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Abstract 

Background: Oropharyngeal squamous cell carcinoma (OPSCC) is often diagnosed at an advanced stage because 
the disease often causes minimal symptoms other than metastasis to neck lymph nodes. Better tools are required to 
assist with the early detection of OPSCC. MicroRNAs (miRNAs, miRs) are potential biomarkers for early head and neck 
squamous cell cancer diagnosis, prognosis, recurrence, and presence of metastatic disease. However, there is no wide-
spread agreement on a panel of miRNAs with clinically meaningful utility for head and neck squamous cell cancers. 
This could be due to variations in the collection, storage, pre-processing, and isolation of RNA, but several reports 
have indicated that the selection and reproducibility of biomarkers has been widely affected by the methods used 
for data analysis. The primary analysis issues appear to be model overfitting and the incorrect application of statistical 
techniques. The purpose of this study was to develop a robust statistical approach to identify a miRNA signature that 
can distinguish controls and patients with inflammatory disease from patients with human papilloma virus positive 
(HPV +) OPSCC.

Methods: Small extracellular vesicles were harvested from the serum of 20 control patients, 20 patients with gas-
troesophageal reflux disease (GORD), and 40 patients with locally advanced HPV + OPSCC. MicroRNAs were purified, 
and expression profiled on OpenArray™. A novel cross validation method, using lasso regression, was developed to 
stabilise selection of miRNAs for inclusion in a prediction model. The method, named StaVarSel (for Stable Variable 
Selection), was used to derive a diagnostic biomarker signature.

Results: A standard cross validation approach was unable to produce a biomarker signature with good cross 
validated predictive capacity. In contrast, StaVarSel produced a regression model containing 11 miRNA ratios with 
potential clinical utility. Sample permutations indicated that the estimated cross validated prediction accuracy of the 
11-miR-ratio model was not due to chance alone.

Conclusions: We developed a novel method, StaVarSel, that was able to identify a panel of miRNAs, present in small 
extracellular vesicles derived from blood serum, that robustly cross validated as a biomarker for the detection of 
HPV + OPSCC. This approach could be used to derive diagnostic biomarkers of other head and neck cancers.
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Background
Head and neck cancer is the 6th most common can-
cer worldwide, with oropharyngeal squamous cell car-
cinoma (OPSCC) significantly increasing in incidence 
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[1]. Historically the majority of patients presenting with 
OPSCC have been older with a history of smoking and 
alcohol consumption [1]. The increasing incidence of 
OPSCC in the last 20 years, despite a decrease in tobacco 
and alcohol consumption, amongst younger males has 
been attributed to human papilloma virus (HPV) [2]. 
Immunohistochemical staining of p16 is used as a sur-
rogate marker for HPV, and is currently the only bio-
marker used clinically for OPSCC staging [3]. OPSCC is 
often diagnosed at an advanced stage because the disease 
often causes minimal symptoms other than metastasis to 
enlarging lymph nodes in the neck. Better tools would 
assist with facilitating non-invasive detection of OPSCC 
for primary care doctors and cancer specialists.

Biomarkers are biological molecules found in blood, 
fluid or tissues that can signal either a normal or an 
abnormal process such as cancer. Serum biomarkers 
have emerged as potential tools to facilitate diagnosis in 
patients with head and neck cancer [4].

MicroRNAs (miRNAs, miRs) have been identified as 
potential biomarkers for early head and neck squamous 
cell carcinoma diagnosis, prognosis, recurrence, and 
presence of metastatic disease [5, 6]. miRNAs are sin-
gle-stranded noncoding RNA molecules that play a sig-
nificant role in cancer development [7]. A recent review 
found that miRNAs are dysregulated in head and neck 
cancer tissue biopsy samples and have potential as diag-
nostic and prognostic biomarkers [8]. Tissue-based bio-
markers, however, require invasive collection and are 
only available via biopsy or at time of surgery, and thus 
repeated sampling during the course of the disease, treat-
ment and surveillance is generally not practical. A liquid 
biopsy, usually blood, can be obtained more easily, and 
is less invasive than a tissue biopsy. Liquid biopsies can 
be collected throughout the course of a patient’s disease, 
and could potentially be used to determine cancer diag-
nosis, prognosis and recurrence [9]. This would allow for 
real-time changes to treatment plans. Tumor cells release 
miRNA-containing small extracellular vesicles into their 
extracellular environment and these vesicles are present 
in circulating blood. Thus, the miRNA content of cir-
culating small extracellular vesicles has the potential to 
provide a unique molecular signature for multiple pos-
sibilities such as diagnosis, prognosis and surveillance 
of cancers [10]. In the event of recurrence, a systematic 
review found that success of salvage surgery in OPSCC 
recurrence is dependent on early recognition of such 
disease [11]. A biomarker that identifies the presence of 
residual or recurrent cancers prior to clinical evidence of 
such disease would facilitate early salvage options.

Circulating miRNAs obtained from blood have been 
described for head and neck cancer of several anatomi-
cal subsites including oral cavity, nasopharynx, larynx, 

salivary glands and cutaneous malignancies [12]. How-
ever, despite widespread efforts to develop clinically 
significant miRNA biomarker panels, there is a lack of 
agreement on which specific miRNAs constitute a clini-
cally significant biomarker panel. According to the study 
by Poel et al. [12] this may be due in part to differences 
in detection methodology, as well as biological variability. 
A recent comprehensive analysis of circulating miRNA 
studies in head and neck cancers identified variations in 
the collection, storage, pre-processing, and isolation of 
RNA, as well as poor reporting of detailed methodology, 
and variation in the methods used for relative quantifica-
tion and normalisation [13].

Several reports have also indicated that the selec-
tion and reproducibility of biomarkers has been widely 
affected by the methods used for data analysis. Michiels 
et al. [14] reanalysed the seven largest studies of micro-
array-based cancer prognosis and concluded that the 
originally reported assessments were overly optimistic. A 
subsequent re-assessment of these studies with a broader 
range of methods found that only four of the seven data 
sets yielded classifiers that performed better than chance 
[15].

Furthermore, in a critical review of microarray studies 
in cancer, Dupuy et  al. [16] determined that half of the 
reported prognostic gene signatures that they examined 
were not reproducible due to critical flaws in the data 
analysis methods. The primary issues were found to be 
with model overfitting and the incorrect application 
of statistical techniques. The importance of these data 
analysis issues is highlighted by the outcomes of an Insti-
tute of Medicine (IOM) review which resulted in a large 
number of retractions and the cancellation of three clini-
cal trials [17]. This is now considered such an important 
issue that Ensor [18] remarked in a review of biomarker 
data analysis methods that “it is essential to limit the false 
discovery of biomarkers so that the literature is not bur-
dened with unreproducible findings”.

A key approach to improving medical biomarker stud-
ies is to validate findings in a separate set of samples. 
However, this approach alone does not maximise the 
information that can be derived from valuable samples, 
and for often necessarily small discovery studies it is 
prone to error resulting from biological variation. Cross 
validation is a more powerful method, but its imple-
mentation is not straightforward, and it is often used to 
compute an error estimate for a classifier that has itself 
been tuned using cross validation with the same data. 
This method of cross validation has been reported to give 
biased estimates of classification error [19]. Cross valida-
tion can be considerably improved by using a nested pro-
cedure which uses an inner cross validation loop to select 
a classifier model, and an outer loop to test the model on 
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samples that were not used for the model selection. This 
approach has been reported to give unbiased estimates of 
the true classification error in synthetic data sets [20].

Our group has developed expertise in miRNA profiling 
for cancer biomarker identification using cross validation 
methodologies [21, 22]. In this study we report the iden-
tification of a panel of miRNAs present in small extra-
cellular vesicles derived from blood serum that robustly 
cross validated as a diagnostic biomarker for the detec-
tion of OPSCC.

Methods
Late diagnosis of OPSCC is a significant clinical prob-
lem. Primary care doctors and cancer specialists need 
improved methods for early diagnosis of OPSCC. miR-
NAs in tumor derived small extracellular vesicles, circu-
lating in blood serum, have excellent potential for this 
purpose. Our aim was to develop a panel of serum small 
extracellular vesicle derived miRNAs which show robust 
cross validation as a diagnostic biomarker for OPSCC.

Patients
Three patient cohorts were included in this study; a 
‘control’ patient cohort and a cohort of patients with 
gastroesophageal reflux disease (GORD) and ulcerative 
esophagitis were included in the non-cancer group, and 
the cancer group were a cohort of patients with OPSCC. 
Blood specimens and related clinical data were accessed 
with appropriate ethical and governance approvals from 
the SA ENT Tissuebank (stored by Flinders Medical Cen-
tre, Adelaide, South Australia), PROBE-NET (Flinders 
Medical Centre, Adelaide, South Australia) and Victorian 
Cancer Biobank from consenting participants. Speci-
mens from cancer patients (n = 40) diagnosed with p16 
positive advanced stage OPSCC (stage III or IV AJCC 7th 
Edition [23]) but no concurrent or previous cancer diag-
nosis were selected. The diagnosis and AJCC stage were 
confirmed at a Head and Neck multi-disciplinary team 
meeting at each respective institution. Specimens from 
patients without head and neck cancer were selected 
from a cohort of patients who underwent upper gastro-
intestinal endoscopy for reasons unrelated to the inves-
tigation of any cancer. These patients were recruited via 
a previously described recruitment process [22]. Patients 
who had no pathology identified at upper gastrointestinal 
endoscopy were classified as either ‘controls’ (n = 20), and 
a second cohort was determined to have GORD based 
on the presence of ulcerative esophagitis (any grade) at 
endoscopy (n = 20).

HPV DNA polymerase chain reaction (PCR)
Diagnostic tissue blocks were accessed to determine 
the presence of HPV DNA utilising the method of 

Antonsson et al. [24], with minor modification. The pres-
ence of tumor cells in an adjacent section of the tissue 
block was confirmed by a histopathologist. Tissue Sec-
tions (3 × 10 µm formalin fixed paraffin embedded) were 
used to extract DNA using the QIA DNA FFPE Tissue kit 
(Qiagen, Cat No 56404) with slight modification. Paraffin 
sections were washed 3 × with xylene prior to proteinase 
K digestion (up to 3.5 h; after which undigested material 
was removed via centrifugation). The DNA was eluted in 
50 µl ATE buffer from the kit.

Primers for HPV detection and ß-globin were obtained 
from GeneWorks (Thebarton, South Australia). DNA 
samples were analysed by PCR for the presence of HPV 
with the general mucosal HPV primers GP5 + (5′TTT 
GTT ACT GTG GTA GAT ACTAC3′)/GP6 + (5′GAA AAA 
TAA ACT GTA AAT CAT ATT C3′) [24, 25]. PCR reac-
tion mix consisted of GeneAmp 10× buffer II (2.5  µl), 
25 mM MgCl2 (3.5 µl), 10 mM dNTP Mix (0.5 µl), 5 µM 
GPT5 + primer (4 µl), 5 µM GPT6 + primer (4 µl), 5 U/
µl AmpliTaq Gold ® DNA Polymerase (0.125 µl), 2.5 µl of 
eluted DNA and water to make total volume 25 µl. PCR 
thermocycler conditions were 95°C 10 min, 50 cycles of 
94 ℃ 90 s, 55 ℃ 90 s, 72 ℃ 2 min, followed by 72 ℃ 4 min 
and 20 ℃ 10 min.

Ultrapure water was used as a negative control. HeLa 
cells (HPV18 positive cervical cancer cell line) were used 
as positive control. β-globin PCR with the primers PCO3 
(5′CTT CTG ACA CAA CTG TGT TCA CTA GC3′) and 
PCO4 (5′TCA CCA CCA ACT TCA TCC ACG TTC ACC3′) 
was carried out on all samples to ensure they contained 
enough cells to detect human DNA [24] with the follow-
ing PCR thermocycler conditions: 95 ℃ 10 min, 50 cycles 
of 94 ℃ 90 s, 60 ℃ 90 s, 72 ℃ 2 min, followed by 72 ℃ 
4 min and 20 ℃ 10 min. PCR products were visualised by 
agarose gel electrophoresis and photographed.

Blood collection
All pre-cancer treatment blood specimens were collected 
either at time of clinic consultation or at time of endos-
copy/surgical procedure (before the administration of 
any medications). Blood was collected into 8 ml Z Serum 
Separator Clot Activator tubes  Vacuette® (cat# 455078). 
All blood samples were left at room temperature for a 
period of 16–24 h before processing with a standardised 
protocol established in our laboratory [26].

Extracellular vesicle isolation and miRNA extraction
For small extracellular vesicle isolation, 1 ml aliquots of 
serum were retrieved, quick thawed, and centrifuged at 
16,000g at 4 ℃ for 30  min to exclude larger micropar-
ticles. 250  µl supernatant from each sample was then 
processed with an ExoQuick™ kit (System Biosciences, 
CA, United States; EXOQ20A-1) according to the 
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manufacturer’s protocol. Samples were incubated with 
ExoQuick™ at 4 °C for 16 h. The pellet isolated from each 
sample was resuspended with 50  µl phosphate buffered 
saline (PBS). We have previously confirmed that pellets 
obtained from serum using ExoQuick™ contain particles 
consistent in size with exosomes (30–150  nm), using a 
Nanosight LM10 Nanoparticle Analysis System and Nan-
oparticle Tracking Analysis Software (Nanosight Ltd.) 
[26]. We refer to these as small extracellular vesicles, as 
recommended in the Minimal Information for Studies of 
Extracellular Vesicles 2018 Guidelines [27]. Extraction of 
miRNA from small extracellular vesicles was performed 
using the commercial miRNeasy Serum/Plasma kit (QIA-
GEN, #217184) according to the manufacturer’s proto-
col. Five microlitres (0.1  pmol) of each of the synthetic 
RNA molecules ath-miR-159a and cel-miR-54 (Shanghai 
Genepharma Co.Ltd.) were added to the 500  µl QIA-
zol vesicle lysate before further processing. Twenty four 
microlitres of RNase-free ultrapure water was used for 
the final RNA elution step.

TaqMan  OpenArray® miRNA profiling
High throughput QuantStudio™ 12  K Flex  OpenArray® 
PCR custom made plates were used for miRNA profiling. 
These arrays were comprised of a panel of 112 miRNA 
probes (Additional file 1) that were selected based upon 
their abundance in samples from our previous study on 
serum small extracellular vesicle associated miRNAs [22]. 
For each sample, 3.35 μl of RNA was reverse transcribed 
using a matching Custom  OpenArray® miRNA RT pool 
(Life Technologies cat # A25630) and the  TaqMan® 
microRNA Reverse Transcription Kit (Life Technologies 
cat # 4366596). cDNA Pre-amplifications were carried 
out with a matching Custom  OpenArray® PreAmp pool 
(Life Technologies cat # 4485255) and TaqMan PreAmp 
Master Mix (Life Technologies cat # 4488593) on 7.5 μl 
complementary DNA (cDNA)/sample for each pool. The 
pre-amplified products (4 μl per sample) were diluted at 
the recommended 1:40 dilution with 156  μl of RNase-
free ultra pure water before mixing with TaqMan Ope-
nArray Real-Time PCR Master Mix (Life Technologies 
cat # 4462164) and loading onto a 384-well TaqMan Ope-
nArray loading plate. PCR runs were performed using a 
QuantStudio™ 12 K Flex Real-Time PCR System.

OpenArray® real‑time PCR assay data analysis
Analyses were performed using R (version 3.4.3), and 
Microsoft Excel for Mac (version 16).

The cycle threshold (Ct) value for each PCR assay was 
determined using the qpcR package v1.4 in R (https ://
cran.r-proje ct.org/web/packa ges/qpcR/index .html). Only 
miRNAs with detectable Cts in at least 50% of samples 
in one group were considered for the expression analysis. 

The relative expression of each miRNA was calculated as 
 2(40−Ct). Relative expression values for each miRNA were 
used to derive per patient values for every possible per-
mutation of miRNA ratios.

Selection of miRNA biomarkers
The use of gene expression ratios has been shown to pro-
vide good sensitivity and specificity in RNA biomarker 
studies [22, 28, 29]. We therefore calculated the ratio of 
the relative expression level of each miRNA with every 
other miRNA. miRNA ratios with high variation in both 
of the comparison groups were removed (coefficient of 
variation > 300%), and the miRNA ratios were then pre-
filtered (Mann–Whitney U-test at p < 0.05) to remove 
non-informative ratios [30]. The remaining ratios were 
investigated for their capacity to discriminate patients 
with OPSCC from control patients and patients with 
GORD and ulcerative oesophagitis. We have previously 
demonstrated ulceration of the squamous oesophageal 
mucosa in GORD is associated with an alteration of 
miRNA expression compared to normal controls [31]. 
This was initially done using Lasso regression in a 
nested 2-stage cross validation procedure. Methods are 
described below, with further explanation provided in 
Additional file 2.

Optimization of Lasso regression via cross validation
In the current study optimization of Lasso regression was 
performed using 50 repeated rounds of tenfold cross vali-
dation on the inner loop of a nested cross validation (see 
description below), using the cv.glmnet function (from 
the glmnet R-package v2.0-13) with the method set to 
“binomial” (i.e. logistic).

2‑stage nested cross validation
We utilised leave-one-out cross validation in the outer 
loop to generate held-out test samples that would not be 
used in optimizing model parameters, and then utilized 
repeated (50 ×) tenfold cross validation in the inner loop 
(using the cv.glmnet function from the glmnet R-package 
v2.0-13) to optimise the regularisation parameter lambda 
for Lasso regression. Each of the 50 repeats of the tenfold 
cross validation consists of a random split of the samples 
into tenfolds, so this approach produces 50 lambda esti-
mates from each of the outer loop training sets. These 
repeated lambda estimates were assessed for stability (the 
95% confidence interval of each training set lambda esti-
mate was less than 15% of the mean for the 50 repeats), 
and the average of the lambda estimates from the inner 
loop cross validations was used to build a Lasso regres-
sion model in each of the outer loop training sets, which 
was then used to predict each held-out test sample.

https://cran.r-project.org/web/packages/qpcR/index.html
https://cran.r-project.org/web/packages/qpcR/index.html
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More stringent regularisation of the regression models 
(additive penalization)
In addition to optimizing the Lasso regression model reg-
ularization at the level that produced the minimum cross 
validated prediction error (lambda.min), we repeated the 
modelling using more stringent regularization to reduce 
model complexity [32].

Stabilised nested cross validation (3‑stage)
To stabilise variable selection, we extended the method 
utilised by Rosenburg et  al. [33] for high throughput 
biological data, which is a relaxed version of the “soft” 
method proposed by Bach [34]. This was done by utilis-
ing an incremental step down approach that is concep-
tually similar to the percentile-lasso method proposed by 
Roberts and Nowak [35]. However, whereas the Roberts 
and Nowak [35] method is a variant of additive penali-
sation, which optimises the lambda penalty for the lasso 
regression from the range of lambda values generated by 
repeated k-fold cross validation, our method identifies an 
optimal cut-off value for the percent frequency of varia-
ble selection across repeated k-fold cross validations, and 
across the training sets. Our method thus stabilises the 
variable selection against the random fold assignments 
within each training set, and the sample variance across 
the training sets.

Our novel variant of the Bach [34] method, named Sta-
VarSel (for Stable Variable Selection), involved testing a 
range of percent cut-offs by an incremental step-down 
procedure. At each step the miR-ratios that were selected 
at or above the cut-off frequency were included in a mul-
tivariate logistic regression model which was used to 
make predictions in the inner loop. The final set of miR-
ratios, derived at the cut-off frequency that produced the 
lowest prediction error in the inner loop, was used to 
build a regression model in each outer loop training set, 
and each model was then used to predict the held-out 
test sample that was excluded from the model building 
process. A flow diagram of the 3-stage nested cross vali-
dation scheme is shown in Fig. 1. Details of the miRNA 
ratios that were selected by lasso regression from the 
cross validation inner loop are in Additional file 3.

Sensitivity and specificity estimates
We assessed the outer loop predictions using Receiver 
Operating Characteristic (ROC) curve analysis, with 
2000 bootstrap samples to estimate 95% confidence 
intervals for the sensitivity and specificity at each thresh-
old level [36].

Selection of house keeping genes
For normalisation of the miRNAs we selected 15 miRNAs 
as House Keeping Genes using the following criteria: 

(i) they were expressed in all samples and at high levels 
(median Ct < 30); (ii) they were not statistically different 
in tissue comparisons (Mann–Whitney U test, p > 0.1); 
(iii) they were not highly variable (coefficient of varia-
tion < 2 × standard deviation) and did not contain outli-
ers (samples with levels not within fivefold of the mean); 
and (iv) they were correlated at r > 0.7 with the geometric 
mean of the house keeping genes. The values for these 
selection criteria for each of the 15 House Keeping Gene 
miRNAs, plus mature nucleic acid sequences and Acces-
sion numbers, are presented in Additional file 4.

Determination of differential expression
The relative levels of the miRNAs were determined using 
the formula 2(40−Ct), and were normalized using the geo-
metric mean of the relative levels of the 15 House Keep-
ing Genes.

The normalised miRNAs were pre-filtered using the 
following criteria: (1) at least 50% of samples amplified in 
one of the comparison groups, (2) the coefficient of vari-
ation was less than 200%, and (3) differential expression 
was greater than 1.3 fold. Mann–Whitney U tests were 
then used to determine which miRNAs were differen-
tially expressed, and the False Discovery Rate was esti-
mated using the method of Storey [37].

Results
Of the 80 RNA samples profiled on OpenArray™, one 
sample failed to amplify, and data import failed for one 
other sample. Therefore, the miRNA data available for 
biomarker discovery was derived from 19 controls, 20 
patients with gastroesophageal reflux disease induced 
ulcerative oesophagitis, and 39 patients with p16 positive 
OPSCC (27 with confirmed HPV, 12 with tissue unavail-
able for HPV PCR) Table 1.

In order to discover miRNA ratios that can discrimi-
nate controls and patients with GORD and ulcerative 
oesophagitis from patients with OPSCC, we utilized 
lasso regression in a standard nested 2-stage cross valida-
tion. This standard approach produced a multi miR-ratio 
model with poor predictive capacity for the held-out 
samples (Fig.  2a). We subsequently applied additive 
penalization [38] to the analysis but this did not improve 
the capacity of the resultant lasso regression model to 
predict the held-out samples (Fig. 2b). We consequently 
developed a stable variable selection approach that we 
named StaVarSel (for Stable Variable Selection). StaVar-
Sel is a novel extension of the work of Bach [34] and oth-
ers [33–35]. This approach produced a regression model 
containing 11-miR-ratios (Fig.  2c, Table  2, Additional 
files 5, 6) with potentially useful capacity. We investigated 
the potential clinical utility of this model by examining 
the trade-off between the sensitivity and specificity at 



Page 6 of 12Mayne et al. J Transl Med          (2020) 18:280 

Fig. 1 Nested cross validation scheme with stable variable selection (StaVarSel). In the inner loop the level of regularisation (lambda) for the 
regression model was optimised via repeated tenfold cross validation. For the StaVarSel, the miR-ratios derived from applying lasso regression with 
the optimised lambda to each training set were collated, ranked according to frequency of selection, and then subjected to stepwise selection at 
percentile cut-offs to determine the optimum model with the least prediction error. The stable miR-ratios thus selected from the inner loop cross 
validation were then used to build regression models in the cross validation outer loop and make predictions of the held-out samples
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different threshold levels from a ROC curve analysis with 
bootstrapped confidence intervals (Fig. 3a, b). When giv-
ing equal weight to sensitivity and specificity to deter-
mine the model threshold with the maximum predictive 
capacity (Youdan index) the 11-miR-ratio regression 
model detected OPSCCs with a sensitivity of 90% (95% 
CI 79–97%) at a specificity of 79% (95% CI 67–92%). With 
a focus on minimising false positives, the 11-miR-ratio 
model achieved a specificity of 97% (95% CI 92–100%), 
and a sensitivity of 54% (95% CI 38–69%).

In order to determine how likely it was to obtain the 
observed classification performance of the 11-miR-
ratio model by chance, we randomly permuted the sam-
ple labels 2000 times in order to estimate the empirical 
cumulative distribution of the cross validated classifica-
tion error under the null hypothesis [39]. The maximum 
cross validated accuracy achieved from the permutations 
was 63%. At the threshold corresponding to the Youdan 
index the non-permuted cross validated accuracy was 
83%. This suggests that the estimated cross validated pre-
diction accuracy of the 11-miR-ratio model was not due 
to chance alone.

We also investigated whether any of the miR-ratios 
in the model contained individual miRNAs that were 
significantly differentially expressed when normalised 

with house keeping gene miRNAs. For this differential 
expression analysis we estimated a false discovery rate 
of 18%. All 11 miR-ratios contained at least one differen-
tially expressed house-keeping gene normalised miRNA 
(details in Additional files 4, 7, 8, 9, 10).

Discussion
The findings from this study suggest that the serum small 
extracellular vesicle derived 11-miRNA-ratio signature 
may be useful for detecting HPV + OPSCCs. Biomarker 
discovery studies have historically utilised a single split 
of patient samples into a discovery cohort and a valida-
tion cohort, but it is now known that this is not the most 
effective use of valuable samples. This is because the 
development of a predictive model with this approach 
uses only part (e.g. 50%) of the dataset, so there is the 
possibility that information about the data will be missed, 
which can result in bias. Furthermore, a single split of the 
data may not be able to generate an equitable distribu-
tion of all biological or clinical parameters [40]. These 
issues can result in overfitting and poor performance in 
either the validation cohort or in subsequent independ-
ent cohorts. Cross validation can reduce these effects by 
training models on many subsets that contain a large pro-
portion of the data, to reduce bias, and then by testing 

Table 1 Clinicopathologic characteristics of the patients included in this analysis

**There were no significant differences in median age between controls, patients with GORD, and patients with OPSCC (Kruskal–Wallis test, p = 0.75)

Characteristic Controls (n = 19) GORD (n = 20) OPSCCs (n = 39)

Median age, years (range) ** 60 (50–69) 56 (39–86) 58 (47–74)

Sex

 Male 19 20 36

 Female 0 0 3

Smoking

 Never smoked – – 20

 Smoked – – 19

Overall stage (AJCC 7)

 Stage III 3

 Stage IVa 35

 Stage IVb 1

T-stage

 T1 – – 10

 T2 – – 14

 T3 – – 9

 T4 – – 6

Lymph node metastasis

 N0 – – 2

 N1-N2 – – 37

Cancer location

 Tonsil – – 26

 Base of tongue – – 13
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model performance against held out data. However, with 
cross validation the model that is selected by lasso regres-
sion can differ in each training set [41]. Various methods 
have therefore been proposed to reduce this variability 
that involve either increasing the penalisation for the 
lasso (additive penalisation) to reduce the model com-
plexity, or stabilising the variable selection by eliminating 
infrequently selected variables.

In this current study increased penalisation of the 
lasso regression did not improve the cross validated 

predictive capacity of the model [38]. A potential 
explanation for this is that the additive penalisation 
may have resulted in informative miRNA ratios being 
removed from the model, and in excessive shrinkage of 
the regression coefficients. The StaVarSel method cir-
cumvents these issues by selecting a subset of the most 
frequently selected miRNAs. The use of StaVarSel pro-
duced an 11 miRNA-ratio regression model with 90% 
sensitivity and 79% specificity using a high accuracy 

a

c

b

Fig. 2 ROC curves with 95% confidence intervals for sensitivity and specificity at each threshold level. a Standard nested 2-stage cross validation 
method (optimized lambda lasso regression). b Nested 2-stage cross validation with additive penalization (one-standard-error rule). c Stabilized 
percentile lasso nested 3-stage cross validation method (11 miR-ratio logistic regression model)
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model threshold, and 54% sensitivity and 97% specific-
ity using a high specificity model threshold.

Many cancers are associated with a background of 
chronic inflammation [42]. Patients with GORD and 
ulcerative esophagitis (a benign inflammatory disease) 
were included, in order to select against biomarkers 
associated with non-cancer specific inflammation [31]. 
This group of patients is associated with inflamed squa-
mous oesophageal epithelium as is the squamous epi-
thelium in HPV associated OPSCC. We have previously 

demonstrated that chronic inflammatory conditions are 
associated with miRNA changes compared to healthy 
controls. miRNAs are potent regulators of immune cell 
functions involved in inflammatory disease and can-
cer [43]. This is a major strength of this study to include 
an inflammatory non-cancer group as well as a control 
group. Other strengths include incorporating patients 
with HPV associated OPSCC from three different major 
head and neck cancer centres, exclusion of patients with 
concurrent cancers, and the use of serum, rather than 
plasma, for miRNA profiling [26].

The main limitation of this study is the focus on the 
advanced stages (AJCC 7th edition) of HPV associated 
OPSCC. This is in part due to the later presentation of 
patients with OPSCC. Future studies need to test the 
ability of miRNA ratio model to detect early stage HPV 
associated OPSCC.

Currently, there is no detection test available for pri-
mary care physicians to use for patients at risk of HPV 
associated OPSCC. Usually these patients have non-spe-
cific symptoms of a sore throat, or a lump in the throat 
or neck. These symptoms are not specific for cancer and 
may be mistakenly diagnosed as infectious or inflamma-
tory. Consequently, some patients are not diagnosed as 
having HPV associated OPSCC until the cancer is at a 
more advanced stage. Therefore, a high specificity blood-
based biomarker could provide a non-invasive test that 
could triage patients with HPV associated OPSCC in the 
primary care setting to receive prompt specialist care.

Table 2 miRNAs present in the 11 miR-ratios model

Each row in the table lists the two miRs present in each miR-ratio. The bold 
highlighted miRNAs were differentially expressed when normalized with 
selected house keeping genes

MiRNA‑ratio Denominator miRNA 
(miRBase)

Numerator 
miRNA 
(miRBase)

1 hsa-miR-206 hsa‑miR‑494‑3p
2 U6 snRNA hsa‑miR‑150‑5p
3 hsa-miR-532-3p hsa‑miR‑574‑3p
4 hsa‑miR‑125a‑5p hsa-miR-193b-3p

5 hsa‑miR‑1274b hsa‑miR‑27a‑3p
6 hsa‑miR‑494‑3p hsa-miR-150-5p

7 hsa-miR-193a-5p U6 snRNA
8 hsa‑miR‑27a‑3p hsa-miR-93-5p

9 ath‑miR159a hsa-miR-152-3p

10 ath‑miR159a hsa‑miR‑494‑3p
11 hsa-miR-375-3p hsa‑miR‑483‑5p

a b

Fig. 3 a cross validated sensitivity vs. specificity estimates from ROC curve analysis using the “stable” 11 miR-ratio multivariate logistic regression 
model. b cross validated sensitivity (red) and specificity (blue) lower bound estimates at increasing threshold levels using the “stable” 11 miR-ratio 
model
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The majority of studies examining the role of miRNAs 
in head and neck cancer have examined their potential 
role in pathogenesis or prognosis using tissue specimens 
[44]. Examining the tumor specimen for novel miRNAs 
is potentially useful for prognosis and treatment, but it 
does not address the issue of improved detection of head 
and neck cancer [45]. Few studies have investigated the 
potential role of circulating miRNAs in the detection of 
head and neck cancer and none to date have been pub-
lished for HPV associated OPSCC, the most rapidly 
growing head and neck cancer subtype in Australia [2].

Another potential area of benefit for a blood-based 
biomarker is as an adjunct test for the surveillance post 
treatment period and detection of cancer recurrences. 
Although HPV associated oropharyngeal cancers have 
a relatively good prognosis, 20–25% of patients develop 
recurrent disease within 5  years of treatment [46]. Fol-
lowing treatment with curative intent for HPV associated 
OPSCC, patients are followed up in a clinical surveil-
lance program for signs of recurrence, and to manage 
post-treatment complications. The primary aim of sur-
veillance is to detect recurrences at an early stage and 
therefore increase the likelihood of cure with salvage 
therapy [47]. However, early detection of residual HPV 
associated OPSCC following treatment can be clinically 
difficult. Positron emission tomography with 2-deoxy-2-
[fluorine-18]fluoro- d-glucose integrated with computed 
tomography (PET-CT), when available, is the preferred 
imaging modality for assessment of treatment response 
[48], and is utilised in surveillance to aid in the detec-
tion of OPSCC recurrences at local, regional and distant 
sites. However, PET-CT has limited spatial resolution, 
and tumors or lymph nodes smaller than approximately 
1 cm cannot be accurately detected [49, 50]. This limits 
the sensitivity for detecting small recurrences with PET-
CT. In addition, the interpretation of PET-CT follow-
ing treatment is challenging because treatment-related 
inflammation and oedema are common causes of false 
positive tracer uptake [51, 52], which is indistinguish-
able from residual OPSCC, and can result in false posi-
tives. PET-CT is therefore not able to be used earlier 
than 12 weeks post therapy. We didn’t address the issue 
of post treatment changes in the miRNA profiling panel 
in this current study. However, these issues could poten-
tially be addressed by the use of a non-invasive blood-
based molecular biomarker with high specificity. At a 
high specificity model threshold the 11-miR-ratio bio-
marker panel discovered in this current study was able 
to differentiate HPV associated OPSCCs from control 
patients and patients with GORD (a benign inflamma-
tory disease) with a cross validated specificity of 97%, at a 
sensitivity of 54%. The 11-miR-ratio biomarker therefore 
has the potential to non-invasively detect false positives 

that result from the use of PET-CT in post-therapy 
surveillance.

The 11-miR-ratio biomarker panel also has the poten-
tial to detect recurrences earlier than is currently pos-
sible. Currently there are no effective methods for 
detecting residual cancers within the first 6 to 12 weeks 
following treatment. In the most recent study investigat-
ing the use of PET/CTs for surveillance of HPV associ-
ated OPSCCs (i.e. when there was no clinical suspicion 
of disease recurrence), the positive predictive value was 
only 13.4% [53]. However, evidence suggests that circu-
lating biomarkers have the potential for detecting early 
recurrences. Ahn et al. [54] observed a median lead time 
of 4.4 months from when HPV16 DNA was detected in 
plasma using quantitative PCR, to the time of clinical 
detection of HPV associated tumor recurrence. Although 
plasma HPV DNA has the potential to become a highly 
specific biomarker for HPV associated OPSCCs [55, 56] 
it is not applicable for HPV negative OPSCCs or other 
mucosal head and neck cancers [55, 56]. If a biomarker 
is able to detect subclinical recurrent disease earlier 
then it could potentially be salvaged with surgery, radi-
otherapy or systemic therapies. However, it is unknown 
if this translates into increased overall survival rates as 
this miRNA profiling panel has not been tested directly 
against PET-CT and we know from clinical practice that 
17% of patients with an incomplete response on PET-CT 
at 12  weeks post chemo-radiotherapy can achieve com-
plete response to treatment if the PET-CT is performed 
at 16 weeks post-treatment [57].

Conclusions
While the blood-based biomarker studies in HPV asso-
ciated OPSCCs, including this current study, are rela-
tively small, they have produced encouraging results, 
and should motivate the undertaking of larger stud-
ies. We have developed a stabilised biomarker selection 
approach, StaVarSel, using lasso regression, which ena-
bled us to discover a panel of miRNA ratios in blood with 
levels of cross validated specificity and sensitivity that 
could potentially be useful for detecting HPV associated 
OPSCCs. The results of this study suggest that it will be 
worthwhile using this approach to discover molecular 
biomarkers for HPV negative OPSCCs, as well as other 
mucosal head and neck cancers.
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