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Abstract. Pancreatic ductal adenocarcinoma (PDAC) is 
a malignant tumor with a specific tumor immune micro‑
environment (TIME). Therefore, investigating prognostic 
immune‑related genes (IRGs) that are closely associated 
with TIME to predict PDAC clinical outcomes is neces‑
sary. In the present study, 459 samples of PDAC from the 
Genotype‑Tissue Expression database, The Cancer Genome 
Atlas (TCGA), International Cancer Genome Consortium 
(ICGC) and Gene Expression Omnibus (GEO) were included 
and a survival‑associated module was identified using 
weighted gene co‑expression network analysis. Based on the 
Cox regression analysis and least absolute shrinkage and 
selection operator analysis, four IRGs (2'‑5'‑oligoadenylate 
synthetase 1, MET proto‑oncogene, receptor tyrosine kinase, 
interleukin 1 receptor type 2 and interleukin 20 receptor 
subunit β) were included in the prognostic model to calculate 
the risk score (RS), and patients with PDAC were divided into 
high‑ and low‑RS groups. Kaplan‑Meier survival and receiver 
operating characteristic curve analyses demonstrated that 
the low‑RS group had significantly improved survival condi‑
tions compared with the high‑RS group in TCGA training 
set. The prognostic function of the model was also validated 
using ICGC and GEO cohorts. To investigate the mechanism 
of different overall survival between the high‑ and low‑RS 
groups, the present study included Estimation of Stromal and 
Immune Cells in Malignant Tumor Tissues Using Expression 
Data and Cell Type Identification by Estimating Relative 

Subset of Known RNA Transcripts algorithms to investigate 
the state of the tumor microenvironment and immune infiltra‑
tion inpatients in the cohort from TCGA. In summary, four 
genes associated with the TIME of PDAC were identified, 
which may provide a reference for clinical treatment.

Introduction

In 2010, it has been reported that pancreatic ductal adenocar‑
cinoma (PDAC) is a gastrointestinal malignancy with a 5‑year 
survival rate <5% in the United States, giving patients with 
pancreatic cancer the poorest prognosis among patients with 
malignant cancer types (1). PDAC is characterized by rapid 
progression and metastasis  (2), and poses a great threat to 
human health. At present, TNM staging (3) is regarded as a 
convincing cancer staging system to guide clinical treatment 
and offer a method for predicting the prognosis of patients 
with cancer (4). However, the clinical disadvantages of TNM 
staging are increasingly obvious when further investigations 
are performed (5). Certain clinicopathological features, such 
as TNM stage, lymph node involvement and differentiation, 
have been demonstrated to be independent prognostic factors 
in patients with pancreatic cancer  (6). Nonetheless, the 
majority of these prognostic markers are verified after surgery. 
Therefore, it is crucial to identify useful predictive factors for 
PDAC before surgery. With the development of human gene 
sequencing technology, gene‑based biomarkers have been 
markedly improved, which provides an opportunity to investi‑
gate effective biomarkers for guiding diagnosis, treatment and 
evaluation of pancreatic cancer prognosis (7).

Emerging evidence has elucidated that local immune 
suppression of the tumor microenvironment (TME) exhibits 
a strong association with cancer growth, metastasis and even 
tumor immune escape (8‑10). Immune cells do not merely act 
as tumor killers, but can also function as an activator of tumors. 
They are capable of disturbing molecular signals and exert vital 
roles in cancer biology, including those associated with tumor 
growth, invasion and metastasis (11). However, certain types of 
cancer cells are able to avoid being detected and escape immune 
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attack in order to promote tumor growth  (12). At present, 
although targeted therapies and immunotherapies are effective 
for numerous solid malignancies, such as metastatic melanoma 
and lung cancer, few clinical benefits can be observed in 
pancreatic cancer (13,14). Therefore, the latent prognostic value 
of immune genes can be illustrated through further investiga‑
tion of the association between immune genes and survival. In 
addition, this may aid the identification of novel biomarkers. 
Ongoing studies that intend to target the stroma and the immune 
microenvironment either alone or in combination are expected 
to present more sustained treatment outcomes (15,16). A detailed 
description of the TME integrating tumor and host‑related 
factors may result in the verification of novel biomarkers for a 
more targeted method for immunotherapy, and other combina‑
tion therapies to fix the immunosuppressive mechanisms in the 
microenvironment of pancreatic cancer.

Immune scores and analyses derived from the Estimation 
of Stromal and Immune Cells in Malignant Tumor Tissues 
Using Expression Data (ESTIMATE) algorithm can contribute 
to the quantification of the immune and stromal components 
in a tumor (17), and the Cell Type Identification by Estimating 
Relative Subset of Known RNA Transcripts (CIBERSORT) 
algorithm is an approach for describing immune cell 
components of tissues from their immune gene expression 
profiles (18). Both can be used to predict the immune micro‑
environment of pancreatic cancer. Considering the association 
between immunity and cancer, the present study was designed 
to identify immune‑gene biomarkers for the prediction of 
the prognosis of PDAC, and to examine the differences in 
the immune microenvironment between high‑ and low‑risk 
patients with pancreatic cancer.

Materials and methods

Acquisition of gene expression profiles. Gene expression profiles 
for use in the present study were downloaded from four databases: 
Genotype‑Tissue Expression  (19) via UCSC Xena (GTEx; 
https://toil.xenahubs.net/download/gtex_RSEM_gene_fpkm.gz), 
The Cancer Genome Atlas (20) (TCGA; https://portal.gdc.cancer.
gov/repository), International Cancer Genome Consortium (21) 
(ICGC; https://dcc.icgc.org/releases/current/Projects/PACA‑AU) 
and Gene Expression Omnibus (22) (GEO; http://www.ncbi.
nlm.nih.gov/geo). The fragments per kilobase of transcript per 
million mapped reads (FPKM) data of normal pancreatic tissues 
were downloaded from the GTEx‑Pancreas database (Full meta‑
data), and the RNA‑sequencing FPKM data of pancreatic tumor 
samples were obtained from the publicly available TCGA‑PAAD 
database. Additionally, normalized high‑throughput sequencing 
and microarray data of mRNAs (21,22) were downloaded from 
the ICGC‑PACA‑AU database and GEO (GSE62452). Cases with 
complete clinical information in the pancreatic cancer cohort 
were included. Furthermore, patients with an overall survival 
≤60 days were excluded, as these patients may have succumbed 
to factors not associated with the tumor, such as hemorrhage 
and severe infection (23). As samples from GTEx obtained from 
normal pancreatic tissue samples, there is no disease‑related 
information. Eventually, a total of 459 samples obtained from 
GTEx (n=156), TCGA (Table SI; n=158), ICGC (Table SII; n=79) 
and GEO (Table SIII; n=66) databases were extracted for further 
analysis.

Weighted gene co‑expression network analysis (WGCNA) 
of immune‑related genes(IRGs). The limma package 
(version 3.44.3; http://www.sthda.com/english/wiki/survminer
‑r‑package‑survival‑data‑analysis‑and‑visualization) was used 
to analyze the differentially expressed mRNAs in samples 
between the GTEx and TCGA databases, and the gene set was 
intersected with 2,214 IRGs, such as those for cytokines and 
cytokine receptors, downloaded from the ImmPort database 
(https://immport.niaid.nih.gov) (24). At the same time, PDAC 
samples from TCGA were obtained for WGCNA to obtain gene 
modules significantly associated with the survival time and 
status of the patient. Furthermore, genes with potential prog‑
nostic value in the module were extracted via univariate Cox 
regression analysis (P<0.01).

Construction of prognostic prediction model. In order to 
screen IRGs with the most predictive efficacy in univariate 
Cox regression analysis (survival package, version 2.41‑3; 
https://cran.r‑project.org/web/packages/survival/index.html), 
a least absolute shrinkage and selection operator (LASSO) 
analysis (glmnet package, version 3.0‑1; https://cran.r‑project.
org/web/packages/glmnet/index.html) was adopted to deal 
with over‑fitting of the model. Subsequently, a prognostic 
model was constructed using the IRGs obtained from the 
multivariate regression analysis. The risk score (RS) of each 
patient was calculated by multiplying the expression level 
of each IRG with its corresponding regression coefficients. 
The following computational algorithm was used for this 
analysis  (25‑27): RS=βgene(1) x exprgene(1) + βgene(2) x 
exprgene(2) + … + βgene(n) x exprgene(n). ‘β’ is the regres‑
sion coefficient generated from univariate Cox analysis of 
IRGs, and ‘exprgene’ refers to the expression of IRGs in the 
sample. The optimal cut‑off point of risk value that was most 
relevant to survival was determined using the surv_cutpoint 
function in the survminer package (version 0.4.3; http://www.
sthda.com/english/wiki/survminer‑r‑package‑survival‑data
‑analysis‑and‑visualization), which was the standard to sepa‑
rate PDAC samples into high‑and low‑RS subgroups.

Comparison of the immunological microenvironment between 
high‑ and low‑RS groups. The R package ESTIMATE 
(version 2.0.0; https://bioinformatics.mdanderson.org/esti‑
mate/rpackage.html) was used to calculate the tumor purity, 
infiltrating stromal cells and immune cell levels that can 
reflect the overall situation of TME in the TCGA pancreatic 
cancer cohort (11). Additionally, the R package GSEABase 
(http://www.bioconductor.org/packages/release/bioc/html 
/GSEABase.html) and GSVA (http://www.bioconductor.
org/packages/release/bioc/html/GSVA.html) were used to 
calculate the enrichment of the high‑RS group and the low‑RS 
group in 29 immune function‑associated gene sets. The 
ssGSEA score (28) can mirror the standard of immune‑asso‑
ciated cells, functions and signaling pathways in each TCGA 
pancreatic cancer sample in order to elucidate the differences 
between high‑ and low‑RS groups in terms of the TME.

Comparison of immune cell subtypes between high‑ and 
low‑RS groups. CIBERSORT is a bioinformatics method used 
to evaluate immune cell composition by transformation of 
standardized gene expression (29). Based on the CIBERSORT 
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package (version 1.03; http://cibersort.stanford.edu/), the mRNA 
expression matrix of patients from TCGA, corrected by the 
zoom function in the limma package, was transformed into 22 
subtypes of immune cells, which quantify the cellular composi‑
tion of the immune response (18). After removing samples with 
P>0.05 from the CIBERSORT analysis results, a Mann‑Whitney 
U test was performed to compare the differences in immune cell 
subtypes between high‑ and low‑RS groups. The association 
between immune cells and modeling IGRs was also analyzed. 

Enrichment analysis of upregulated genes in the high‑RS group. 
The R package Clusterprofiler (version 3.16.1; http://www.
bioconductor.org/packages/release/bioc/html/clusterProfiler.
html) was used to analyze the differentially expressed genes in 
high‑and low‑RS groups. The Gene Ontology (http://geneon‑
tology.org/) analysis revealed the enriched, highly expressed 
genes in the high‑RS group with regards to cellular components, 
molecular functions and biological processes. Simultaneously, 
enrichment analysis using the Kyoto Encyclopedia of Genes 
and Genomes database (https://www.kegg.jp/) identified which 
biological signaling pathways were enriched in the high‑RS 
group in order to determine the survival status of patients with 
PDAC. An adjusted P<0.05 was selected as the criterion for 
significant entries.

Statistical analysis. The Shapiro‑Wilk normality test was 
used to measure the normality of the variables between 
two groups. The statistical significance of the discrepancy 

between normally distributed variables was calculated via 
unpaired Student's t‑test and the association was estimated 
by Pearson's correlation coefficient. Survival rates were 
measured by the Kaplan‑Meier (KM) method, and the signifi‑
cance of disparity between survival curves was assessed via 
the log‑rank test. Survival predictive accuracy of prognostic 
models was assessed based on a time‑dependent receiver 
operating characteristic curve (ROC) analysis. Univariate 
ANOVA was used to calculate whether the clinical outcome 
(alive, dead with tumor and dead tumor free) was signifi‑
cantly affected by different grades of clinical parameters. 
Mean and standard deviation reflected the central trend and 
discrete trend of age in each clinical outcome. All statistical 
analyses were performed using R software (version 3.6.1; 
https://www.r‑project.org/). P<0.01 was used as the threshold 
of genes considered with prognostic value calculated by 
univariate Cox analysis. P<0.05 was considered to indicate a 
statistically significant difference. 

Results

Identification of survival‑associated modules using WGCNA. 
A total of 554 IRGs were identified to be differentially 
expressed between normal pancreatic tissues and pancreatic 
tumors (Fig. S1A and B). In the WGCNA of TCGA cohort, 
two important parameters, R2 (R2>0.9) and average connec‑
tivity were fully considered, hence β=4 was selected as the 
soft‑thresholding power (Fig. 1A). According to the weighted 

Figure 1. Weighted gene co‑expression network analysis. (A) Scale‑free fit index for soft‑thresholding powers; the left panel shows the scale‑free fit index as a 
function of the soft‑threshold power, the right panel shows the mean connectivity as a function of the soft‑threshold power. (B) Clustering dendrogram of all 
differentially expressed genes. Each module represents a cluster of related genes and was assigned a unique color. (C) Heatmap displaying the correlations and 
differences in the modules associated with OS of patients with pancreatic cancer. Each cell contains the corresponding correlation and P‑value. (D) Scatterplot 
of gene significance for OS_time vs. module membership in the blue module. (E) Scatterplot of gene significance for OS_status vs. module membership in 
the blue module. Both (D) and (E) show a highly significant correlation between gene significance and module membership in the blue module. ME, module 
eigengene; OS, overall survival.
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adjacency matrix constructed by the soft‑thresholding power, 
the differential immune genes in the cohort from TCGA were 
classified into six diverse gene modules (Fig. 1B). The present 
study assessed the association between the module genes 
and characteristics including the survival time and status of 
patients with pancreatic cancer in the cohort from TCGA. 
Based on the correlation coefficient and the P‑value, it was 
revealed that the blue module had the highest module signifi‑
cance (OS_time: cor=‑0.38, P=1x10‑7; OS_status: cor=0.26, 
P=4x10‑4; Fig. 1C) and gene significance (OS_time: cor=0.61, 
P=2.9e‑13; OS_status: cor=0.45, P=3.6e‑7; Fig. 1D and E). 
Therefore, the blue module, which contained 117 IRGs, was 
selected for further analysis.

Construction of the prognostic model based on IRGs. Based on 
univariate Cox regression analysis of TCGA cohort, 42 genes 
with significant prognostic value were further extracted from 
the blue module (P<0.01; Fig. 2A). LASSO regression analysis 
was applied to avoid over‑simulation of the model by adjusting 
the complexity of the classifier, and IRGs that correlated highly 
with one another were deleted (Fig. 2B and C). In the case of 
dimensionality reduction of the preliminary results using the 
LASSO method, the genes and their coefficients involved in the 
model were determined by multivariate Cox regression anal‑
ysis. The coefficients of four IRGs are presented in Table SIV. 

Ultimately, four optimal IRGs [2'‑5'‑oligoadenylate synthe‑
tase 1 (OAS1), MET proto‑oncogene, receptor tyrosine kinase 
(MET), interleukin 1 receptor type 2 (IL1R2) and interleukin 
20 receptor subunit β (IL20RB)] were included in the prog‑
nostic model to calculate the RS, and the formula was as 
follows: RS=0.221350 x OAS1 + 0.515099 x MET + 0.1793
51 x IL1R2 + 0.141478 x  IL20RB. The cut‑off value was 
determined to be 4.15 using the surv_cutpoint function in the 
survminer R package, and the patients were divided into high‑ 
and low‑RS groups. In the TCGA training set, the KM survival 
curve analysis demonstrated that the low‑RS group had 
significantly improved survival compared with the high‑RS 
group (P=3.88e‑05; Fig. 3A), and the ROC curve revealed that 
the model had a good predictive function for the prognosis of 
patients with pancreatic cancer (ROC 1‑year=0.738; Fig. 3B; 
ROC 2‑years =0.691; Fig. 3C). Additionally, it was revealed 
that the RS could be used as an independent predictor [hazard 
ratio (HR), 1.958; P<0.001; Fig. 4] for the prognosis of patients 
with pancreatic cancer in the training cohort by multivariate 
regression analysis including RS, sex, age, TNM stage and 
tumor stage.

Verification of the model for survival prediction in ICGC and 
GEO cohorts. In order to confirm the robustness of the prog‑
nostic classifier used in the present study, the duplicate formula 

Figure 2. Construction of the IRG prognostic classifier using univariate Cox regression analysis and LASSO regression analysis. (A) Univariate Cox regression 
analysis of The Cancer Genome Atlas training cohort for the identification of IRGs with significant prognostic value. (B) LASSO coefficient profiles of IRGs 
with significant prognostic value in the blue module. (C) Partial likelihood deviation map. IRG, immune‑related gene; LASSO, least absolute shrinkage and 
selection operator.
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for RS and cut‑off value were used for the analysis of the ICGC 
and GEO validation sets. In each cohort, the 79 patients in the 
ICGC cohort and 66 patients in the GSE62452 dataset were 
divided into high‑ and low‑RS groups, respectively. The KM 
survival curves (P=0.03692; Fig. 3D and G) and ROC curves 
(Fig. 3E, F, H and I) validated the reliability of the prognostic 
model used in the present study. Among them, although 
RS was not effective in predicting the 1‑year survival rate 
(P>0.05; data not shown) of patients with pancreatic cancer in 
the GSE62452 dataset, it exerted a preferable effect on calcu‑
lating the 3‑year survival rate (Fig. 3G and I). Furthermore, 
to emphasize the superiority of the RS in predicting overall 
survival of patients with PDAC, time‑dependent ROC curve 
analysis was used to compare the predictive effect of RS with 

classic disease classification parameters, and this revealed that 
RS was the best index in three independent databases (Fig. 3). 
The RS distribution, survival status and risk gene expression 
in the training cohort and validation cohort are presented in 
Fig. S2A‑I.

Different function of immune infiltration between high‑ and 
low‑RS group. The analysis results of the ESTIMATE 
algorithm revealed the difference of immune status between 
high‑ and low‑RS groups in the cohort from TCGA (Fig. 5A‑D). 
ssGSEA analysis revealed that the high‑RS group had lower 
enrichment levels in multiple positively regulated immunity 
gene sets (‘Cytolytic activity’ and ‘Inflammation‑promoting’) 
than the low‑RS group (Fig. 5A), which suggested that various 

Figure 3. KM survival curves for overall survival and time‑dependent ROC curves for the training and validating cohorts. (A) KM survival curves for overall 
survival in TCGA training cohort. (B) ROC curve with AUC at 1 year in the training cohort. (C) ROC curve with AUC at 2 years in the training cohort. (D) KM 
survival curves for overall survival in the ICGC cohort. (E) ROC curve with AUC at 1 year in the ICGC cohort. (F) ROC curve with AUC at 2 years in the 
ICGC cohort. (G) KM survival curves for overall survival in the GEO cohort. (H) ROC curve with AUC at 2 years in the GEO cohort. (I) ROC curve with AUC 
at 3 years in the GEO cohort. ROC, receiver operator characteristic; AUC, area under the curve; RS, risk score; T, tumor; N, node; M, metastasis; TCGA, The 
Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; GEO, Gene Expression Omnibus; KM, Kaplan‑Meier.
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immunity‑associated biological processes and mechanisms 
were activated in both the aforementioned two groups, and 
increased immune activity may help patients with pancreatic 
cancer achieve improved outcomes. Notably, the high‑RS 
group had a higher level of tumor purity and lower immune 
score than the low‑RS group (P<0.05; Fig. 5B and D). The 
high‑RS group also had a lower ESTIMATE score which 
reflected the comprehensive level of tumor purity, immune 
score and stromal score (P<0.05; Fig. 5C).

Different proportions of immune cell subsets between 
high‑ and low‑RS groups. The CIBERSORT algorithm was 
used to evaluate the composition of 22 immune cell types in 
TCGA cohort. It was revealed that the resting CD4 memory 
cells occupied the highest proportion among all cells, while 
activated CD4 memory cells accounted for a small proportion 
(Fig. 6A). This suggested that the absence of immune cell 
components with immune activation functions in the immune 
microenvironment may serve an important role in acceler‑
ating the development of pancreatic cancer. By comparing 
the composition of immune cells in the high‑RS group and 
the low‑RS group of TCGA cohort, it was revealed that the 
high‑RS group had a lower infiltration of CD8 T cells and a 
higher composition of M0 macrophages (Fig. 6B). Finally, 
the present study analyzed the correlation between the gene 
expression of four marker genes in the TCGA cohort and the 
composition of 22 immune cells. The results revealed that 
the expression levels of OAS1, MET and IL20RB genes were 
negatively correlated with the composition of M2macrophages 
(Fig. 7A, B and D; P<0.01). With the increase of CD8 T cells, 
the gene expression levels of MET and IL1R2 were decreased 
(Fig. 7B and C; P<0.01), which suggested that CD8 T cells may 
repress the activation of the oncogenes observed in pancreatic 
cancer.

Enrichment analysis of upregulated genes in the high‑RS 
group compared with the low‑RS group. The results revealed 
that the upregulated genes were associated with 8 biological 
processes and 7 molecular functions, including ‘defense 
response to bacterium’, ‘defense response to other organisms’ 
and ‘receptor ligand activity’(Fig.  8A). Through pathway 
analyses, the present study revealed that upregulated genes 

were associated with‘cytokine‑cytokine receptor interaction’ 
and ‘JAK‑STAT signaling pathway’ (Fig. 8B).

Discussion

As a highly malignant tumor, over half of all PDAC cases 
are diagnosed at an advanced stage for which mortality rates 
closely parallel incidence rates. PDAC is also the fourth leading 
cause for cancer‑associated mortality worldwide (30,31). With 
characteristics of insidious onset and early metastasis, ~80% 
of patients are diagnosed at a late stage of disease (32). At 
present, tumor immunotherapy results in marked effects in 
cancer treatment (33). The impact of the immune microenvi‑
ronment on tumor cells has been demonstrated in numerous 
studies  (34,35). Immunotherapy has emerged as an option 
for pancreatic cancer (36). Wartenberg et al (37) suggested 
that immunophenotypic classification is associated with 
tumor characteristics leading to pancreatic cancer with prog‑
nostic/predictive significance. Considering the significance of 
the immune microenvironment in cancer progression, finding 
immunity‑associated biomarkers to predict the prognosis 
of patients with PDAC is necessary, and may also serve an 
important role in immunotherapy (38).

The present study revealed that a module including 117 
IRGs was associated with pancreatic cancer prognosis using 
WGCNA. In the univariate Cox regression and LASSO anal‑
yses, four IRGs were included in the classifier (OAS1, MET, 
IL1R2 and IL20RB). The model could effectively predict the 
prognosis of patients with PDAC in the TCGA cohort [1‑year 
area under the curve (AUC)=0.738; 2‑years AUC=0.691]. In 
addition, the performance of the model was assessed using 
patients in the ICGC cohort (1‑year AUC=0.702; 2‑years 
AUC=0.638) and GSE62452 (2‑years AUC=0.711; 3‑years 
AUC=0.753). Using multivariate regression analyses, the RS 
of the model was demonstrated to be an independent factor for 
predicting the prognosis of patients with pancreatic cancer in 
the TCGA cohort (HR, 1.958; P<0.001).

The discovery of the following four genes provides guid‑
ance for searching for targeted genes for immunotherapy of 
pancreatic cancer. It has been reported that immune response 
by four IRGs (OAS1, MET, IL1R2 and IL20RB) is associated 
with the prognosis of pancreatic cancer  (39‑42). The OAS 
system is an antiviral signaling pathway induced by interferon 
and OAS genes that are described as interferon‑stimulated 
genes  (43,44). There are three types of OAS proteins in 
humans, OAS1, OAS2 and OAS3. OAS1 has been demon‑
strated to be associated with pancreatic cancer and prostate 
cancer (41,45). Oncolytic virus therapy is a promising treat‑
ment option for pancreatic cancer; however, high expression 
levels of OAS in cell lines are associated with resistance 
to this therapy (46). Therefore, OAS1 could be a potential 
immunotherapy target in pancreatic cancer and a prognostic 
biomarker to identify suitability of patients with pancreatic 
cancer to receive immunotherapy (45,47). The MET receptor, 
with a hepatocyte growth factor receptor ligand, is upregulated 
in several malignancies, including breast, lung and pancreatic 
cancer (48,49). Activation of several intracellular signaling 
pathways that is mediated by MET has led to the emergence of 
diverse cellular hallmarks of cancer, including cell prolifera‑
tion, survival, invasion, migration, metastasis and inhibition 

Figure 4. Multivariate analysis of prognostic factors and overall survival of 
patients with pancreatic cancer in The Cancer Genome Atlas cohort.
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of apoptosis (50‑52). MET may be involved in the malignant 
process of pancreatic cancer, and can serve as a biomarker for 
assessing the prognosis of patients with pancreatic cancer (53). 
IL1R2, as an endogenous inhibitor, can be highly expressed in 
the follicular helper T cells of mice, and the specific marker 
molecules, such as IL1R2, on the surface of tumor infiltrating 
Treg cells in colorectal cancer and non‑small cell lung cancer 
have also been demonstrated to be upregulated  (54,55). 
Furthermore, another study on breast cancer revealed that 
IL1R2 is more abundant in tumor‑infiltrating T cells compared 
with Treg cells or peripheral blood T cells in normal breast 
tissues  (56). In conclusion, IL1R2 is regarded as a nega‑
tive regulatory factor that can be used as a potential target 
for immunotherapy. IL20R, a heterodimeric receptor, is 
composed of two chains, interleukin‑20 receptor subunit α and 
IL20RB (57). IL20RB may affect the IL20 signaling pathway. 
Several studies have demonstrated that IL20RB serves a 
significant role in a number of different types of cancer, 
including breast cancer (58), lung cancer (59), nasopharyngeal 
carcinoma (60) and pancreatic cancer (40). Overall, the results 

of the present study may provide potential mRNA targets for 
immunotherapy and prognostic evaluation to help improve the 
clinical outcomes of pancreatic cancer.

TME serves a vital role in the development of pancreatic 
cancer (61). Additionally, it is the leading cause of chemo‑
therapy resistance in patients with pancreatic cancer, as well 
as poor prognosis (62). TME is a complex integrated system 
comprising cancer cells and other components, such as extra‑
cellular matrix, surrounding blood vessels, inflammatory 
mediators and other non‑tumor cells  (63). The mutational 
landscape of cancer cells can influence the phenotype 
and extent of immune cell infiltration, and more generally 
affect the entire TME (64,65). ESTIMATE is an algorithm 
based on gene expression signatures to estimate immune 
and stromal cells, as well as tumor purity (11). Immune and 
stromal cells have been authenticated as prognostic factors for 
tumors (66,67). The ESTIMATE algorithm has been utilized 
to analyze the large amount of data on glioblastoma (17), 
cholangiocarcinoma (68) and numerous other malignancies, 
while the immune and stromal scores of pancreatic cancer in 

Figure 5. Comparison of immune response profile associated with the immune prognostic model in TCGA cohort. (A) Enrichment levels of immune cell types 
in high‑ and low‑risk score groups of TCGA samples. (B) Distribution of tumor purity in the high‑ and low‑risk groups. (C) Distribution of ESTIMATE scores 
in the high‑ and low‑risk groups. (D) Distribution of immune scores in the high‑ and low‑risk groups. *P<0.05. ESTIMATE, Estimation of Stromal and Immune 
cells in Malignant Tumor tissues using Expression data; TCGA, The Cancer Genome Atlas. 
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Figure 6. Landscape of immune cell infiltration in TCGA cohort. (A) Proportion of 22 immune cell types in the TCGA cohort. Specific 22 immune cell types 
represented by various colors in each sample are shown in a barplot. (B) Comparison of proportions of 22 immune cell types in the low‑ and high‑risk score 
groups. Blue represents the low risk group and red represents the high risk group. NK cells, natural killer cells; TCGA, The Cancer Genome Atlas.

Figure 7. Correlation between the expression levels of four genes included in the classifier and immune cells in samples from The Cancer Genome Atlas cohort 
(P<0.05). (A) OAS1. (B) MET. (C) IL1R2. (D) IL20RB. NK, natural killer; OAS1, 2'‑5'‑oligoadenylate synthetase 1; MET, MET proto‑oncogene, receptor 
tyrosine kinase; IL1R2, interleukin 1 receptor type 2; IL20RB, interleukin 20 receptor subunit β; abs, absolute value.
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prognostic value have not been adequately researched. Based 
on the ESTIMATE package, the present study demonstrated 
the difference in tumor purity and immune activity between 
the high‑ and low‑RS groups. Compared with the high‑RS 
group, the present study revealed that the low‑RS group had 

a higher degree of enrichment in the gene sets reflecting 
positive immune function, such as cytolytic activity and 
inflammation‑promoting, which revealed that immune activity 
had an impact on the survival and prognosis of patients with 
pancreatic cancer.

Figure 8. Enrichment analysis of upregulated genes in the high‑RS group. (A) Gene Ontology enrichment analysis of upregulated genes in the high‑RS group 
compared with the low‑RS group. (B) Kyoto Encyclopedia of Genes and Genomes enrichment analysis of upregulated genes in the high‑RS group compared 
with the low‑RS group. RS, risk score; BP, biological process; MF, molecular function; P.adjust, adjusted P‑value.
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The CIBERSORT algorithm is able to assess 22 types of 
immune cells based on the gene expression data with high 
sensitivity and specificity (18). Several studies have suggested 
that the relative levels of various immune cells, analyzed by 
the CIBERSORT algorithm, could estimate the immune 
cell composition in tumors (69‑71). In the present study, the 
difference in immune infiltration of pancreatic cancer cells 
in TCGA cohorts mainly consisted of macrophage M0 and 
T cells CD8, as determined by the CIBERSORT algorithm. 
In the immune infiltration analysis, the proportion of CD8 
T cells in the high‑RS group was relatively lower compared 
with the low‑RS group. Additionally, the proportion of M0 
macrophages in the high‑RS group was relatively higher than 
low‑RS group. This indicated that an imbalance in the CD8 
T cells and M0 macrophage ratio may lead to a lower survival 
rate in the high‑RS group. Tahkola et al (72) revealed that 
the 5‑year survival rates of the CD8 T cells low‑, medium‑ 
and high‑infiltration groups in pancreatic cancer were 4.2, 
13.4 and 31.5%, respectively. Another study demonstrated 
that an imbalance in the proportion of immune cells was 
closely associated with low survival rate and poor clinical 
outcomes in patients with cancer (73). However, the specific 
effect of these differentially expressed chemotactic factors 
on immune infiltration of pancreatic cancer requires further 
investigation.

To summarize, in the present study, an IRG prognosis 
model of pancreatic cancer was constructed, and the 
effectiveness of the model was verified in the independent 
validation set. The difference in overall survival between 
high‑ and low‑RS groups based on this model may be caused 
by the difference of immune infiltration and TME. The find‑
ings of the present study added certain guidance values to 
the analysis of pancreatic cancer pathogenesis and provide a 
reference for clinical treatment. There were some limitations 
to the present study, and thus, the validity of the conclusions 
should be confirmed by an investigation involving a larger 
number of cases, and further animal studies or cellular 
experiments are required to test the prognostic accuracy of 
the signatures.
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