism that entails the chemical modification of DNA sequences, that changes heredi-
tary performance without altering the DNA’s nucleobases. DNA modification through methylation and demeth-
ylation plays a significant role in gene expression. DNA methylation can regulate various biological processes 
including genomic imprinting, chromosome stability, and cell development and extend the assortment of genes 
because of its structural changes in DNA1. Prokaryotic and eukaryotic genomes undergo three types of methyla-
tion; N4-methylcytosine (4mC)2, 5-Methylcytosine (5mC)3, and N6-methyladenine (6mA)4.

Gene modifications are assembled by the distinct DNA methyltransferases (DNMTs) to transmit a methyl 
group to a particular exocyclic amino group5. 5mC is one of the most extensively studied types of cytosine meth-
ylation as a consequence of its widespread dissemination and complicated aspects6. 5mC plays an important role 
in numerous biological processes7 associated with neurological diseases, diabetes, and cancer. 6mA, in contrast, 
takes place only on a very small-scale, and is only found in eukaryotes using high sensitivity methods. 4mC is 
considered a dynamic epigenetic modification because of the restriction-modification (R-M) method to protect 
restriction enzyme form deterioration of self-DNA. It was first discovered in 19838. 4mC plays a significant role 
in the regulation of a number of processes intrinsic to the cell cycle, including gene expression, defining self and 
non-self-DNA , DNA replication, and correcting DNA replication errors9,10. Investigational studies related to 
4mC have waned in part due to a lack of sufficient identification techniques. While there are several experimental 
procedures capable of identifying 4mC sites, including mass spectrometry, for the whole genome 4mC-Tet-
assisted bisulfite, Single-Molecule of Real-Time (SMRT) sequencing, and methylation-precise PCR11–14, these 
approaches are regarded as expensive and time-consuming when applied across an entire genome.
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In recent years, various novel computational N4-methylcytosine site identification methods have been 
proposed and applied across a diverse number of species, including Geoalkalibacter subterraneus, Arabidopsis 
thaliana, Geobacter pickeringii, Escherichia coli, Drosophila melanogaster, and Caenorhabditis elegans15–19. These 
methods rely on state-of-the-art machine learning (ML) algorithms to make their predictions for 4mC sites. Each 
of these predictors used different encoding techniques such as binary encoding, nucleotide chemical properties, 
and nucleotide frequencies with various algorithms like support vector machine, random forest, and decision tree. 
Recently, a new predictor DNC4mC-Deep20 was proposed to identify and analyze of Rosaceae genome, where 
they implemented a deep learning based Convolution Neural Network (CNN) algorithm. They used six different 
kinds of encoding methods binary encoding (BE), dinucleotide composition (DNC), trinucleotide composition 
(TNC), Nucleotide chemical property (NCP), nucleotide chemical property and nucleotide frequency (NCPNF), 
and multivariate mutual information (MMI). Another deep learning based model has been established named 
as 4mCDeep-CBI21 to identify the N4-methylcytosine sites in the newly developed dataset of Caenorhabditis 
elegans, where they implemented 3-CNN and Bidirectional Long Short-Term Memory (BLSTM) to fetch the 
deep features for the prediction.

In this work, we developed a new tool, named 4mCNLP-Deep, to identify and analyze 4mC sites associated 
with C. elegans dataset which was recently expanded by increasing the number of samples. The Structure of the 
proposed model was built as follows; First, we used the encoding method word2vec, which has never been used 
before in N4-methylcytosine identification, to transform sequences into vectors form using word embedding. 
The word-embedding approach mostly operates on Natural Language Processing (NLP)22, but thereafter executed 
efficaciously on wide-genome identification23–28. We obtained the final CNN model by applying the grid search 
algorithm with tuned hyper-parameters and fed the vectors of word embedding into it. We used a K-fold cross-
validation method for different values of K. Then, we applied five evaluation metrics to assess the model. We 
also employed two applications, silico mutagenesis29 and saliency30 map to interpret the predictive deep learning 
model and influence of important features. The results of the predictive model showed outperformance when 
compared to the state-of-the-art model. 4mCNLP-Deep successfully achieves 0.9354, 0.8608, 0.8996, 09563, 
and 0.9731 for Accuracy (ACC), Mathew’s correlation coefficient (MCC), Sensitivity (Sn), Specificity (Sp), and 
Area under the curve (AUC), respectively on C. elegan dataset by using 3-mer corpus word2vec and 3-fold 
cross-validation. Our model attained the increment of 1.1% on ACC, 0.6% on MCC, 0.58% on Sn, 0.77% Sp, 
and 4.89% on AUC, respectively.

Materials and methods
Benchmark datasets.  The benchmark dataset of Caenorhabditis elegans (C. elegans) was attained from 
Feng Zeng et al.21. Where they extend the existing dataset of Ye et al.31 by producing new samples. New samples 
were got from the MethSMRT database consisted of 4mC and non 4mC sites, where each had a length of 41 
bp. Two steps were taken, first, in the Methylome Analysis Technical Note, it was shown that the modification 
QV (modQV) score for the IPD ratio had remarkably dissimilar from the estimated. With the modQV score of 
greater than 30, the samples were removed. Next, they used the CD-HIT32 software to remove the redundancy 
of bias samples to make sure a biased dataset will not miscalculate the accuracy results. The cut off frequency 
was used 0.80.

Subsequently, newly acquired samples were integrated with the benchmark dataset which was used in several 
research works. A dataset formed with the number of 18747 samples, to reduce the similarity between the new 
and old samples a CD-HIT was used. After that, a new dataset of C. elegans prepared with a total of 17808 samples 
from which 11173 are 4mC samples and 6635 are non 4mC samples.

Distributed feature representation.  The nature of raw genomic datasets is considered as complicated 
and noisy. With this necessity, we focused to apply the computational model for the instinctive feature repre-
sentation learning approach on genomic data33. This method allows for inducing optimum features set and 
increases the performance of the computational model by reducing the model complexity.

Vector representation of words or word embedding is the most well-known technique in the natural language 
processing (NLP) operations. Theoretically, it transforms the 1-dimension per word into continuous N-dimen-
sion vectors. The first word2vec model was proposed by Mikolov et al.22 Based on a neural network, resultant 
outcomes possessed distributed characterize sentences of linguistic words. The aforementioned, technique was 
much faster than the preceding methods, to train the model for continuous vector space and lower the dimen-
sions. In recent years, the success of NPL has been shown caused by its advantageous applications for instance 
speech recognition, language assist, and translation devices, which made substantial progression on the word 
embedding methods. Furthermore, researchers revealed that genetic data can be used as language whether DNA 
or RNA samples that occur within the structure of the cell34–36. Additionally, several biological related complex 
problems have been successfully demonstrated through NLP approaches25–28,37.

Corpus development is the first step for implementing the word2vec model, it divides the continuous bio-
logical sequence into k length (k-mer)38 of nucleotides groups to formulate as a word and identify linguistic 
associations among them. In this work, we have carried out the preprocessing to compose the text corpus from 
the C. elegans genome and then trained the word2vec model. We have produced the corpus by operating the 
whole C. elegans genome assembly (WBcel235/ce11) which is downloaded from http://hgdownload.soe.ucsc.
edu/goldenPath/ce11/chromosomes/.

Firstly, the genome assembly was distributed into seven chromosomes (chrI, chrII, chrIII, chrIV, chrM, chrV, 
chrX) and then each chromosome split into the sequence of 41nt to shape the sentence. A continuous bag-of-
words (CBOW) approach has been employed to train the word2vec model. CBOW determines the recent word 
w(t) by surrounds the context word based on predefined window size which was set as 5. A biological sequence 
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which is mostly a combination of A, C, G, T nucleotides transforms into the sequence of words by setting the 
k-mer value. The k was set k = 3 with overlapping which forms a DNA sequence ACG​TCA​GT into words like 
ACG, CGT, GTC, TCA, CAG, AGT. Each 3-mer word is indicated by a 100-dimensional vector. We experimented 
with the word2vec model by different values of k-mer, such as k=2, k=3, k=4. Complete details of the parameters 
which were used are shown in Table 1.

The proposed model
In this work, adequate deep learning based CNN model was proposed for the prediction of N4-methylcytosine 
sites of the C. elegans genome. CNN has the capability to acquire leading quality features automatically for the 
classification prediction instead of manually handy crafted like traditional supervised learning methods. Whereas, 
an assorted CNN model can be made by using handcrafted features. Convolution Neural Network has been 
utilized in several research areas such as image processing39,40, natural language processing41, and computational 
biology42–47. A grid search algorithm was implemented with different hyper-parameters values to obtain the most 
optimal CNN model during its learning. The range of parameters is demonstrated in Table 2.

In the proposed work, the word2vec feature representation was introduced which is completely different from 
previous works of N4-methylcytosine. A CNN based word2vec model trained on the optimum model which got 
from the grid search. The input of the model is (L− k + 1)× 100 , where L is the length of the input sequence, k 
is the value of k-mer and 100 is a dimensional vector for each word in the sequence sentence. The model contains 
three blocks and each has several layers with diverse parameter ranges to construct the model. Each block com-
prises a convolution layer (Conv1D) having parameters as a filter number with values of 32, 32, 16, respectively, 
kernel-size with values of 5, 5, 4, correspondingly and stride with the value of 1 for all. The convolution layer 
has capability to extract the features by self-activating for the appropriate input. In all the convolution layers, L2 
regularization weights and bias used to assure the model by overfitting. The values of both regularizations were 
set as 0.0001, for all three Conv1D, an exponential linear unit (ELU) utilized as an activation function. Each 
block Conv1D was followed by a group normalization layer (GN), which condensed the consequences of con-
volution layers. GN distributes the feature map into the desired numbers of groups and normalizes them within 
each group. The number of groups was fixed as 4, 4, 2, respectively in each block. Moreover, a max-pooling layer 
(MaxPooling1D) was applied to minimize the dispensable features after the GN layer and avail to turn down the 
dimensionality of the features. The pool-sizes were set as 4, 4, 2, correspondingly, and strides were set as 2 for all 
max-pooling layers in each block. Right after MaxPooling1D, dropout layers were used to avoid the overfitting 
problem while training the model. It supports by turning off the operations of some hidden nodes by regulating 
the neurons to zero at the learning process.

After the convolution blocks, a flatten layer was used to unstack the outcomes and squash the features vec-
tors from preceding layers. Furthermore, a fully connected layer (FC) was implemented with the number of 32 
neurons and L2 weights and bias regularization was utilized by setting the value at 0.001. In the FC layer, ELU 
activation was used. Finally, the last FC layer was employed with a sigmoid activation function for the bimodal 
classification. The sigmoid function helps to squeeze the outcome numbers on the scale of between 0 and 1 and 

Table 1.   Parameters of word2vec model which were used in training.

Parameters Word2vec learning model

Training approach CBOW

Corpus C. elegans (WBcel235)

Context words (2-mer, 3-mer, 4-mer)

Vector size 100

Minimum count 5

Negative sampling 5

Window size 5

Number of epochs 20

Table 2.   Demonstration of hyper-parameter tuning of proposed model.

Parameters Range

Number of convolution layers [1,2,3,4,5]

Filters in convolution layer [8, 10, 12, 16, 18, 25, 32, 44, 64, 128]

Filter size [2, 3, 4, 5, 6, 8, 10, 12]

Number of groups in GroupNormalization layer [2, 4]

Pool-size in maxpooling layer [2, 4]

Stride length in maxpooling [2, 4]

Dropout values [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45]
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demonstrates the likelihood of acquiring the 4mC and non-4mC sites. Figure 1 shows the detailed architecture 
of presented CNN model and feature learning model.

The proposed model 4mCNLP-Deep was executed on Keras48. Stochastic gradient descent (SGD) optimizer 
was used with the value of 0.95 for momentum and 0.004 for the learning rate. Binary cross-entropy is deployed 
as a loss function. We fix the 100 epochs and 32 batch size for the fit function. The call back function was used to 
storing models and their corresponding weights by calling the checkpoint. While early stopping is used to stops 
the prediction accuracy at a certain point once validation puts an end to improve. The early stopping patience 
level was set as 20.

Performance evaluation metrics
The effective performance of the 4mCNLP-Deep model was measured by k-fold cross-validation, we used three 
different values for the k such as 3 fold, 5 fold, and 10 fold cross-validation to carry out the preeminent identifica-
tion. Cross-validation is used to estimate the explicit achievement of the desired model by using the resampling 
method. The whole dataset merges and splits into k number of clusters, each cluster carries eight folds for train-
ing, one for validation, one for testing. The proposed CNN model was trained and tested k intervals. There are 
four metrics to evaluate the performance of the model such as Accuracy (ACC), Mathew’s correlation coefficient 
(MCC), Specificity (Sp), and Sensitivity (Sn) with the given mathematical formulation49–51.

Where TN and TP represent as true negative and true positive having the correct number of identified sequences 
related to 4mC and non-4mC, respectively. Whereas, FN and FP denote as false negative and false positive tak-
ing false number of identified sequences for 4mC and non-4mC, respectively. Moreover, the receiver operating 
characteristics curve (ROC) and area under the ROC curve (AUC) were also deployed to demonstrate the 
achievement of the presented deep learning model.

(1)ACC =
TP + TN

TP + TN + FP + FN

(2)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(3)SP =
TN

TN + FP

(4)SN =
TP

TP + FN

Figure 1.   Illustration of complete architecture of 4mCNLP-Deep.
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Results and discussion
A word2vec formulation technique was utilized with different ranges of k-fold cross-validation to predict the 
N4-methylcytosine by the implemented an optimal predictor to obtain the best performance.

Performance evaluation.  In the proposed model 4mCNLP-Deep, we did diverse experiments with a dis-
tinct assortment of values for corpus k-mer (2, 3, 4) and k-fold (3, 5, 10) on the C. elegan dataset. Each model 
utilized word2vec with different k-mer values on a various number of folds to check the best performance. For 
example 2-mer word2vec was implemented with distinct folds of 3, 5, and 10 as cross-validation. As the value of 
k increases, the disparity in size among the training set and the resampling subset gets shorter. In the resulting 
model returns immeasurable results. If the difference increase, the bias of the procedure becomes larger and it 
affects the model outcomes as compared to a large difference. In contrast, the proposed model gives better results 
in 10 folds of each k-mer of word2vec.

For constructive comparison, we compared our predictor with state-of-the-art model 4mCDeep-CBI21 and 
scrutinize the credibility of the model to identify the 4mC and non-4mC sites. The 4mcDeep-CBI applied 3-fold, 
our model outperformed with 3-mer word2vec using 3-fold and has reported as ACC of 0.93.54, MCC of 0.8608, 
Sp of 0.89.96, Sn of 0.9563, and AUC of 0.9731 and accomplished increment of 1.1%, 0.6%, 0.58%, 0.77%, and 
4.89%, respectively. The detailed experimental results of 4mCNLP-Deep with all ranges have been shown in 
Table 3. The performance evaluation of 4mCNLP-Deep and state-of-the-art are demonstrated in Fig. 2.

Table 3.   Results demonstration of 4mCNLP-Deep with different experimental values compare to state-of-the-
art model on benchmark dataset for C. elegans.

Value of k-mer No. of folds ACC​ MCC Sp Sn AUC​

4mCNLP-Deep (2-mer)

3-fold 0.9323 0.8542 0.8973 0.9528 0.9730

5-fold 0.9343 0.8585 0.9027 0.9528 0.9742

10-fold 0.9382 0.8668 0.9034 0.9586 0.9758

4mCNLP-Deep (3-mer)

3-fold 0.9354 0.8608 0.8996 0.9563 0.9731

5-fold 0.9427 0.8766 0.9141 0.9595 0.9764

10-fold 0.9455 0.8825 0.9132 0.9643 0.9788

4mCNLP-Deep (4-mer)

3-fold 0.9328 0.8551 0.8974 0.9535 0.9732

5-fold 0.9446 0.8805 0.9097 0.9650 0.9768

10-fold 0.9500 0.8922 0.9209 0.9670 0.9798

4mC-Deep CBI 3-fold 0.9294 0.8498 0.8938 0.9486 0.9242

Figure 2.   Depiction of performance comparison of 4mCNLP-Deep and existing model with various 
experimental values.
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Applications for interpreting deep learning model.  Deep learning models have the capability to 
attain the pioneering results but it’s laborious to interpret the algorithms as a standard statistical model. In the 
present study, there are two application established to understand and analyze the deep learning model by visu-
alization techniques.

The first method to decipher a convolution neural network model for computational and statistical biology 
is silico mutagenesis which was used in various scientific works29,52. It is operated by mutating each nucleotide 
by a single base of sequences with a fixed length of four nucleotide A, C, G, T. In this systematical methodology, 
the model restore each outcome of resulted mutation and keeps the output as an absolute difference. Further, 
taken out the aggregated average of mutated predictions for the complete dataset.

For the mutated alterations, a heat map was implemented to show the impact of mutation. Figure 3, demon-
strates the visualization of the mutation on the C. elegans dataset as an indigenous feature during the model’s 
learning phase. As it can be shown that the influence of mutation is less in the center of sequence on ultimate 
identification due to C nucleotide which is symbolized as N4-methylcytosine modification. The recasting of C 
nucleobase can intimate the unique kind of gene modification. In comparison, more influence of mutation can 
be shown on the other sides of the heat map which leads to represent the modification of nucleotides can change 
the results of cytosine recognition.

The second technique to interpret the deep learning based CNN model is the saliency map which helps to 
identify the most influential features of the sequence by the help of the gradient of the model for final prediction. 
It points out the most significant characteristics in the samples to classify the class related to the modification, 
several investigators used in their work30,53. For the envision, the efficiency of each location was derived by point-
wise product of the saliency map through the vector encoding to obtain the imitative values of actual nucleotide 
characters of sequences such as A, C, G, T. We experimented by splitting the samples into 3-mer chunks across 
all the sequence by the formulation of L− K + 1 . The effect of tri-nucleotide letters at each place of the whole C. 
elegans dataset’s outcome result can be shown in Figure 4. In the middle of the words, the CAA motif has a signifi-
cant magnitude value which is illustrating the utmost vital features in the sample for the identification of the CNN 
model. The base 4mCNLP-Deep also specifying the current gene modification related to N4-methylcytosine.

Application of clinical research.  C. elegans consider as a hereditary model organism used in the study of 
physiology, to sum up, the aspects of human disease. It is a widely applied non-mammalian animal model that is 
well proven for the highly versatile experiments for research on genetics, development, aging, muscle physiology, 
and radiobiology. The main purpose of the clinical research on C. elegans is to identify such type of genes which 
provides information about the mechanism of human disease development and also helps to enhanced diagnosis 
and treatment. Clinical experiments are costly and time-consuming when used for the whole genome. Therefore 

Figure 3.   Visualization of heatmap of silico mutation, Where the C nucleotide in the center shows the weak 
effect on the final prediction as compare to other nucleotides.
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the computational approaches are utilized for several experiments that reduce the value and time. The presented 
model is made by considering this necessity, to ease clinical experimental biologist. They can easily detect the 
N4-methylcytosine site and then used further for the development of human disease identification or treatment. 
The proposed method already proved and contributing to the detection of different genetic sites in the genome, 
word2vec, and CNN made a big impact and utilized by several investigators25–28,37 to contribute as a better solu-
tion. This type of applications helps the biologist by freely accessible online tools.

Conclusion
In the presented work, we introduced a persuasive computational biological model which is known as 4mCNLP-
Deep for the prediction of 4mC and non-4mC sites. The expanded dataset of C. elegans was utilized for train-
ing and testing the deep learning model. Furthermore, a unique encoding technique was applied to transform 
sequences into the vectors representation by using a word embedding for the deep learning model. An optimal 
CNN algorithm was deployed after getting the best settings by exploiting hyperparameter tuning in a grid 
search. We performed several experiments for the values of k-mer in corpus and cross-validation for k-fold. All 
the experimental results are outperforming from the existed model. However, for rational comparison, 3-mer 
word2vec on 3-fold cross-validation has shown a prominent result which indicates the effective performance and 
high intelligence of the model for predicting the N4-methylcytosine sites. In the proposed work, five evaluation 
metrics were used like ACC, MCC, Sp, Sn, and AUC to measure the robustness and productivity of identification. 
Lastly, two diverse approaches named silico mutagenesis and saliency map were employed to interpret our deep 
learning based CNN model and understand the biological significance of gene modification. 4mCNLP-Deep 
can be appropriated by the biologists and create a high impact to identify a different kind of gene modifica-
tion specifically N4-methylcytosine and specify the brain related diseases or development irregularities. In the 
future, we will expand the model complexity with a proper and efficient way for the prediction of all kinds of 
gene modification which will make a huge contribution in the field of bioinformatics and computational biology. 
Moreover, we developed the online webserver http://nsclbio.jbnu.ac.kr/tools/4mCNLP-Deep/, for the experi-
mental researchers to get the results easily.
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