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a b s t r a c t

The risk of endometriosis (EM), which is a common complex gynaecological disease, is related to genetic 
predisposition. However, it is unclear how genetic variants confer the risk of EM. Here, via Sherlock in-
tegrative analysis, we combined large-scale genome-wide association studies (GWAS) summary statistics 
on EM (N = 245,494) with a blood-based eQTL dataset (N = 1490) to identify EM risk-related genes. For 
validation, we leveraged two independent eQTL datasets (N = 769) for integration with the GWAS data. 
Thus, we prioritised 14 genes, including GIMAP4, TOP3A, and NMNAT3, which showed significant association 
with susceptibility to EM. We also utilised two independent methods, Multi-marker Analysis of GenoMic 
Annotation and S-PrediXcan, to further validate the EM risk-associated genes. Moreover, protein–protein 
interaction network analysis showed the 14 genes were functionally connected. Functional enrichment 
analyses further demonstrated that these genes were significantly enriched in metabolic and immune- 
related pathways. Differential gene expression analysis showed that in peripheral blood samples from 
patients with ovarian EM, TOP3A, MKNK1, SIPA1L2, and NUCB1 were significantly upregulated, while HOXB2, 
GIMAP5, and MGMT were significantly downregulated compared with their expression levels in samples 
from the controls. Immunohistochemistry further confirmed the increased expression levels of MKNK1 and 
TOP3A in the ectopic and eutopic endometrium compared to normal endometrium, while HOBX2 was 
downregulated in the endometrium of women with ovarian EM. Finally, in ex vivo functional experiments, 
MKNK1 knockdown inhibited ectopic endometrial stromal cells (EESCs) migration and invasion. TOP3A 
knockdown inhibited EESCs proliferation, migration, and invasion, while promoting their apoptosis. 
Convergent lines of evidence suggested that MKNK1 and TOP3A are novel EM risk-related genes.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Endometriosis (EM), a common gynaecological disease char-
acterised by the presence of endometrium-like tissue outside the 
uterus, affects approximately 10% of women of reproductive age [1]. 
EM presentation is highly heterogeneous, varying from cysts in the 
ovaries (endometrioma) and superficial peritoneal lesions to nodules 
with a depth of penetration exceeding 5 mm (deep EM) [1]. EM 
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causes symptoms, including dysmenorrhoea, dyspareunia, chronic 
pelvic pain, and infertility, impairing women’s quality of life while 
being a substantial economic burden [2,3]. Hormonal medication 
and surgical removal of lesions are the main therapeutic approaches 
for EM management; however, their efficacy is unsatisfactory, and 
EM recurrence rates are also high. A major reason for this dilemma is 
that the aetiology of this disease remains unclear.

Multiple lines of evidence suggest that EM is influenced by both 
genetic and environmental factors. Twin studies have demonstrated 
that EM heritability is approximately 50% [4], indicating the pivotal 
role of inherited risk variants in EM. From this perspective, a 
genome-wide association study (GWAS) is an effective approach for 
simultaneously examining the association of several single nucleo-
tide polymorphisms (SNPs) with EM to the end of identifying novel 
risk genetic variants. The first GWAS, conducted in 2010 in the Ja-
panese population, identified a significant association between two 
SNPs—rs10965235 located in CDKN2B-AS1 on chromosome 9 and 
rs16826658 located in WNT4 on chromosome 1—with EM [5]. Sub-
sequently, more than 10 large-scale, population-based GWAS invol-
ving different ethnic populations have been performed, and a dozen 
genome-wide significant loci have been reported [6–8]. Never-
theless, as most reported risk variants are located in non-coding 
genomic regions, how these non-coding variants affect EM patho-
genesis remains largely unknown. The greatest challenge in fol-
lowing up on GWAS is to identify genes responsible for an 
association with EM and to understand the functional consequences 
of these loci.

Expression quantitative trait loci (eQTL), which offers the possi-
bility to elucidate a fraction of the genetic variance in gene expres-
sion, have been extensively studied for post-GWAS analyses [9–12]. 
Owing to its ability to establish a link between non-coding variants 
and the expression of a given gene, eQTL analysis is one of the most 
remarkable methods for highlighting disease-associated variants 
[13,14]. In this study, we performed a Bayesian integrative analysis 
(Sherlock) by combining genetic associations from large-scale GWAS 
summary statistics on EM and three independent eQTL datasets to 
identify potential EM risk-related genes. We further subjected per-
ipheral blood samples from patients with EM and healthy controls to 
transcriptome sequencing to study the expression levels of the 
identified ovarian EM risk-associated genes. Additionally, the ex-
pression levels of these gens in tissue samples were investigated via 
immunohistochemical (IHC) analysis using ectopic, eutopic, and 
normal endometria samples. Finally, the potential roles of the EM 
risk-related genes were explored via in vitro functional studies. Our 
integrative study provided novel insights that MKNK1 and TOP3A 
may represent promising EM risk genes.

2. Materials and methods

2.1. Multiple omics datasets

In the current integrative genomics analysis, we collected multi- 
omics datasets from several widely-established public databases as 
follows: 1) Dataset #1 for GWAS summary statistics on EM. We 
downloaded this GWAS summary dataset [15] from Gene ATLAS, an 
atlas of genetic associations in UK Biobank. A total of 245,494 sub-
jects including 4252 EM patients based on European ancestry were 
chosen. The Affymetrix UK BiLEVE Axiom array and the Affymetrix 
UK Biobank Axiom array were used to genotype all samples.[16,17]
After strict quality control, there were 13,853,045 SNPs eligible for 
downstream analyses. 2) Dataset #2 for GWAS data on Null pheno-
type: To evaluate the reliability of our findings, as referred to pre-
vious studies [18,19], we constructed a GWAS summary dataset on a 
randomly distributed phenotype (called as Null trait) as a negative 
control. [21,20,21] 3) Dataset #3 for discovery eQTL dataset. This 

eQTL dataset [22] as a discovery dataset was used to conduct the 
Sherlock-based integrative genomics analysis. There were 1490 
subjects with a total of 675,350 SNPs and 12,808 genes. 4) Dataset 
#4 for validation eQTL dataset. This eQTL dataset [23] as an in-
dependent validation dataset was leveraged to perform the Sherlock 
inference analysis with the same parameters. A total of 400 subjects 
with 408,283 SNPs and 20,599 genes. 5) Dataset #5 for validation 
eQTL dataset. This blood-based eQTL dataset (n = 369 blood sam-
ples), which was downloaded from the Genotype-Tissue Expression 
(GTEx) portal (Version 7, https://gtexportal.org/) [24], was also 
adopted as an independent validation dataset for Sherlock analysis 
with the same parameters. For more detailed information for these 
datasets, please refer to Supplemental Methods.

2.2. Sherlock-based genomics analysis

We applied the Sherlock integrative genomics analysis [25] for 
incorporating GWAS summary statistics with eQTL data to uncover 
susceptible SNPs and genes for EM. The Sherlock Bayesian algorithm 
was designed to identify disease-relevant SNPs that have cis- and 
trans-regulatory effects on gene expression. The SNPs associated 
with EM and gene expression simultaneously were termed as eSNPs. 
There existed 3 potential scenarios for the Bayesian inference: 1) A 
positive score would be assigned based on an eSNP demonstrating a 
significant association with EM; 2) A negative score would be as-
signed based on an eSNP demonstrating a non-significant associa-
tion with EM; 3) No score would be assigned based on an SNP that 
was significantly associated with EM but not associated with gene 
expression. The logarithm of the Bayes Factor (LBF) is calculated by 
summarising the assigned scores of all relevant eSNPs for a given 
gene as a vital indicator to predict EM-risk genes. The significance of 
Sherlock analysis for each gene is calibrated by a simulation analysis, 
and simulated P-value <  0.05 was of significance.

2.3. Gene-level genetic association analysis

The Multi-marker Analysis of GenoMic Annotation (MAGMA) 
[26] was used as an independent technique to conduct a genetic 
association analysis of the GWAS summary dataset on gene-level. In 
this updated model, MAGMA carry a T statistic:

= = Z ZT Z
i

N
i

T
2

where N is the SNP numbers within a specific gene. =Z p( )i i , 
represents the cumulative normal distribution function, and pi is the 
marginal P value for a SNP i. SNPs were assigned to a given gene 
depended on the location of the SNP whether located into the gene 
or within a genomic region spanning 20 kb window of the gene. 
Gene body are defined as the region from transcription start site to 
transcription stop site. Furthermore, the MAGMA model assumes 
Z 0 SMVN( , ), where S is the linkage disequilibrium (LD) matrix 
among SNPs. The LD matrix can be diagonalized and thereby written 
as =S QAQT , where Q is an orthogonal matrix and 

=A diag( , , ., )N1 2 with j being the jth eigenvalue of S . The 1000 
Genomes Project Phase 3 European Panel [17] is used as a reference 
for calculating LD among SNPs. D 0 IMVN( , )K is a random variable, 
where =D A Q ZT0.5 . Thus, the sum of squared SNP Z-statistics is 
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2.4. Integrating GWAS-based genetic association signals with eQTL data

To further validate the risk genes whose expression levels are 
linked with EM, we conducted an integrative genomics analysis by 
using the S-PrediXcan [27] as an independent approach to integrate 
meta-GWAS summary statistics with GTEx blood-based eQTL data 
(i.e., Dataset #5). S-PrediXcan mainly leverages two linear regression 
(MASHR) models to analyze the association between predicted gene 
expression and EM:

= + +Y Xl l1 1

= + +Y Gg g2 2

where 1 and 2 are intercepts, 1 and 2 are independent error terms, 
Y is the n dimensional vector for n individuals, Xl is the allelic dosage 
for SNP l in n individuals, l is the effect size of SNP l, 

=G Xg i gene g ig i( ) is the predicted expression calculated by lg and 
Xl, in which lg is derived from the GTEx Project, and g is the effect 
size of Gg . The Z-score (Wald-statistic) of the association between 
predicted gene expression and EM can be transformed as:
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where ˆg is the standard deviation of Gg and can be calculated from 
the 1000 Genomes Project European Phase 3 Panel [17], l̂ is the 
effect size from GWAS on EM and ˆl is the standard deviation of l̂. 
Significant associations were adjusted using Bonferroni correction 
for multiple tests, and the significant P-value threshold was 
4.46 × 10−6 (0.05/11,217).

2.5. Pathway-based enrichment analysis

To uncover the biological pathways and molecular functions of 
the identified EM-risk genes, we utilize the web-access tool of 
KOBAS [28] to performed a functional enrichment analysis (http:// 
kobas.cbi.pku.edu.cn/kobas3). We submitted three gene sets identi-
fied by the Sherlock analysis (Gene sets #1–3) into the KOBAS 
website to calculate significantly enriched gene sets. There were two 
types of functional terms derived from multiple databases used in 
the enrichment analysis: 1) Biological pathways: Kyoto Encyclopedia 
of Genes and Genomes (KEGG), Reactome, BioCyc, and PANTHER 
pathways; 2) Gene ontology (GO) terms: biological process, cellular 
component, and molecular functions. The hypergeometric test was 
used to calculate the significance of each functional term. The False 
discovery Rate (FDR) method was used for conducting multiple 
comparisons, and FDR <  0.05 was considered to be of significance.

2.6. Participants and clinical samples

The study participants were recruited in Women’s Hospital, 
Zhejiang University School of Medicine from June 2020 to December 
2020. Women who aged 18–45 years old and underwent hystero- 
laparoscopy for suspected ovarian EM were included in the ovarian 
EM group (N = 30). The peripheral blood samples were collected 
before surgery, and the eutopic and ectopic endometria were ob-
tained simultaneously during surgery. For controls, the peripheral 
blood samples were collected from healthy women who had regular 
menstrual cycles (N = 30), and the normal endometria were obtained 
from women who underwent hysteroscopy for tubal infertility or 
uterine mediastinum (N = 30). All diagnosis were confirmed by sur-
gery and final pathological examination. Subjects who had received 
hormonal treatment in the past 3 months, or with diseases of en-
docrine system, malignant tumour, major organ diseases or with 
pathological diagnosis of adenomyosis, polyps, fibroid, or en-
dometrial hyperplasia were excluded. Participants’ demographic and 

clinical characteristics are shown in Supplementary Table S1. All EM 
patients were classified as III/IV stage according to the revised 
American Fertility Society (r-AFS) classification [29]. Variables in-
cluding age, BMI were not statistically significant between ovarian 
EM group and controls. The study was approved by the Human 
Ethics Committee of Women’s Hospital, Zhejiang University School 
of Medicine (No. 20190014) and all participants signed informed 
consents.

The endometrium specimens were fixed for 24 h in 10% neutral 
buffered formalin then underwent routine processing of washing, 
dehydration, transparency, wax dipping, and embedding at the 
Department of Pathology of Women’s Hospital, Zhejiang University 
School of Medicine for histologic diagnosis and im-
munohistochemistry. 5 mL peripheral blood was extracted with 
EDTA anticoagulant tube. Peripheral blood mononuclear cells 
(PBMCs) were isolated using a standardised density gradient tech-
nique.

2.7. RNA preparation and sequencing

Total RNA was extracted from the isolated PBMCs using the 
QIAzol and miRNeasy Mini Kit (Qiagen, CA, USA). After amplification, 
the RNA integrity was tested using the Bioanalyzer 2100 system with 
the RNA Nano 6000 Assay Kit (Agilent Technologies, CA, USA). The 
mRNA was purified from total RNA using poly-T oligo-attached 
magnetic beads, and used for establishing cDNA libraries for RNA 
sequencing. To preferentially select cDNA fragments of 370–420 bp 
in length, library fragments were purified using the AMPure XP 
system (Beckman Coulter, Beverly, USA). The quality of cDNA library 
was assessed on the Agilent Bioanalyzer 2100 system. Paired-end 
sequencing (150 bp) was performed on the Illumina Novaseq plat-
form by Novogene (Beijing, China).

2.8. Transcriptomic mapping and profiling

First, raw sequencing data were qualified using the FastQC soft-
ware (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
The human reference genome file was downloaded from the 
Ensembl ftp site (http://asia.ensembl.org/info/data/ftp/index.html, 
file name: Homo_sapiens.GRCh37.75.cdna.all.fa). Index of the re-
ference genome was established using Hisat2 V2.0.5 [30]. We used 
the Hisat2 V2.0.5 tool to align paired-end clean reads to the re-
ference genome. The featureCounts V1.5.0-p3 [31] was utilised to 
count the reads number mapped to each gene. The Fragments Per 
Kilobase of exon model per million mapped fragments (FPKM) of 
each gene was calculated.

2.9. Differential gene expression analysis

To validate whether abnormal expression of these identified ge-
netics-risk genes is associated with EM, we performed differential 
gene expression (DGE) analysis using the edgeR [32] R package 
(3.22.5) in our sequenced transcriptomic data that contained 30 EM 
patients and 30 matched controls. The P-values were corrected using 
the Benjamini & Hochberg method. The Student’s t-test was applied 
to evaluate the significance.

Based on the Pearson correlation algorithm, we performed co- 
expression pattern analyses for discovering the co-expression pat-
terns among the identified genes between EM and controls. The 
Corrplot package in R platform was used to visualise the co-expres-
sion patterns. To prioritise the important risk genes for subsequent 
functional validation, we performed an evidence scoring analysis for 
identified genes by combining all piece of supportive evidence from 
the current analysis including Sherlock, MAGMA, S-PrediXcan, and 
DGE analysis. A significant result scores 1, and a non-significant re-
sult scores 0.
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2.10. Immunohistochemistry staining and analysis

The IHC staining was performed as previously described[33]. 
3 µm thick sections were cut from the tissue blocks, followed by 
routine deparaffinisation and rehydration procedures. IHC staining 
was performed with antibodies specific to MKNK1 (dilution 1:500, 
T611286; Abmart, Shanghai, China), TOP3A (dilution 1:1200, 
TD3265; Abmart, Shanghai, China), NUCB1 (dilution 1:2500, 
ab154262; Abcam, MA, USA) and HOXB2 (dilution 1:500, orb114161; 
Biorbyt, Cambridge, UK) for 1 h at room temperature. After washing, 
the sections were incubated with horseradish peroxidase (HRP)- 
conjugated secondary antibodies (Envision Detection kit, GeneTech, 
Shanghai, China) for 1 h and reacted with DAB (GeneTech) until 
appropriate for microscopic examination. A negative control was 
performed by the same method except for replacing the primary 
antibodies with PBS. Slides were evaluated independently by two 
blinded observers and re-examined by a senior pathology physician.

The IHC results were evaluated using the immunoreactive score 
(IRS) [34]. The percentage of positive cells was scored from 0 to 4 as: 
no, <  10%, 10–50%, 51–80%, and >  80%. The intensity of reaction was 
scored from 0 to 3 as: no colour, mild, moderate, and intense. The 
final score was calculated by multiplying the percentage and in-
tensity scores, ranging from 0 to 12.

2.11. Small interfering RNA transfection in EESCs

Ectopic endometrial stromal cells (EESCs) were isolated and 
cultured as previously described [35]. Small interfering RNA (siRNA) 
were produced by Genepharma Corporation (Shanghai, China). The 
siRNA sequences were: MKNK1, 5‘-GUGGGAUGAAACUGAACAATT-3′ 
(sense), 5‘-UUGUUCAGUUUCAUCCCACTT-3′ (antisense); TOP3A 5‘- 
GGCAGCAAGUGCAGAAAUATT-3′ (sense), 5‘-UAUUUCUGCACUUGCU 
GCCTT-3′ (antisense). siRNAs (20 nM) were transfected into the 
EESCs at 70% confluency using Lipofectamine RNAiMAX (Invitrogen, 
Carlsbad, CA, USA). After transfection, total RNA (for 48 h) and 

protein (for 72 h) were extracted, and real-time quantitative PCR 
(RT-qPCR) and western blot analysis were conducted to assess 
transfection efficiency, respectively. For further details, see 
Supplementary Methods.

2.12. Biological behaviours assessment of EESCs

The biological behaviours of EESCs including proliferation, 
apoptosis, and migration and invasion were assessed via cell 
counting kit-8 assay, flow cytometry, and transwell assays, respec-
tively. For detailed methods, see Supplementary Methods.

2.13. Statistical analysis

For clinical data, IHC scoring and cell experiments, statistical 
analyses were conducted using the SPSS 24.0 (IBM, USA) and 
GraphPad Prism 8 (GraphPad Software, USA). The continuous data 
were presented as mean ±  SEM (or SD). Shapiro-Wilk test was used 
to examine the normality of data. For data variables with normal 
distribution, Student’s t-test or one-way ANOVA followed by 
Bonferroni’s post hoc tests were used for comparison between two 
groups or across multiple groups, respectively. For the data variables 
that were non-normally distributed, Mann–Whitney U or 
Kruskal–Wallis ANOVA followed by multiple comparison tests were 
carried out. The categorical data were shown as n (%) and compared 
by Chi-squared test. A value of P  <  0.05 was indicated as statistically 
significant.

3. Results

3.1. Overview of the framework

In the current study, we leveraged a comprehensive integrative 
framework to prioritise novel EM susceptibility genes, based on 
multiple bioinformatics methods and functional experiments 

Fig. 1. Schematic of framework. EM, endometriosis. GWAS, genome-wide association study. eQTL, expression quantitative trait loci. MAGMA, Multi-marker Analysis of GenoMic 
Annotation. GO, Gene Ontology. DGE, differential gene expression. IHC, immunohistochemical. EESCs, ectopic endometrial stromal cells.
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(Fig. 1). To highlight the EM-associated risk genes, three steps were 
involved: 1) Using Sherlock integrative analysis, MAGMA, and S- 
PrediXcan methods, we combined GWAS summary statistics on EM 
(N = 245,494) with three independent eQTL datasets (N = 2259) to 
identify novel genes associated with EM risk and then used multiple 
bioinformatics approaches, including permutation, pathway-based 
enrichment, and PPI network analyses to examine the biological 
functions of the identified genes in silico. 2) To further validate the 
EM-risk genes, we collected peripheral blood samples from 30 pa-
tients with ovarian EM and 30 matched healthy controls for tran-
scriptome sequencing and performed DGE and co-expression 
analyses. 3) To further explore the functional roles of the top-ranked 
newly identified EM-risk genes, we conducted follow-up validation 
studies by performing IHC and cellular functional experiments. Fig. 1
shows a detailed schematic of the proposed framework.

3.2. Prioritisation of EM risk-associated genes using Sherlock 
integrative analysis

The workflow of the integrative genomics analysis is shown in 
Supplementary Fig. S1. At the discovery stage, we integrated the 
GWAS summary statistics on EM (Dataset #1, N = 245,494) with eQTL 
data (Dataset #3, N = 1490) using Sherlock integrative analysis to 
determine whether abnormal gene expression confers susceptibility 
to EM. We found that 715 genes were significantly associated with 
EM risk (Sherlock-based permuted P ≤ 0.05; Gene set #1, 
Supplementary Table S2). We re-performed the Sherlock analysis 
with the same parameter settings to validate the identified genes 
using two independent eQTL datasets (Datasets #4 and #5). In this 
regard, we found 683 significant EM risk-associated genes from 
Dataset #4 (Sherlock-based permuted P  <  0.05; Gene set #2, 
Supplementary Table S3) and 330 significant EM risk-associated 
genes from Dataset #5 (Sherlock-based permuted P  <  0.05, Gene set 
#3, Supplementary Table S4). Comparing the identified genes from 
Gene set #1 in the discovery stage with those from Gene sets #2 and 
#3, 14 overlapping genes across the three gene sets, including 
GIMAP4 (permuted P = 1.08 × 10−3), TOP3A (permuted P = 2.19 × 10−3), 
and NMNAT3 (permuted P = 5.75 × 10−3), were identified as EM risk- 
associated genes (Fig. 2A and Table 1).

Furthermore, we performed functional enrichment analyses for 
the three gene sets identified above based on the KEGG pathway and 
gene ontology (GO) terms using the KOBAS web-access tool. Thus, 
we observed that 19 common biological pathways and 35 common 
GO terms were significantly enriched by gene sets #1, #2, and #3 
(FDR  <  0.05, Fig. 2B–E and Supplementary Table S5). Based on Gene 
set #1, the top-ranked significantly enriched pathways included 
metabolism of proteins (P = 1.27 × 10−21) and immune system 
(P = 4.66 × 10−21), while the top-ranked significant GO term was 
membrane-bound organelles (P = 1.76 × 10−26).

3.3. Validation using in silico gene-level association analysis

To further validate the identified EM risk-associated genes, an 
independent method of gene-level genetic association analysis was 
adopted using the MAGMA tool. Thus, 1228 significant or suggestive 
genes associated with EM were found (MAGMA-based P  <  0.05, 
Gene set #4, Supplementary Table S6). Consistently, 10 of the 14 
Sherlock-identified risk genes were validated via the MAGMA ana-
lysis (Fig. 3A and Supplementary Table S7). Furthermore, none of the 
three Sherlock-identified EM risk-associated gene sets overlapped 
with the MAGMA-identified Null trait-related genes (Fig. 3B, Gene 
set #5, as a negative control).

To ensure the reliability of our findings, we performed in silico 
permutation analyses 100,000 times. Thus, we observed that the 
significant genes involved in Gene set #1 remarkably overlapped 
with Gene set #2 (Permuted P = 2.0 × 10−5; see Fig. 3C), Gene set #3 

(Permuted P = 0; see Fig. 3D), and Gene set #4 (Permuted P = 0; see 
Fig. 3E), indicating that these identified EM-associated risk genes are 
biologically consistent. Moreover, to further ensure the reliability of 
our results, we compared the three identified significant gene sets 
based on Sherlock analysis with the gene sets based on the MAGMA 
analysis of GWAS summary statistics on EM and the Null phenotype. 
Thus, we observed that Gene sets #1, #2, and #3 showed markedly 
higher overlapping rates with Gene set #4 than with Gene set #5 at 
three different P-value thresholds (i.e., 0.05, 0.01, and 0.001; 
Supplementary Fig. S4), indicating that the identified genes asso-
ciated with EM risk were attributable to genetic components instead 
of random events.

As referenced in previous studies [11,27,36], using the S-Pre-
diXcan method as an independent technique to integrate GWAS 
summary statistics with GTEx blood-based eQTL data, we con-
sistently found that nine of these 14 identified genes were associated 
with EM (Table 1). Also, we performed an integrative analysis of 
incorporating GWAS summary data on EM with GTEx eQTL data from 
uterus tissue that is more relevant tissue, and replicated six top- 
identified genes showing notable associations with EM (P  <  0.05, 
Supplementary Table S8). To distinguish the causality of identified 
genes, we further conducted Mendelian randomization analyses of 
integrating GWAS summary data and two blood eQTL datasets from 
the eQTLGen and GTEx databases using SMR tool [13]. For GETx 
blood dataset, we found that nine of these 14 top-identified risk 
genes, including TOP3A and MKNK1, showed notable causality with 
EM (PSMR < 0.05 and PHEIDI > 0.05), and three genes exhibited sug-
gestive causality with EM (0.05  <  PSMR < 0.1 and PHEIDI > 0.05). As for 
eQTLGen blood dataset, we also identified nine genes showing no-
table causality with EM, including TOP3A and MKNK1 (PSMR < 0.05 
and PHEIDI > 0.05), and one gene exhibiting suggestively causal evi-
dence for EM (0.05  <  PSMR < 0.1 and PHEIDI > 0.05). Consistently, there 
is a high correlation of the SMR results between the eQTLGen and 
GTEx blood eQTL datasets (rho = 0.7, P = 0.0057, Supplementary Table 
S9 and Fig. S5). Notably, it has been reported that TPM2, HOXB2, and 
MGMT are associated with EM [37–39]. Based on our comprehensive 
integrative genomics analysis, we identified 14 genes, including 11 
novel risk genes implicated in EM susceptibility (Table 1).

3.4. Network-based enrichment analysis of 14 EM risk-associated genes

To investigate the underlying molecular links corresponding to 
the 14 EM risk-associated genes, we constructed PPI network ana-
lysis using the GeneMANIA tool. From Fig. 4, it is evident that strong 
biological interactions existed among these identified risk genes; 
this is consistent with previous evidence that biologically related 
genes may demonstrate convergent contribution to complex disease 
risk [40,41]. Co-expression links accounted for most (71.51%) of the 
molecular interactions among these identified risk genes. For ex-
ample, NUCB1 showed co-expression with TPM2, HOXB2, and MGMT. 
Additionally, protein domains were also shared among these genes. 
Notably, these protein domains accounted for 27.25% of the total 
network. Our PPI network analysis also demonstrated that the 14 
identified EM risk-associated genes might have a synergistic con-
tribution to the pathogenesis of EM.

3.5. Verification of identified EM-risk genes in our RNA-sequencing data 
based on peripheral blood

To further validate these results, we subjected peripheral blood 
samples from 30 ovarian EM cases and 30 healthy controls to DGE 
analysis via RNA sequencing. The expression levels of the 14 EM 
risk-associated genes in each individual were visualized as heat-
maps as shown in Supplementary Fig. S6. Further, we examined the 
differences in the expression levels of the 14 EM risk-associated 
genes identified by Sherlock analysis between the groups. As 
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shown in Fig. 5A–G and Table 2, among the 14 genes, TOP3A, 
MKNK1, SIPA1L2, and NUCB1 were significantly upregulated, while 
HOXB2, GIMAP5, and MGMT were significantly downregulated in 
PBMC from patients with ovarian EM compared with the samples 
from the controls. The changes in the expression levels of the other 
seven genes (GIMAP4, NMNAT3, TPM2, METTL27, VAMP4, ENDOG, 
and RBM18) did not show any significant difference between the 
EM cases and the healthy controls (Supplementary Fig. S7). By 
performing co-expression pattern analysis, we found that the co- 
expression patterns of the 14 important genes were prominently 
altered among the patients with EM compared with the control 
cases (Fig. 5H). Overall, our RNA sequencing results provided fur-
ther evidence that the identified genes showed aberrant expression 

levels in EM compared with the healthy controls. Based on the 
scoring of the multiple supportive evidence corresponding to the 
14 genes (Table 2), we selected the top five genes, TOP3A, MKNK1, 
SIPA1L2, NUCB1, and HOXB2, for follow-up protein endometrial 
tissue expression evaluation.

3.6. MKNK1 and TOP3A are highly expressed in the endometrium of 
women with ovarian EM

To evaluate the protein expression levels and localisation of the 
identified EM risk-associated genes in the endometrium of the 
patients with EM and the healthy controls, we performed IHC 
staining for TOP3A, MKNK1, SIPA1L2, NUCB1, and HOXB2 in ectopic 

Fig. 2. Integrative genomics analyses identify risk genes and pathways for EM. (A) Venn diagram of three identified EM-risk gene sets: Gene set #1, Gene set #2, and Gene set #3 
are based on Sherlock integrative genomics analysis by combining Zeller et al. eQTL data (Dataset #3), Dixon et al. eQTL data (Dataset #4), and GTEx blood eQTL data (Dataset #5) 
with GWAS summary statistics on EM, respectively. (B, C) Venn diagrams of the significantly enriched pathways (B) and GO terms (C) by three identified gene sets. (D, E) The 
scatter diagrams showing the 19 common significant pathways (D) and 35 common significant GO terms (E) based on Gene set #1. EM, endometriosis. GO, Gene Ontology.

Table 1 
Comprehensive genomics analyses showing that 14 genes are implicated in EM risk. 

Gene LBF in the 
discovery stage

Permuted P-value 
(Sherlock analysis of 
Dataset #3)

Permuted P-value 
(Sherlock analysis of 
Dataset #4)

Permuted P-value 
(Sherlock analysis of 
Dataset #5)

MAGMA-based 
P-value 
(Dataset #1)

MAGMA-based P- 
value (Dataset #2, 
Negative control)

S-PrediXcan-based P- 
value (GTEx v7 whole 
blood)

GIMAP4 3.41 0.0011 0.0023 0.0019 0.0014 0.13 0.0049
TOP3A 2.86 0.0022 0.024 0.0028 0.011 0.11 0.0032
NMNAT3 2.12 0.0058 0.006 0.020 0.12 0.52 0.23
MKNK1 1.70 0.0098 0.032 0.0039 3.88E-05 0.65 0.027
TPM2 1.62 0.011 0.034 0.012 0.025 0.57 0.0015
SIPA1L2 1.57 0.012 0.041 0.019 0.32 0.080 0.0017
METTL27 1.44 0.014 0.011 0.0087 0.0046 NA 0.048
NUCB1 1.26 0.017 0.023 0.0098 0.0079 0.35 0.0081
VAMP4 1.22 0.018 0.04 0.0082 0.013 0.38 0.0099
ENDOG 1.01 0.024 0.041 0.026 0.026 0.22 0.056
HOXB2 0.85 0.029 0.04 0.0088 0.051 NA 0.018
GIMAP5 0.57 0.044 0.0063 0.048 0.0014 0.62 0.46
RBM18 0.55 0.045 0.0078 0.040 0.12 0.80 0.84
MGMT 0.54 0.046 0.023 0.036 0.0052 0.90 0.84

EM, endometriosis; LBF, logarithm of the Bayes Factor; MAGMA, Multi-marker Analysis of GenoMic Annotation.

Y. Huang, J. Luo, Y. Zhang et al. Computational and Structural Biotechnology Journal 21 (2023) 1510–1522

1515



and eutopic endometria samples from 30 patients with ovarian EM 
and normal endometria samples from the 30 control patients. Thus, 
we observed that MKNK1 was primarily localised in the nucleus of 
endometrial glandular epithelial cells, whereas its expression in the 
endometrial stroma was comparatively weak (Fig. 6A–C). Ad-
ditionally, MKNK1 expression was significantly higher in eutopic 
endometrium than in normal endometrium and showed the 
highest expression level in ectopic endometrium (P  <  0.05; 
Fig. 6D). Further, TOP3A was predominantly immunolocalised in the 
cytomembrane and cytoplasm of endometrial glandular epithelial 
cells (Fig. 6E–G). Additionally, its expression level (IRS) in the ec-
topic endometrium was significantly higher than that in the eu-
topic and normal endometrium (P  <  0.001 for both), and its 
expression in the eutopic endometrium was increased compared 
with that corresponding to normal endometrium (P  <  0.01), as 
presented in Fig. 6H. Endometrial glandular epithelial and stromal 
cells expressed HOXB2, and the protein of this gene was primarily 
localised in the cytoplasm and nucleus (Fig. 6I–K). Additionally, 
ectopic endometrium showed decreased HOXB2 expression com-
pared with eutopic and normal endometrium (P  <  0.01), but the 
latter two showed no significant difference in this regard 
(P  >  0.05), as can be seen in Fig. 6L. NUCB1 was expressed in both 
the endometrial stroma and epithelium and mainly presented the 
glandular epithelial cells cytoplasmic staining in (Fig. 6M–O). Ec-
topic, eutopic, and normal endometria did not differ significantly 
with respect to NUCB1 expression (P  >  0.05, Fig. 6P). Unfortunately, 
due to the lack of a good antibody, SIPA1L2 expression could not be 
detected (data not shown).

3.7. MKNK1 and TOP3A regulate the biological behaviours of EESCs

As MKNK1 and TOP3A were identified as novel, top-ranked EM- 
risk genes, we investigated the functional roles of these two genes in 
EM in vitro. EESCs were transfected with MKNK1 siRNA and TOP3A 
siRNA to knock down their expression, and their biological beha-
viours were assessed. The results of RT-qPCR and western blotting 
showed significantly lower MKNK1 and TOP3A expression in siRNA- 
transfected EESCs (Fig. 7A–C). Further, the results of the CCK-8 assay 
showed a significant decrease in the proliferation of EESCs in the si- 
TOP3A group, while no difference was observed in the si-MKNK1 
group compared with the si-Ctrl group (Fig. 7D). Based on flow cy-
tometry, the apoptosis rate corresponding to the si-TOP3A group was 
higher than that corresponding to the si-Ctrl group (Fig. 7E). Fur-
thermore, based on Transwell assays, compared with the si-Ctrl 
group, the si-MKNK1 and si-TOP3A groups showed significantly 
impaired EESC migration and invasion abilities (Fig. 7F). Our cell 
function studies also indicated that MKNK1 downregulation in-
hibited the migration and invasion abilities of EESCs, but did not 
affect their proliferation and apoptosis rates. Additionally, TOP3A 
downregulation inhibited EESCs proliferation, migration, and inva-
sion and promoted their apoptosis.

4. Discussion

EM is a common and complex disease with genetic predisposi-
tion. Hitherto, multiple GWAS have been performed to reveal the 
genetic determinants underlying EM in populations worldwide. 

Fig. 3. Consistent evidence supporting the identified EM-risk genes from integrative genomics analyses. (A, B) Venn diagrams showing the overlapping genes of three Sherlock- 
identified EM-risk gene sets with MAGMA-identified EM-risk genes (Gene set #4; A), and with MAGMA-identified Null trait-related genes (Gene set #5, as a negative control; B). 
(C–E) Computer-based permutation analyses of 100,000 times for comparison of genes from Gene set #1 with that from Gene set #2 (C), Gene set #3 (D), and Gene set #4 (E). EM, 
endometriosis. MAGMA, Multi-marker Analysis of GenoMic Annotation.
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However, the genes associated with EM risk have not yet been 
identified. As most of the EM risk-associated risk variants are located 
in non-coding regions, the identified risk variants may confer the 
risk of EM by regulating gene expression. Therefore, identifying risk 
genes, from our perspective, is a crucial step in bridging GWAS 
findings and the aetiology of EM to the end of facilitating the de-
velopment of novel therapeutics for its management. In this study, 
we conducted Sherlock analyses to integrate a large-scale EM GWAS 
dataset with independent eQTL datasets. Thus, we first identified 14 
risk genes whose expression changes may contribute to the risk of 
EM and thereafter, performed comprehensive analyses to validate 
and prioritise the identified risk genes. Further DGE analysis showed 
that seven of these genes, including TOP3A, MKNK1, and SIPA1L2 
were dysregulated in the peripheral blood of ovarian EM cases 
compared with the control samples. IHC staining results also con-
sistently showed that MKNK1 and TOP3A were upregulated, while 
HOBX2 was downregulated in the endometrium of women with 
ovarian EM. Finally, we observed that the knockdown of MKNK1 and 
TOP3A affected the migration and invasion behaviours of EESCs. 
Taken together, these convergent lines of evidence suggested that 
MKNK1 and TOP3A are promising candidate genes for EM.

MKNK1 (also named MNK1), located on chromosome 1p33, plays 
essential roles in many human diseases, including tumourigenesis 
and metabolic diseases, and is also implicated in autoimmune and 
inflammatory diseases as well as viral replication processes. 
Additionally, MKNK1 is one of the immediate downstream effectors 
of the activated MAPK and PI3K pathways driven by BRAFV600E and 
mutated PTEN. Elevated levels of MKNK protein kinases and their 
substrate, eIF4E (or p-eIF4E), have been detected in multiple types of 
solid tumours (e.g., breast, prostate, and melanoma) as well as 

haematological malignancies [42–44]. It has also been reported that 
MKNK1 facilitates tumour invasion and metastasis by promoting 
eIF4E phosphorylation [45,46]. In addition, numerous studies have 
highlighted that the MKNK/eIF4E axis contributes to promoting 
oncogenic mRNA translation [44,47], and in recent years, MKNK1/2 
has been regarded as an important molecular target in invasive and 
metastatic cancer, and several MKNK1/2 inhibitors have reached 
phase I/II clinical trials [42]. However, despite the vital role of the 
MAPK and PI3K pathways in EM, no study to date has focused on the 
association between MKNK1 with EM. In this study, we identified 
MKNK1 as a promising EM risk-related gene and verified that it was 
consistently upregulated in peripheral blood and endometrium 
samples from EM cases compared with controls. Consistent with its 
known cellular function, MKNK1 protein expression was detected in 
both the nucleus and cytoplasm of endometrial cells. Our in vitro 
experiments also suggested that MKNK1 possibly participates in the 
pathogenesis of EM by promoting the invasion and migration of 
EESCs, the mechanism of which might involve eIF4E phosphoryla-
tion or the regulation of other oncogenic cell signalling pathways.

TOP3A is located on chromosome 17p11.2 and encodes Top3α 
(topoisomerase 3α), a type IA DNA topoisomerase that shows dual 
localisation, in the nucleus and mitochondria [48]. Reportedly, the 
nuclear isoform of Top3α functions as a decatenase, facilitating the 
processing of homologous recombination intermediates to maintain 
genomic stability [49,50]. Additionally, the mitochondrial isoform of 
Top3α is an essential component of the mtDNA replication ma-
chinery required for the decatenation and segregation process [51]. 
However, the function of TOP3A in human diseases, including EM, 
has not yet been sufficiently investigated. Although the pathophy-
siology of EM remains elusive, dysregulated DNA damage response 

Fig. 4. PPI-network of 14 EM-risk genes using the GeneMANIA tool. The 14 EM-risk genes were marked with red colour, and the 20 predicted genes were marked with green 
colour. The underlying molecular interactions between each gene pair were attributed based on the co-expression links (account for 71.51%), shared protein domains (account for 
27.25%), and co-localization (account for 1.24%). PPI, protein–protein interaction.
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(DDR) has received much attention in this regard in recent years. For 
example, Bane et al. [52] demonstrated that eutopic endometrium 
from women with EM show higher DDR and DNA repair gene ex-
pression levels, as well as higher DNA damage levels compared with 
the controls, suggesting the existence of stimuli that induce DNA 
damage in eutopic endometrium. Thus, the involvement of TOP3Α in 
homologous recombination repair may provide clues regarding its 
biological role in EM. High TOP3Α expression levels in eutopic and 
ectopic endometrium samples probably help counteract the high 
DNA damage caused by external or internal factors; notwith-
standing, this still warrants further investigation.

HOXB2, a member of the HOX family, is a transcription factor 
that is involved in embryonic development. The expression of 

HOXB2 is altered in a variety of solid tumours, the function of 
which could be distinct in different tumours. HOXB2 was identified 
as a tumor suppressor in breast cancer cells, whose expression 
could be downregulated by estrogen[53]. A previous study de-
monstrated that HOXB2, as a downstream target of miR-202–5, 
played a role in inhibiting the proliferation, invasion and migration 
of ovarian cancer cells[54]. However, in some other malignant 
tumours such as esophageal squamous cell carcinoma, ne-
phroblastoma and bladder cancer, HOXB2 presented a tumour 
promotor via increasing cell proliferation, invasion and migration
[55–57]. In EM, whether HOXB2 act as a suppressor thus the de-
creased expression of protein might promote diseases progression 
need to be further clarified.

Fig. 5. Differential gene expression and co-expression patterns of EM-risk genes in PBMCs of women with ovarian EM and health controls based on RNA-Seq. (A-G) Violin plots 
showing significantly different expressed genes between EM and controls for TOP3A (A), MKNK1 (B), SIPA1L2 (C), NUCB1 (D), HOXB2 (E), GIMAP5 (F), and MGMT (G). (H) Co- 
expression pattern analysis of 14 EM-risk genes between controls and EM. The colour legend showing the degree of correlation coefficients, red represents − 1 and blue represents 
+ 1. PBMC, peripheral blood mononuclear cell. EM, endometriosis.

Y. Huang, J. Luo, Y. Zhang et al. Computational and Structural Biotechnology Journal 21 (2023) 1510–1522

1518



Previous GWASs have been conducted for identifying disease- 
associated variants for EM [58]. To give an overview of significant 
loci obtained through GWAS, we summarized these reported sig-
nificant variants in the Supplementary Table S10. Among the 14 
identified genes, TPM2, HOXB2, and MGMT have been shown to be 
associated with EM in a few previous studies [37–39]. Specifically, 
TPM2 encodes beta-tropomyosin, which plays a role in muscle 
contraction and motility, and helps maintain cell shape and cell- 
matrix interactions. Irungu et al. [37] discovered and confirmed that 
TPM2 is highly expressed in the ectopic endometrium and serum of 
patients with EM compared with samples from the controls, sug-
gesting it has potential as a biomarker of EM. In this study, bioin-
formatics analyses based on public datasets suggested that the 

expression level of TPM2 is associated with EM risk, but showed no 
expression difference in our verification samples. This phenomenon 
could be attribute to several reasons including the different ethnic 
background, relatively small verification sample size, and differential 
expression of genes in different tissues and different levels. Vester-
gaard et al. [38] observed that HOXB2 transcription was significantly 
reduced in EM lesions compared with endometrium samples from 
patients with EM and healthy controls, which was in agreement with 
our results. O6-methylguanine-DNA methyltransferase (MGMT), 
which is responsible for the direct repair of DNA, is primarily im-
munolocalised in the nuclei of epithelial cells in eutopic endometrial 
tissue and ovarian EM lesions [39]. Nevertheless, previous studies 
have only been focused on the investigation of the expression or 
localisation patterns of risk genes. Thus, further studies are needed 
to clarify the function of these genes in EM.

Several eQTL analysis studies have focused on the association 
between genetic variation and gene expression in EM. In this regard, 
Montgomery et al. have highlighted three eQTLs that may regulate 
the expression of target genes, including LINC0039 and CDC42 on 
chromosome 1, VEZT on chromosome 12, and CDKN2A-AS1 on 
chromosome 9, by integrating gene expression data from whole 
blood (n = 862) and endometrial tissue (n = 136) with an Australian 
GWAS dataset (2594 cases and 4496 controls) [59,60]. Recently, 
Chou et al. conducted a GWAS involving 126 EM cases and 96 con-
trols in a Taiwanese population, and thereafter, mapped the results 
obtained with the GTEx database. They identified that SNP 
rs13126673 on chromosome 4 is a cis-eQTL and is associated with 
both EM risk and INTU expression [61]. These previous studies were 
based on relatively small sample sizes of GWAS data, which may 
have reduced their power to identify more risk loci. In this current 

Table 2 
Seven significantly differentially expressed genes verified by subjecting PBMCs from 
women with ovarian EM and healthy controls to RNA-sequencing. 

Gene names Log2 Fold Change P-value Evidence Scoring

TOP3A 0.56 1.15E-08 6
MKNK1 0.94 1.91E-09 6
NUCB1 0.30 0.011 6
SIPA1L2 1.62 1.27E-10 5
HOXB2 -0.42 0.0021 5
GIMAP5 -0.46 0.0013 5
MGMT -0.42 0.003 5

Note: Evidence scores were calculated by combining all pieces of supportive evidence 
from the analyses performed in this study, including Sherlock, MAGMA, S-PrediXcan, 
and DGE analyses. A score of 1 indicates a significant result, while a score of 0 in-
dicates a non-significant result. EM, endometriosis; PBMC, peripheral blood mono-
nuclear cell; MAGMA, Multi-marker Analysis of GenoMic Annotation; DGE, 
differential gene expression.

Fig. 6. Immunoreactivity of MKNK1, TOP3A, HOXB2 and NUCB1 in endometrium from women with and without ovarian endometriosis. The expression and localisation of MKNK1 
(A–C), TOP3A (E–G), HOXB2 (I–K), NUCB1 (M–O) in normal, eutopic, and ectopic endometrium evaluated by IHC staining, respectively. The comparisons of IRS across three groups 
(D, H, L, P). Values are presented as mean ±  SEM. P-values were determined by Kruskal-Wallis tests followed by multiple comparisons. ∗P  <  0.05, ∗∗P  <  0.01. and ∗∗∗P  <  0.001. 
IHC, immunohistochemical. IRS, immunoreactive score.
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study, we leveraged GWAS data with a very large sample size 
(n = 245,494) from the UK Biobank database and three independent 
eQTL datasets for integrative genomic analysis; this enhanced the 
possibility of identifying more novel loci. Additionally, Sherlock in-
tegrative genomics analysis, based on the Bayesian inference 
method, is a vigorous tool for integrating genetic data from GWAS 
with existing eQTL data [25]. Compared with the usual GWAS ap-
proaches that disregard large amounts of common genetic variants 
with minor effects, Sherlock integrative analysis has an obvious 
advantage in that it involves the re-use of these disregarded 
common variants in GWAS. Further, based on Sherlock analysis, 
several novel risk genes have been implicated in the pathogenesis of 
various complex diseases, including schizophrenia, childhood-onset 
asthma, major depressive disorders, and COVID-19 [18,36,62,63]. Our 
study further provides supportive evidence that incorporating 
multiple layers of omics data contributes to strengthening the as-
sociation signals of pinpointing risk loci for complex diseases.

This study had several limitations that should be considered. 
First, the GWAS data and eQTL data used in the integrative analysis 
were based on European ancestry, whereas our RNA-sequencing 
data were derived from a Han Chinese population. This might have 
led to biases due to the differences in genetic architectures across 

different ethnicities. Second, even though our current integrative 
genomic analyses have highlighted some EM risk-associated genes, 
such as MKNK1 and TOP3A, there were other numerous underlying 
susceptible genes with suggestive evidence for EM that warrant 
further investigation, as documented in supplementary tables. Third, 
the different datasets used in the present study showed hetero-
geneity. To overcome this issue, we applied different statistical 
methods for multiple corrections of each analysed dataset, such as 
FDR <  0.05, for pathway enrichment analysis, permuted P-value <  
0.05, for Sherlock analysis, and empirical P-value <  0.05, for in silico 
permutation analysis. Moreover, the study participants were only 
ovarian EM cases, and further studies involving superficial en-
dometriosis and deep EM are needed. Furthermore, to examine 
whether using the threshold of MAF >  0.0001 affect the results of 
integrative genomic analyses, we re-performed the Sherlock-based 
analyses based on SNPs with a MAF >  0.01, and found that these 14 
identified EM-risk genes remained to be significant, which is highly 
consistent with current findings (R2 = 0.9997–0.9999, 
Supplementary Fig. S8 and Table S11). Finally, our functional ex-
periments on MKNK1 and TOP3A in EECSs are preliminary. Thus, 
further studies involving animal models and molecular mechanisms 
are required.

Fig. 7. The role of MKNK1 and TOP3A in proliferation, apoptosis, migration and invasion of EESCs. (A–C) mRNA (A) and protein (B–C) expression levels of MKNK1 and TOP3A in 
EESCs transfected with siRNA were determined by RT-qPCR (n = 3) and western blot analysis (n = 6), respectively. (D) Proliferation of EESCs transfected with si-MKNK1, si-TOP3A, 
and si-Ctrl was assessed with CCK-8 assay at 0, 24, 48, 72 and 96 h, n = 6. (E) Representative images and the graphical statistics of apoptosis rate assessed by flow cytometry of 
EESCs transfected with si-MKNK1, si-TOP3A, and si-Ctrl. n = 6. (F) Representative fields (100 × magnification) and the graphical statistics of Transwell migration and invasion assay 
of EESCs transfected with si-MKNK1, si-TOP3A, and si-Ctrl. n = 5. Values are presented as mean ±  SEM. P-values were determined by unpaired two-tailed t test. ∗P  <  0.05, and 
∗∗∗P  <  0.001. EESCs, ectopic endometrial stromal cells. Real-time quantitative PCR (RT-qPCR). Cell counting kit-8, CCK-8.
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In summary, based on our comprehensive analyses, MKNK1 and 
TOP3A were identified as EM risk-associated genes, whose geneti-
cally modulated abnormal expression may contribute to EM. By 
combining GWAS summary-based statistics with eQTL-derived reg-
ulatory information, this study provides a plausible mechanistic 
explanation of the functional effects of genetic variants on EM sus-
ceptibility. These results provide novel insights into the biological 
mechanisms of EM and support the promise of translating GWAS 
findings into new approaches for clinical diagnosis and treatment.
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