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Abstract: Atherosclerosis is associated with a chronic local inflammatory process in the arterial
wall. Our previous studies have demonstrated the altered proinflammatory activity of circulating
monocytes in patients with atherosclerosis. Moreover, atherosclerosis progression and monocyte
proinflammatory activity were associated with mitochondrial DNA (mtDNA) mutations in circulat-
ing monocytes. The role of mitochondria in the immune system cells is currently well recognized.
They can act as immunomodulators by releasing molecules associated with bacterial infection. We
hypothesized that atherosclerosis can be associated with changes in the mitochondrial function
of circulating monocytes. To test this hypothesis, we performed live staining of the mitochondria
of CD14+ monocytes from healthy donors and atherosclerosis patients with MitoTracker Orange
CMTMRos dye, which is sensitive to mitochondrial membrane potential. The intensity of such
staining reflects mitochondrial functional activity. We found that parts of monocytes in the primary
culture were characterized by low MitoTracker staining (MitoTracker-low monocytes). Such cells
were morphologically similar to cells with normal staining and able to metabolize 5-aminolevulinic
acid and accumulate the heme precursor protoporphyrin IX (PplX), indicative of partially preserved
mitochondrial function. We assessed the proportion of MitoTracker-low monocytes in the primary
culture for each study subject and compared the results with other parameters, such as monocyte abil-
ity to lipopolysaccharide (LPS)-induced proinflammatory activation and the intima-media thickness
of carotid arteries. We found that the proportion of MitoTracker-low monocytes was associated with
the presence of atherosclerotic plaques. An increased number of such monocytes in the primary cul-
ture was associated with a reduced proinflammatory activation ability of cells. The obtained results
indicate the presence of circulating monocytes with mitochondrial dysfunction and the association of
such cells with chronic inflammation and atherosclerosis development.

Keywords: mitochondrial membrane potential; monocyte; inflammation; MitoTracker Orange
CMTMRos; atherosclerosis

1. Introduction

According to the current understanding, atherosclerosis is associated with local
chronic inflammation in the arterial wall. The role of monocytes/macrophages, key com-
ponents of the innate immune system, in atherosclerosis development is currently well
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understood. However, the origin of macrophages populating the atherosclerotic plaque
remains a matter of debate. These cells may be resident macrophages of the arterial wall
or continuously recruited from the bloodstream and differentiated. In recent years, many
researchers have recognized the primary role of monocytes/macrophages in local inflam-
mation development in the arterial wall [1]. Despite the numerous studies of activated
macrophages from atherosclerotic lesions, mechanisms of inflammation resolution in le-
sions remain to be understood. It is possible that the chronification of inflammation is
dependent on macrophage precursors—circulating blood monocytes.

The two triggering factors of the innate immune response are pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The for-
mer comprise exogenous molecules of bacterial origin that are not present in host cells, such
as lipopolysaccharides (LPSs), which are components of the outer membranes of Gram-
negative bacteria. The latter have an endogenous origin but, under normal circumstances,
are confined in certain cellular compartments, such as mitochondria. Mitochondria retain
some features of the precursor prokaryotic organisms, including autonomous replication,
the presence of prokaryotic phospholipids in the inner membrane (such as cardiolipin), and
circular mitochondrial DNA (mtDNA). Despite the features that make the mitochondria
resemble bacterial cells, under normal conditions, they are not recognized as pathogens
by the host cell. However, under stress conditions, mitochondria can induce a proinflam-
matory response from host immune cells through the activation of the major signaling
pathways of innate immunity: toll-like receptors (TLRs), cytosolic RNA and DNA sensors,
formyl peptide receptors, and inflammasomes [2,3]. Therefore, mitochondria, besides their
vital function of supplying the host cell with ATP, can act as an important component of
the innate immunity modulating the proinflammatory response [4].

In our previous studies, we characterized mtDNA variants detected in circulating
blood cells associated with atherosclerosis. Some of the described variants were associated
with monocytes’ proinflammatory activation ability [5,6]. This allowed hypothesizing that
atherosclerosis is associated with altered mitochondrial function in circulating monocytes
linked to proinflammatory activity. In this work, we aimed to study the mitochondrial func-
tional activity in circulating monocytes from healthy donors and atherosclerosis patients
and reveal the possible associations between the mitochondrial function and proinflamma-
tory activation of innate immune cells.

2. Materials and Methods
2.1. Study Participants

All study participants were free of cardiovascular disease. The extent of asymptomatic
atherosclerosis was assessed using data on intima-media thickness (IMT) variability in
apparently healthy individuals from the Russian population, as described previously [7].
The study protocol was approved by the Institute for Atherosclerosis Research Committee
on Human Research, Moscow, and the study was conducted according to the standards
of the Declaration of Helsinki. Individuals belonging to the first and the second quartiles
of age-adjusted IMT distribution with no evidence of visible atherosclerotic plaques in
any segment of carotid arteries were assigned to Group 1 (atherosclerosis-free individuals)
(Table 1). Participants belonging to the third and the fourth quartiles of IMT distribution
with no atherosclerotic plaques visualized in any segment of carotid arteries were assigned
to Group 1. Participants belonging to the third and the fourth quartiles of IMT distribution
with visible atherosclerotic plaques (more than 20% of the arterial lumen) in at least
one segment of carotid arteries were assigned to Group 2 (subclinical/asymptomatic
atherosclerosis). Participants younger than 50 years without visible atherosclerotic plaques
were assigned to Group 0 (young subjects).
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Table 1. Baseline characteristics of the study participants.

Characteristics

Group 0:
Atherosclerosis-
Free Individuals

(<0 y.o.)
(n = 14)

Group 1:
Atherosclerosis-Free
Individuals (>50 y.o.)

(n = 28)

Group 2:
Subclinical

Atherosclerosis
(>50 y.o.)
(n = 22)

p-Value *
(Group 1 vs. 2)

Age, y 38 ± 2 59 ± 2 67 ± 2 0.002

Gender, % male (n) 35% (13) 29% (8) 41% (9) 0.377

BMI (kg/m2) 28 ± 1 26 ± 1 27 ± 1 0.261

IMT 0.61 ± 0.02 0.71 ± 0.02 0.84 ± 0.03 <<0.01

Plaque score 0 0.6 ± 0.1 2 ± 0.1 <<0.01

Plasma TChol, mmol/L 5.2 ± 0.2 5.8 ± 0.3 5.9 ± 0.3 0.765

Plasma Tg, mmol/L 1.2 ± 0.1 1.3 ± 0.1 1.6 ± 0.1 0.086

Plasma LDLc, mmol/L 3.2 ± 0.1 3.6 ± 0.1 3.6 ± 0.2 0.497

Plasma HDLc, mmol/L 1.4 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 0.993

BMI, body mass index; HDLc, high-density lipoprotein cholesterol; IMT, intima-media thickness; LDLc, low-density lipoprotein cholesterol;
TChol, total cholesterol; Tg, triglycerides; y.o., years old; * Independent samples t-test.

2.2. IMT and Plaque Score Evaluation

Quantitative diagnostics of atherosclerotic states was performed by high-resolution
ultrasonographic measurement of the IMT of common carotid arteries. The distal segments
of the right and left carotid arteries were scanned in a lateral angle. The IMT of common
carotid arteries was assessed on the far wall of the distal 10 mm segment before the carotid
sinus area. For atherosclerotic plaque detection, the left and right common carotid arteries,
carotid sinus area, and internal and external carotid arteries were scanned in three fixed
projections: anterior, lateral, and posterior. When visualizing an atherosclerotic plaque,
carotid arterial stenosis was assessed in a transverse projection. Measurements of IMT and
plaque stenosis were made with the M’Ath computer software (Metris, SRL, France). The
average of two measurements (from the right and left arteries in a lateral position) was
considered an integral indicator of the mean IMT. The following plaque score was used
in this study: 0 = absence of plaques, 1 = stenosis up to 20%, 2 = stenosis 20–50%, and
3 = stenosis of >50%. Stenosis of the carotid artery lumen of more than 20% was considered
as defined atherosclerotic plaque.

The baseline characteristics of the study participants are presented in Table 1. Individuals
free from atherosclerosis and patients with subclinical atherosclerosis older than 50 years differed
by age (59 ± 2 vs. 67 ± 2 years of age, respectively), IMT (0.71 ± 0.02 vs. 0.84 ± 0.03 mm,
respectively), and plaque score (0.6 ± 0.1 vs. 2 ± 0.1, respectively) (Table 1).

2.3. Cell Culture

Monocytes were isolated from peripheral blood by density gradient centrifugation
(ficoll, PanEco), which allowed leukocyte isolation. The collected cells were subjected
to magnetic separation of CD14+ cells (Miltenyi Biotec). The obtained monocytes were
cultured in 24-well culture plates in serum-free medium X-Vivo (Lonza) at a density of
106 cells/mL at 37 ◦C under 5% CO2. To assess the purity of the obtained monocyte
population, cells were stained with anti-CD14-conjugated antibodies and analyzed by
flow cytometry. The percentage of CD14-positive cells was over 95%. Cell viability was
evaluated using Trypan Blue staining and was over 98% in all experiments. To induce proin-
flammatory activation, cells were incubated with 1 ug/mL of LPS (Sigma) for 24 h. Culture
media samples were collected for TNF detection by means of ELISA (R&D Systems).
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2.4. Assessment of Mitochondrial Membrane Potential (MMP) with MitoTracker
Orange CMTMRos

Isolated peripheral blood CD14+ monocytes were plated in 24-well cell culture plates
(106 cells/mL) in X-Vivo 10 medium, containing sterile coverslips for subsequent mi-
croscopic examination on the bottom. Cells were incubated with 100 nM of MitoTracker
Orange CMTMRos (Molecular Probes) for 20 min, after which the coverslips were examined
under the LSM-710 laser scanning microscope (Zeiss, Germany). The wavelength ranges
used were 561 nm (excitation) and 580–620 nm (emission), and a visible-light channel was
used to assess the cellular morphology. Imaging parameters (laser power and signal ampli-
fication) were adjusted prior to the experiments by using cells with ablated mitochondrial
potential after treatment with 5 µM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP) for 30 min (Appendix B).

2.5. Assessment of Mitochondrial Functionality in CD14+ Human Monocytes with Low MMP

In parallel to the MitoTracker staining of living cells, CD14+ monocytes isolated
from the peripheral blood of the study participants were incubated with 100 mg/L of
5-aminolevulinic acid (5-ALA) (Sigma-Aldrich, St. Louis, MO, USA) for 4 h at 37 ◦C in 5%
CO2. Thirty minutes prior to the microscopic examination, 100 nM of MitoTracker Orange
CMTMRos was added to the cells. Images were taken under the LSM-710 laser scanning
microscope (Zeiss, Germany), equipped with a 20× Plan-Apochromat NA 0.8 objective.
Cells were placed in a glass-bottom plate for microscopy. The fluorescent signals of the
MitoTracker dye were recorded at wavelengths of 561 nm (excitation) and 580–620 nm
(emission). The fluorescent signals of 5-ALA-induced protoporphyrin IX (PpIX) were
recorded at the wavelengths of 633 nm (excitation) and 650–720 nm (emission). As a
result, an overlay of the transmitted light image with fluorescent images of the MitoTracker
distribution and PpIX was obtained.

2.6. Image Analysis

For each study participant, at least 27 images of the monocyte primary culture were
obtained (each image being 225 × 225 µm2 in size). In total, the characteristics of at least
600 individual monocytes were assessed for each study participant.

Images were obtained using a laser scanning microscope in the Tile Scan mode.
Images were separated into individual tiles and saved into a 16-bit png format, where
a red pseudocolor encoded for MitoTracker fluorescence, a green pseudocolor for PpIX
fluorescence, and a blue pseudocolor for the transmitted light image. The files were then
processed using the ilastik software [8].

The transmitted light channel was used for pixel and object classification in the ilastik
software. Pixels were classified as either an object or background using edge detection.
Identified objects were classified into either singlet (single cells), clumps (large aggregates
consisting of several cells), or debris (small fragments), according to their size. After
that, only singlet objects with a probability of over 50% were considered. Singlets that
were on the very edge of images were also discarded. The identified objects were used to
calculate MitoTracker and PpIX fluorescence values for every cell. The results were then
exported as a data table containing information on the patient number, object size, total
and average-per-pixel PpIX, and MitoTracker fluorescence.

Statistical analysis was performed using SPSS Statistics 21 (IBM).

3. Results
3.1. Evaluation of Mitochondrial Membrane Potential in CD14+ Monocytes

Monocytes were isolated from the peripheral blood of healthy donors and atheroscle-
rosis patients and stained with MitoTracker Orange CMTMRos to assess mitochondrial
functional activity. MitoTracker Orange CMTMRos is a cell-permeate dye that accumulates
in active mitochondria with an intact membrane potential, and the staining intensity is
potential dependent. The impairment of mitochondrial membrane potential results in the
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weakening or disappearance of MitoTracker Orange CMTMRos staining. The primary cul-
ture of human monocytes contained a mixture of cells with a normal or impaired intensity
of MitoTracker Orange CMTMRos staining (Figure 1).

Figure 1. Identification of MitoTracker-low CD14+ human monocytes. Shown is a fluorescent
micrograph of the monocyte primary culture from two subjects with different intima-media thickness
(IMT) values, corresponding to a normal (Subject 11) and an atherosclerotic (Subject 6) status, stained
with MitoTracker Orange CMTMRos. Monocytes were incubated with 100 nM of MitoTracker Orange
CMTMRos for 20 min. In the left panel, the cell morphology can be seen, and the fluorescent signal
from the corresponding cells is shown in the right panel. MitoTracker-low cells are indicated with
yellow circles. Shown is a representative example of a field of view.

All primary cultures obtained from the study subjects contained MitoTracker-low
cells. In such cells, a low intensity of MitoTracker Orange CMTMRos fluorescence was
seen in all optic slices. Therefore, human monocytes in the primary culture differed by
MitoTracker staining intensity, with some cells having a very low intensity level. These
cells, however, were not dead because the cell population, as revealed by Trypan Blue
staining, contained no less than 99% of live cells. It is possible that MitoTracker-low cells
were in a preapoptotic state, which is characterized by morphological features such as a
reduced cell size and increased granularity [9]. To investigate that possibility, we further
studied the morphological features of such cells.

3.2. Comparative Study of the Size and Granularity of CD14+ Human Monocytes with Different
MitoTracker Staining Intensities

We evaluated the possible changes in the morphology of human monocytes having
different MitoTracker staining intensities in order to understand: (1) whether MitoTracker-
low cells with impaired mitochondrial potential belong to a distinct population by their
morphology and (2) whether or not these cells present with signs of apoptosis. We mea-
sured the cells’ surface and granularity to characterize the morphological characteristics of
the monocyte population using the following assumptions. The existence of two or more
morphological clusters of cells (characterized by size and granularity) indicated morpho-
logical heterogeneity of the monocyte population in the primary culture. The presence of a
cluster characterized by small size and high granularity indicated a significant proportion
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of apoptotic cells present in the primary culture. Only one homogeneous cluster of cells
with a similar morphological type present indicated the homogeneity of the cell population
and a low proportion of apoptotic cells.

To assess the cell size and granularity, microscopic images of the cell population were
examined using a machine-learning approach. Microscopic images were obtained for
human monocytes in the primary culture incubated with MitoTracker Orange CMTMRos
(100 nM) for 20 min. The results are presented in Figure 2.

Figure 2. Study of the morphological heterogeneity of human monocytes varying with MitoTracker
Orange CMTMRos staining intensity. Each point corresponds to one cell. Values are measured in
conventional units and visualized using the CellProfiler software.

In Figure 2, each point corresponds to one cell. The cell area (on the x-axis) was
plotted against the cell granularity (y-axis) and assessed in the CellProfiler software. The
intensity of the green color represents the MitoTracker staining intensity in each cell. As
demonstrated on the graph, monocytes in the primary culture formed a homogeneous
population, without visible separation into two or more distinct clusters. Cell size was
distributed between 5000 and 20,000 conventional units, which corresponded to a variation
between small and large cells by about two-fold. Such a size variation appears to be small
since cultured cells are able to spread on the substrate, acquiring an irregular shape. The
observed distribution of cells by size and granularity allows concluding that the monocyte
primary culture was morphologically homogeneous. Within the cell population, cells
with a high MitoTracker staining intensity appeared to be shifted to the right from the
distribution center, whereas cells with a low staining intensity were primarily located on
the left side, indicating that they had a smaller size on average. However, this shift in
distribution does not allow distinguishing two cell populations characterized by high and
low MitoTracker staining intensities. The obtained results also indicate that cells with a
low MitoTracker staining intensity were not apoptotic since the cell granularity appeared
to be homogeneous. Therefore, monocytes with high and low mitochondrial membrane
potentials (MMPs), as revealed by the MitoTracker staining intensity, did not differ by size
and granularity from the rest of the cell population and appeared to not be apoptotic.

Low MMP does not provide complete information on the extent and nature of mitochon-
drial dysfunction. Besides ATP production, mitochondria execute numerous chemical reactions,
the study of which can provide more information on mitochondrial function and structural
integrity. We next tested the ability of MitoTracker-low cells to heme synthesis reactions.
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3.3. Study of Mitochondrial Function in MitoTracker-Low CD14+ Cells

To assess the ability of MitoTracker-low monocytes (with impaired MMP) to perform
vital metabolic reactions specific to mitochondria, we used the approach based on culturing
the cells with 5-aminolevulinic acid (ALA) followed by protoporphyrin IX (PpIX) mea-
surement. Endogenous 5-ALA is metabolized in the cytoplasm to coproporphyrinogen III,
which is transported to the mitochondria, where it is transformed to PpIX, a heme precur-
sor [10]. The exposure of a macrophage culture to high concentrations of 5-ALA leads to
excessive PpIX formation, which is either retained in the mitochondria or distributed in the
cytoplasm [10]. PpIX is autofluorescent, which allows its detection in cells. We assessed
the 5-ALA-induced accumulation of PpIX in cultured monocytes with low MMP to test
their ability to perform mitochondria-specific metabolic reactions.

A confocal micrograph of monocytes incubated with 5-ALA is shown in Figure 3 and
demonstrates two types of cells: MitoTracker-high/PpIX+ and MitoTracker-low/PpIX+
(Figure 3). In Figure 3, MitoTracker-high/PpIX+ are marked with blue arrows, while
MitoTracker-low/PpIX+ cells are marked with purple arrows. Therefore, cells with im-
paired MMP can metabolize 5-ALA and accumulate PpIX. This indicates the partial preser-
vation of mitochondrial function in MitoTracker-low cells. However, PpIX accumulation is
also a sign of defective heme synthesis in the mitochondria.

Figure 3. Confocal micrograph of CD14+ human monocytes stained with MitoTracker Orange
CMTMRos showing protoporphyrin IX (PpIX) autofluorescence. MitoTracker Orange CMTMRos
staining is shown in green, and PpIX autofluorescence is shown in red. MitoTracker-high/PpIX+ cells
are marked with light-blue arrows. MitoTracker-low/PpIX+ cells are marked with purple arrows.
Shown is a representative example of a field of view. Cells with different levels of mitochondrial
membrane potential, revealed by the staining, are shown with arrows of different colors. Upper-
left quadrant: MitoTracker fluorescence; upper-right quadrant: PpIX autofluorescence; lower-left
quadrant: phase contrast; lower-right quadrant: combined image.

It could be concluded that the primary culture of human monocytes contained cells
with impaired MMP that were not, however, apoptotic and were capable of metaboliz-
ing 5-ALA to PpIX. We next tested whether there was between the association of the
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presence of such cells with atherosclerosis and the primary monocytes’ proinflammatory
activation ability.

3.4. Association of MitoTracker-Low CD14+ Human Monocytes with the Proinflammatory
Activation of Cells and Atherosclerosis Development

To assess the proportion of MitoTracker-low CD14+ monocytes in the primary culture,
we plotted the MitoTracker fluorescence intensity (Kernel density plot) for a cell population
obtained from one patient (Figure 4). The distribution was found to be bimodal, and
the extremum in the Kernel density curve was chosen for distinguishing the two cell
subpopulations: MitoTracker-high and MitoTracker-low.

Figure 4. Bimodal distribution of the MitoTracker staining intensity of CD14+ human monocytes.
Shown are the results for two study subjects with different intima-media thickness (IMT) values,
corresponding to a normal (Subject 13) and an atherosclerotic (Subject 28) status. The extremum in
the Kernel density curve used for the subsequent analysis of cell population on each histogram is
shown with arrows.

We next repeated the procedure and measured the proportion of MitoTracker-low cells
in the primary monocyte cultures for each patient. A total of 36 subjects were analyzed,
including 5 healthy donors aged <50 years, 7 healthy donors aged >50 years, and 23 patients
with atherosclerosis. The results of the correlation analysis are presented in Table 2. We
observed a negative correlation between the proportion of MitoTracker-low cells in the
primary culture and the ability of cells to secrete TNF upon stimulation with LPS. There was
no correlation between basal TNF secretion and the proportion of MitoTracker-low cells.

Table 2. Correlation analysis of MitoTracker staining intensity with cultured monocyte proinflammatory activation ability.

Vs. Proportion of MitoTracker-Low
Monocytes, Pearson Coefficients p-Value

TNF secretion by
nonstimulated monocytes, pg/mL −0.151 0.444

TNF secretion by
LPS-stimulated monocytes, pg/mL −0.459 0.014 *

LPS, lipopolysaccharide; TNF, tumor necrosis factor. * statistically significant difference, bivariate Pearson correlation coefficients with a
two-tailed test of significance.

Therefore, an increased proportion of MitoTracker-low cells (cells with impaired
MMP) in the monocyte primary culture was associated with a reduced LPS-induced
proinflammatory activation ability. We next investigated the proportion of MitoTracker-low
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cells in different study participants and tested for a possible association with the presence
of atherosclerotic changes.

We found that the distribution of the proportion of MitoTracker-low monocytes among
the study participants was not normal (p = 0.029) and had at least two modes (Figure 5). We
therefore tested for a possible association between the proportion of MitoTracker-low cells
and intima-media thickness (IMT) and the presence of atherosclerotic plaques. Subgroups
were defined using k-means cluster analysis. Since the density curve of the proportion of
MitoTracker-low monocytes was bimodal, k-means cluster analysis was performed for the
two clusters.

Figure 5. Bimodal distribution of patients by the proportion of MitoTracker-low monocytes allows
distinguishing two clusters. MT, MitoTracker.

We next analyzed the characteristics of patients from the two clusters with a low or
high proportion of MitoTracker-low monocytes (hereafter Clusters 1 and 2, respectively).
We found that patients from the MitoTracker-low Cluster 2 had a higher plaque score, and
cells from these patients had a reduced proinflammatory activation ability, as assessed by
LPS-induced TNF secretion (Table 3).

Table 3. Comparative analysis of study subjects with a low or high proportion of MitoTracker-low monocytes.

Cluster 1:
Patients with Low

Proportion
of MT-Low Monocytes

(n = 21)

Cluster 2:
Patients with High

Proportion
of MT-Low Monocytes

(n = 14)

p-Value

IMT, mm 0.74 ± 0.03 0.79 ± 0.04 0.306

Plaque score 0.9 ± 0.2 1.5 ± 0.2 0.045 *

TNF basal secretion, pg/mL 890 ± 110 760 ± 140 0.464

TNF LPS-induced secretion,
pg/mL 3150 ± 340 2160 ± 240 0.027 *

Increasement in TNF secretion 2260 ± 270 1400 ± 180 0.015 *

Fold-change of TNF secretion 3.8 ± 0.3 3.3 ± 0.4 0.381

IMT, intima-media thickness; LPS, lipopolysaccharide; MT, MitoTracker; TNF, tumor necrosis factor. * statistically significant difference,
independent samples t-test.



Biomedicines 2021, 9, 153 10 of 13

The obtained results allowed us to conclude that presence of MitoTracker-low mono-
cytes was associated with atherosclerotic plaques and reduced proinflammatory activation
of the immune cells.

4. Discussion

In this study, we revealed the presence of an elevated proportion of MitoTracker-low
monocytes (with impaired MMP) in atherosclerotic patients. Morphologically, MitoTracker-
low monocytes were not visibly different from the rest of the cells, as assessed by the cell
size and granularity. Moreover, MitoTracker-low cells were able to metabolize 5-ALA and
accumulate PpIX, indicative of the preservation of some of the mitochondrial functions.
We assessed the proportion of MitoTracker-low cells in the primary monocyte culture
obtained from each study participant and compared the results with other parameters,
such as the monocytes’ proinflammatory activation ability, in response to the LPS and IMT
of carotid arteries. We found that an elevated proportion of MitoTracker-low monocytes
correlated with the presence of atherosclerotic plaques and reduced proinflammatory
activation of monocytes.

A series of vital dyes sensitive to MMP in cultured cells are currently available, includ-
ing MitoTracker® Orange CMTMRos, JC1, and rhodamine 123. However, previous studies
have revealed certain drawbacks of using JC and rhodamine 123. For instance, JC1 is not
specific to the mitochondria, whereas the association of rhodamine 123 with mitochondria
is reversible, and the dye is subject to rapid fading [11–13]. Therefore, we chose MitoTracker
Orange CMTMRos, which is free from these drawbacks, as a potential-sensitive dye [14,15].
Additionally, all the mentioned dyes are used for studying mitochondrial function in differ-
ent pathologies. For instance, the study of circulating monocytes from patients with type 2
diabetes using JC1 revealed that these cells had increased mitochondrial membrane poten-
tial, although the absolute intensity of aggregated and nonaggregated JC1 fluorescence in
cells from patients was lower than in cells from control subjects, which could be explained
by the reduced total volume of the mitochondria [16]. Other studies have demonstrated
increased mitochondrial polarization in monocyte–thrombocyte aggregates from patients
with rheumatoid arthritis and ischemic heart disease [17,18]. At the same time, HIV in-
fection was shown to be associated with decreased MMP and altered morphology of the
mitochondria in immune cells [19]. Reduced MMP was also demonstrated in sepsis [20].
Therefore, severe human pathologies can be associated with increased or reduced MMP.

In the current study, the proportion of MitoTracker-low monocytes was associated
with the presence of atherosclerotic plaques in donor subjects and the reduced ability
of monocytes to secrete TNF in response to LPS. Mitochondrial polarization, and hence
their functional state, can influence the proinflammatory activity of immune cells, as
demonstrated in a study of MMP in different human monocyte subpopulations. The
authors showed that nonclassical monocytes presented reduced MMP, increased reac-
tive oxygen species (ROS) production, and shortened telomeres compared to classical
monocytes [21]. Another group studied monocyte-derived dendritic cells with impaired
immune-stimulatory capacity. Such cells had decreased MMP and showed signs of being
in a preapoptotic state [22]. Lugli et al.’s group demonstrated that upon apoptosis induc-
tion in vitro, immunocompetent cells could be classified into three phenotypes: normal,
intermediate, and reduced MMP [23]. The latter had a reduced total mitochondrial volume
and mtDNA content. Therefore, our results are in line with previous observations by
different groups. At the cellular level, reduced MMP in immune cells was associated with
preapoptotic or senescent states. At the organism level, mitochondrial depolarization was
associated with various pathologies associated with mitochondrial dysfunction, such as
HIV infection and sepsis.

Numerous studies summarized in a recent review have revealed changes in the
metabolic signature of macrophages activated toward classical proinflammatory and alter-
native anti-inflammatory phenotypes [24]. Proinflammatory phenotypes are characterized
by the preferential use of glycolysis for energy production, whereas alternatively activated
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macrophages rely more on oxidative phosphorylation. Furthermore, lipids and amino
acids also differ in pro- and anti-inflammatory macrophages. It is safe to assume that such
profound changes in metabolism involve the mitochondrial function of the cells and vice
versa, and altered mitochondrial function due to the accumulation of mtDNA mutations
may predispose the cells to proinflammatory activation. Further studies by our group
will include the metabolic profiling of monocytes/macrophages with an intact affected
mitochondrial function to clarify this question.

The obtained results allowed assuming that mitochondrial dysfunction in circulating
monocytes can be linked to an impaired proinflammatory response and the appearance
of atherosclerotic lesions. Our work has a number of limitations. The reduced intensity
of MitoTracker staining did not allow for evaluating the possible change of the total mi-
tochondrial volume. It was also not possible to define whether the subpopulations of
MitoTracker-high and MitoTracker-low cells varied in terms of the abundance of classical
and nonclassical monocytes. We did not evaluate other characteristics of mitochondrial dys-
function, such as ROS formation, p-ERK activation, and the presence of mtDNA mutations.
These questions will be clarified in future studies. However, the present work contributes
to our understanding of the role of mitochondrial dysfunction in the chronification of
inflammation in human pathologies.

5. Conclusions

We revealed two distinct subpopulations of peripheral blood monocytes with normal
or reduced MMP, as assessed by live staining with the potential-sensitive dye MitoTracker
Orange CMTMRos. An increased proportion of cells with reduced MMP was associated
with the reduced ability of monocytes to secrete LPS-induced TNF in primary culture and
with the presence of atherosclerotic lesions in the donor subjects.
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Appendix A

Evaluation of the proinflammatory activation ability of CD14+ human monocytes in
patients with asymptomatic (subclinical) atherosclerosis

Monocytes were isolated from the peripheral blood of healthy donors and patients
with atherosclerosis. To assess CD14+ monocytes’ proinflammatory activation ability, cells
were incubated with LPS, and the level of secreted TNF was measured (Table A1). LPS-
induced TNF secretion was higher in monocytes isolated from atherosclerotic patients
compared to healthy donors.
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Table A1. Proinflammatory response of circulating monocytes.

Characteristics
Nonatherosclerotic

Individuals
(n = 28)

Subclinical Atherosclerosis
(n = 22) p-Value *

TNF secretion by
nonstimulated monocytes,

pg/mL
660 ± 70 740 ± 120 0.526

TNF secretion by
LPS-stimulated monocytes,

pg/mL
2640 ± 210 3120 ± 240 0.042

Increasement in TNF
secretion, pg/mL 1910 ± 180 2200 ± 270 0.625

Fold-change of TNF secretion 1.36 ± 0.13 1.47 ± 0.12 0.349

* Independent samples t-test.

Appendix B

Negative controls for MitoTracker staining.

Figure A1. Monocytes were treated or not with 5 µM of carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP) for 30 min to remove mitochondrial potential, stained with MitoTracker,
and visualized as described above.
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