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A B S T R A C T

Background: Artificial intelligence (AI) promises to provide useful information to clinicians specializing in hy-
pertension. Already, there are some significant AI applications on large validated data sets.
Methods and results: This review presents the use of AI to predict clinical outcomes in big data i.e. data with high
volume, variety, veracity, velocity and value. Four examples are included in this review. In the first example, deep
learning and support vector machine (SVM) predicted the occurrence of cardiovascular events with 56%–57%
accuracy. In the second example, in a data base of 378,256 patients, a neural network algorithm predicted the
occurrence of cardiovascular events during 10 year follow up with sensitivity (68%) and specificity (71%). In the
third example, a machine learning algorithm classified 1,504,437 patients on the presence or absence of hy-
pertension with 51% sensitivity, 99% specificity and area under the curve 87%. In example four, wearable bio-
sensors and portable devices were used in assessing a person's risk of developing hypertension using
photoplethysmography to separate persons who were at risk of developing hypertension with sensitivity higher
than 80% and positive predictive value higher than 90%. The results of the above studies were adjusted for
demographics and the traditional risk factors for atherosclerotic disease.
Conclusion: These examples describe the use of artificial intelligence methods in the field of hypertension.
1. Introduction

The growing availability of large volumes of biomedical data, some
derived from novel sources, is starting to help clinical researchers gain
valuable insights into medical conditions. For researchers in hyperten-
sion, these insights will offer opportunities to assess hypertension prev-
alence and risk, to diagnose and gauge the severity of hypertension, and
to estimate the risks of subsequent complications, thus offering the op-
portunity for timely treatment [1–4]. Overall, these developments offer
great opportunities to significantly improve clinical management and
patient care.

As an example, many studies have been conducted using the
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Myocardial Infarction Data Acquisition System (MIDAS). MIDAS is a
statewide database containing de-identified records of all cardiovascular
disease hospitalizations in New Jersey since 1986. It contains over 17
million records corresponding to over 4 million patients with cardio-
vascular disease. Mining this database has led to important publications
that has changed the way cardiovascular medicine is practiced as follows.
Wellings et al. reported that the rate of admission for heart failure (HF)
after discharge for a first myocardial infarction as well as all-cause death
decreased markedly from 2000 to 2015 [5]. Using a Personalized Disease
Network (PDN), Cabrera et al. described the development of complica-
tions in these patients and observed the prevalence of hypertension prior
to the onset of cardiovascular diseases such as HF [6]. This is consistent
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Fig. 1. Machine learning and statistics in the context of data science. Machine
learning and statistics are at the core of data science. Other disciplines including
engineering/computer sciences, data science, statistics/biostatistics, big data
and bioinformatics intersect with machine learning in clinical medicine.

Fig. 2. Conceptual schema of the workflow for convolution neural networks
(CNN). CNNs process the data by layers of convolution filters that are followed
by a second set of layers of a fully CNN also known as a multilayer perceptron.
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with the known fact that hypertension is a major risk factor for cardio-
vascular disease.

Many types of data are becoming available for biomedical research
including data from (a) clinical trials, (b) databases such as MIDAS that
have large numbers of observations, (c) diagnostic tests such as electro-
cardiograms and imaging, (d) wearable biosensors which have the po-
tential to generate real time data, (e) genomics, transcriptomics and
proteomics, which may have considerably more variables than observa-
tions. Also, there is the potential to integrate data from multiple possibly
very different sources to gain broader insights.

Nevertheless, there are many challenges to generating truly mean-
ingful and generalizable insights from these large amounts of diverse and
complex data. These include issues of data quality and data volume; or, to
use a term common in big data analysis, the “4Vs”: Volume, Variety,
Velocity, and Veracity. Overcoming these issues is not trivial.

Many steps are involved when dealing with big data. The first step
should always be an appraisal of whether the data are appropriate for the
research objective, followed by an examination of the data via explora-
tion and visualization techniques to assess heterogeneities in the data,
imbalances of key variables, outlier detection, and other issues that could
affect the validity and generalizability of any subsequent findings. For
example, the information in MIDAS for vital status, age, gender and race
was checked and found to be over 98.8% accurate [7]. This is a major
consideration as unstructured electronic health records (EHR) and data
drawn frommultiple sources for other purposes could have quality issues
as well as inconsistences in variable definitions (e.g., changes in Inter-
national Classification of Diseases (ICD) codes). In addition, prior to
analysis, some structuring of the data may be necessary taking into
consideration concepts such as statistical experimental design, matching,
propensity scoring, calibration, normalization, and data projection. This
first step is essential.

The data can then be analyzed. One approach is to apply familiar
statistical models, such as those used in multiple linear regression, lo-
gistic regression and survival analysis. These methods can generate
predictions together with a performance measure and an explanation of
which factors most contribute to the prediction. However, the volume
and complexity of the data may be such that alternative approaches
designed for analysis of big data and artificial intelligence could be
considered. This includes methods such as artificial neural networks,
support vector machines (SVM) and deep learning. These methods
employ complex algorithms which include ensembles of models inter-
acting with each other and enable the study of complex associations
which cannot easily be reduced to an equation. Since the algorithms are
set to seek solutions over a broad domain without being provided explicit
instructions of where to search, they are often able to provide better
predictions than simpler schemes.

In the following sections, we will briefly describe the machine
learning approach and give some examples in which it has been applied
for hypertension research.

2. Methods: machine learning and deep learning

Machine learning is devoted to the methodology and algorithms for
predictive modeling with the objective of making the best possible linear
or non-linear predictions. In classical statistics, the emphasis was on
statistical inference and predictive modeling and was just another
element of the statistical analysis. Fig. 1 shows the intersections between
machine learning, statistics and computer sciences/engineering (CS/E)
in the context of data science. Statistics and biostatistics intersect with
CS/E in the areas of machine learning and big data and only in part in
bioinformatics. However, there are major parts of CS/E that are not part
of data science.

Machine learning was initiated in the late 1970s by Breiman et al.
who proposed the methodology of Classification and Regression Trees
(CART) and later proposed the methods of Bagging and Random Forests
[8–10]. Contributions from Computer Science came later in the 1990s,
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with Neural Networks, Boosting and Support Vector Machine (SVM) [11,
12]. These methods can be used to study the relationship between an
outcome variable and several features that could potentially affect the
outcome. For example, they could be used to predict the likelihood of a
person with certain clinical features developing hypertension. Depending
on the methods, it may be possible to also identify the main features that
affect the outcome.

The main considerations in the analysis are balancing bias, variance
and model complexity. Resampling or the use of a set-aside test set can be
used to prevent overfitting which could be a major concern when fitting
complex models such as these; overfitting occurs when a model is found
to fit only the training data very well, but does not generalize to other
data. Deep learning is a technique that was introduced recently as an
updated version of neural networks. Deep learning is expected to become
one of the most successful methods in terms of performance in predicting
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outcomes.
One of the most successful algorithms for deep learning is the

Convolution Neural Net (CNN). The idea of a CNN is to apply a sequence
of linear convolution filters to the set of predictors and to use the out-
comes as inputs to Tensor Flow, the main neural net algorithm with
several hidden layers (Fig. 2). To improve performance, the tensor flow
algorithm will use a training set, a validation set, and a testing set and it
will be configured with three hidden layers and it will be trained using
thousands of optimizations called “epochs”. The outcomes of tensor flow
will be class predictions if doing classification or predicted values if the
response is continuous. The importance of each predictor can be assessed
by comparing the performance of the model by including and excluding
the predictor. These techniques could be used to identify subsets of pa-
tients with particular constellations of risk factors that lead to a higher
risk of events.

Both support vector machines and deep learning methods can also be
helpful in identifying risk factors leading to cardiovascular death or
serious morbidity. The main idea is to use the concept of variable
importance combined with penalized selection which produces an or-
dered list of important predictors [13].

Machine learning also includes methods for unsupervised learning.
Thus, cluster analysis can be used to group or segment datasets into
clusters of observations which are similar to one another based on a set of
attributes. Cluster analysis algorithms include hierarchical clustering and
neural networks.

3. Examples

Example 1: Mining MIDAS: Each record in the MIDAS database
mentioned in the introduction contains diagnosis and procedure infor-
mation coded according to ICD-9th revision standards, as well as
admission, discharge and procedure dates, and patient demographics.
Normally, the ICD-9 codes are mapped to clinical outcomes (e.g. heart
failure, myocardial infarction and stroke), and comorbidities (hyperten-
sion, atherosclerosis, other organ system diseases, etc.) using a hierar-
chically structured list of ICD-9 codes in conjunction with the knowledge
of clinicians. The expertise of the latter is necessary due to the specificity
of a medical condition being defined, e.g. ICD-9 code 410 specifies acute
myocardial infarction (AMI) but it has 30 subcategories with billable
codes for each type of AMI (410.00 through 410.92). The researcher
might only be interested in a specific type of AMI such as inferior and
lateral wall AMI (410.4x and 410.5x), or only the initial episode of care
(410.x1) which makes automation challenging. The definitions can also
be derived from codes in different categories. This problem will become
even more complicated in data from 2016 onwards when data will be
coded using ICD 10th revision. For comparison, ICD-9 contains approxi-
mately 13,000 unique codes but that number grows to around 68,000 in
ICD-10. When applying machine learning to the ICD codes, patterns can
emerge that help clustering individual billable codes into larger cate-
gories thus enriching the definitions of medical conditions of interest.
Additionally, the ICD-9/ICD-10 mapping is not one-to-one but rather
many-to-many. Machine learning techniques must be applied in many
instances to cluster and map the codes from different revisions mini-
mizing the methodology drift risk between the two ICD epochs.

Several reports have been published based on these data. In a recent
study, data corresponding to 93,436 patients who had been discharged
alive with a first diagnosis of HF were analyzed via machine learning and
deep learning to examine the possibility of predicting HF-specific and all-
cause readmission and mortality up to one year using covariates such as
hospital (including whether or not it is a teaching hospital), age, sex, race,
primary insurance, and comorbidities at first hospitalization (e.g., atrial
fibrillation, AMI, anemia, chronic kidney disease, chronic obstructive
pulmonary disease, diabetes, hyperlipidemia, sleep apnea, Parkinson's
disease, stroke, transient ischemic attack). Of the patients, 40,000 were
used for training and the remaining 53,436 were assigned to the testing
set. The performance (the percent of correct predictions) in the testing set
3

was 57% for deep learning and 56% for SVM. This performance is not
unreasonable given the diversity and high variability of the data.

Example 2: Weng et al. conducted a prospective cohort study using
routine clinical data of 378,256 patients from UK family practices [14].
The patients were free from cardiovascular disease at study outset and
this data was used to predict whether or not the individuals in the study
would have a cardiovascular event during the next 10 years. Among the
patients, 24,970 had experienced cardiovascular events over the 10
years. Several different machine learning methods were used to analyze
the data. Of these, a neural network algorithm had decent performance:
high negative predictive value (NPV) (95.7%), good sensitivity (67.5%),
good specificity (70.7%), but low positive predictive value (PPV)
(18.4%). Age, gender, ethnicity, chronic kidney disease, mental illness,
and atrial fibrillation were among those identified as major risk factors
by this algorithm.

Example 3: Ye et al. used data from individual patient EHR extracted
from the Maine Health Information Exchange network to develop a risk
prediction model for incident essential hypertension within one year
[15]. Retrospective (823,627, calendar year 2013) and prospective (680,
810, calendar year 2014) cohorts were formed. A machine learning al-
gorithm was used to generate an ensemble of classification trees and
assign a predictive risk score to each individual. The model had good
performance with 82.3% PPV, 94.9% NPV, 50.9% sensitivity, 98.8%
specificity, 0.917 AUC in the retrospective cohort, and 0.870 AUC in an
independent prospective cohort. Diabetes, lipid disorders, cardiovascular
diseases, mental illness, clinical utilization indicators, and socioeconomic
determinants were identified as major risk factors, with the very
high-risk population comprised mainly of elderly individuals with mul-
tiple chronic conditions. They report that Maine has already deployed
their real-time predictive analytic model.

Example 4: The potential of employing wearable biosensors and
portable devices as a means of continuous monitoring of assessing a
subject's risk of developing hypertension is being explored. Liang et al.
studied the possibility of using wearable biosensors which use photo-
plethysmography (PPG) to assess hypertension [16,17]. They first
applied statistical and machine learning tools to select 10 characteristics
of the PPG signal, which were then used in four machine learning algo-
rithms to separate hypertensive patients (systolic blood pressure (SBP)
over 140 or diastolic blood pressure (DBP) over 100) from
non-hypertensive subjects (SBP below 120 or DBP below 80) with high
sensitivity (over 80%) and high PPV (over 90%). Separately, Tison et al.
used a deep neural network to predict hypertension using heart rate and
step count data obtained from off-the-shelf wearables with a PPG heart
rate sensor and accelerometer; they found that they could predict hy-
pertension in a validation set with high sensitivity (over 80%) and good
specificity (over 60%) [18]. These studies indicate the potential of
employing wearable biosensors and portable devices for regular moni-
toring of patients at risk for hypertension or complications thereof.

4. Discussion

Machine learning is beginning to have an impact on clinical research
and practice in various ways. One way is by aiding effective clinical
decisionmaking through insights obtained fromminingmassive amounts
of data, such as the MIDAS data mentioned above, and identifying
complex patterns associated with hypertension and other clinical con-
ditions. This was not possible to be done at a scale and speed now ach-
ieved by machine learning. Some of these findings could allow
researchers to study the broad heterogeneity of pathophysiologic factors
and processes that interact and contribute to disease and thus could
conceivably pave the way to a form of personalized treatment of diseases.
At the other end of the spectrum, it could also allow epidemiologists and
other researchers to study patterns of disease occurrence and gain a
better understanding of what factors in patients’ lives influence their
health and susceptibility to disease. This should, in turn, enable physi-
cians as well as government bodies and community health organizations
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to recommend preventive measures and improve disease management
and control.

Another way is by having a means to monitor patient behavior, such
as through wearable sensors and other mobile communication devices.
This will help clinicians track patient movement and behavioral patterns
(perhaps even remotely in real time) and recognize early warning signs of
the onset of potentially dangerous conditions. Also, in the case of patients
at risk, this will allow physicians to assess compliance with clinical rec-
ommendations [17,19–21]. The information obtained from these devices
could also be used for the design of clinical research. They could also be
useful as a way to develop personalized intervention plans tailored to suit
the complex clinical needs unique to individuals. Overall, these de-
velopments have the potential to radically change health care. A clinician
practicing hypertension may benefit from reading this manuscript and
the use of artificial intelligence methods by learning new associations
that were unknown before the use of this technique and by learning the
opportunity of using such techniques in future research. Artificial intel-
ligence explores big data with high volume, variety, veracity, velocity
and value. However, at the present time, there has been much enthu-
siasm, but little benefit in clinical practice mainly because clinical vali-
dation of the findings of artificial intelligence in different data sets is
lacking. Also, predictive models change from year to year over time and
that requires calibration of model performance. Data quality is critical.
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