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The second generation antipsychotic drug clozapine represents the most effective
pharmacotherapy for treatment-resistant psychosis. It is also associated with low rates
of extrapyramidal symptoms and hyperprolactinemia compared to other antipsychotic
drugs. However, clozapine tends to be underutilized in clinical practice due to a number of
disabling and serious side-effects. These are characterized by a constellation of metabolic
side-effects which include dysregulation of glucose, insulin, plasma lipids and body fat.
Many patients treated with clozapine go on to develop metabolic syndrome at a higher
rate than the general population, which predisposes them for Type 2 diabetes mellitus and
cardiovascular disease. Treatments for the metabolic side-effects of clozapine vary in their
efficacy. There is also a lack of knowledge about the underlying physiology of how
clozapine exerts its metabolic effects in humans. In the current review, we focus on key
studies which describe how clozapine affects each of the main symptoms of the metabolic
syndrome, and cover some of the treatment options. The clinical data are then discussed
in the context of preclinical studies that have been conducted to identify the key biological
substrates involved, in order to provide a better integrated overview. Suggestions are
provided about key areas for future research to better understand how clozapine causes
metabolic dysregulation.

Keywords: antipsychotic, clozapine, cardiovascular disease, diabetes, metabolic syndrome, preclinical,
side-effects
INTRODUCTION

Antipsychotic drugs represent the primary pharmacological treatment for schizophrenia spectrum
disorders, and are increasingly used to treat other psychiatric conditions (1–4). Commonly
categorized into first, second and third-generation drugs (5), the second-generation
antipsychotics (SGAs) significantly improved quality of life by decreasing the incidence of
neurological side-effects, such as extrapyramidal symptoms (EPS), that occurred with first-
generation antipsychotic (FGA) drugs. However, SGAs are associated with higher rates of
metabolic side-effects, which vary considerably by drug (6–10).

The SGA clozapine is the preferred drug for treatment resistant psychosis (11–15), producing
therapeutic responses in approximately 30% of patients previously refractory to other antipsychotics
(16–18), possibly reflecting a unique mechanism of action based on its complex pharmacology (19).
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It also has relatively low risk for EPS and hyperprolactinemia
(20). Clinically, clozapine reduces violent and aggressive
behavior in patients with schizophrenia (21, 22), and has been
associated with the lowest all-cause mortality rate among all
antipsychotics (23–25). Yet it is estimated that only 10–20% of
eligible patients in the U.S. are prescribed clozapine, indicating
that the drug is strongly underutilized (26).

This underutilization is due to a number of factors, including
lack of prescribing experience by clinicians, institutional take-up of
the drug, and concerns about blood monitoring for neutropenia/
agranulocytosis, as well as other drug side-effects (27). With regards
to the latter, clozapine is associated with a plethora of adverse effects
(13, 26), which include a wide range of immune, metabolic,
cardiovascular and psychiatric complications. Serious adverse
effects include neutropenia/agranulocytosis (28), myocarditis/
cardiomyopathy and tachycardia (29–31), and obsessive–
compulsive symptoms (32, 33). However, the most common
issues associated with clozapine use are the metabolic side-effects
(34, 35), which occur in a majority of patients. These span a range of
metabolic substrates, including glucose, insulin, lipids and body fat,
which are collectively referred to as the “metabolic syndrome” (36).
Patients who use clozapine consistently have more severe metabolic
side-effects than with any other antipsychotic drug (6, 37). For
example, a recent observational study of clozapine-treated
outpatients noted that 80% were overweight, and 58% met criteria
for metabolic syndrome, with concurrent high rates of
hypertension, hyperglycemia and hyperlipidemia (38). Similarly, a
retrospective chart review of clozapine users at community mental
health clinics noted that 45% met criteria for metabolic syndrome,
but these physical symptoms were often undertreated, with only
31% receiving treatment for hyperglycemia and 16% for
hypertension (39). As premature death in schizophrenia is
primarily caused by cardiometabolic disorders (40, 41), and
clozapine often remains the only option for treatment resistant
schizophrenia, it is imperative to understand in more detail the
metabolic side-effects of clozapine use. In the present review, we
summarize the main metabolic side-effects of clozapine in clinical
populations, and integrate findings from recent preclinical studies to
help elucidate the physiological pathways involved (42).
METABOLIC SYNDROME

The clinical definition of metabolic syndrome has varied over
past years depending on whether the emphasis was on insulin
resistance, obesity or cardiovascular anomalies (36). In addition
to Reaven’s initial description of hypertension, dysglycemia and
dyslipidemia as factors that raise the risk for cardiovascular
disease (CVD) and Type 2 diabetes mellitus (T2DM), the
metabolic syndrome is also known to include abnormalities in
coagulation and inflammation (43), and are frequently associated
with obesity (44). Clinically, the metabolic risk factors
themselves are not routinely measured for a diagnosis of
metabolic syndrome. Instead, a diagnosis is made if three of
the five following criteria are met: 1) waist circumference ≥
102 cm in men and 88 cm in women (numbers change based on
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ethnicity), 2) triglyceride levels ≥ 150 mg/dl, 3) HDL cholesterol
below 40 mg/dl in men and 50 mg/dl in women, 4) hypertension
(blood pressure ≥ 130/85 mm Hg) and 5) glucose levels ≥ 100
mg/dl (45). Drugs used to treatment metabolic syndrome in
clozapine users may target individual or multiple symptoms; for
example, metformin is efficacious in concurrently ameliorating
obesity, hyperglycemia and triglycerides (46).
ABDOMINAL OBESITY

Obesity and weight gain, commonly estimated by the body mass
index (47), potentially contribute to increased risk of
cardiometabolic disorders. Previous studies have identified
excess abdominal fat as an independent risk factor for CVD,
where abdominal fat distribution in particular is a better
predictor of CVD than body mass index (48). Of note, obesity
does not necessarily coincide with insulin resistance, diabetes
mellitus nor risk for CVD, since weight gain can be similar
between patients, but visceral fat distribution can vary, thus
emphasizing the importance of abdominal adiposity as an
independent risk factor for cardiometabolic disorders in
schizophrenia patients (49–51).

The propensity for clozapine to cause weight gain and obesity
is well documented in patients with schizophrenia (52, 53).
Compared to other antipsychotics, clozapine was associated
with the largest amount of weight gain during the first 12
months of treatment and at up to 46 months, with 30.5% of
patients subsequently developing T2DM (54). A follow-up study
performed by the same authors revealed patients gained
approximately 13.6 kg over a 10-year period of clozapine
administration, with the risk of CVD and T2DM increasing
over time in this cohort (41). Significant weight gain is a concern
as an increase of >7% of desirable weight (the midpoint of a
weight range for a specific height) can strongly predispose
patients to risk for CVD (55, 56), which can only be partially
reversed in clozapine treated patients by routine antidiabetic
drugs, such as metformin (57). The specific risk factors
associated with clozapine-induced weight gain, which varies
considerably at the individual level, include variables such as
sex, smoking status, and baseline levels of BMI, as well as
interactions between these variables (58).

One of the key theories regarding the harms caused by fat
accumulation, and visceral fat in particular, is the inflammatory
hypothesis, in which clozapine-induced weight gain increases
production of proinflammatory cytokines in insulin responsive
cells, and monocyte infiltration and the inflammatory state
contribute to insulin resistance (59). Cytokines and adipokines
secreted by visceral white adipose tissue maintain metabolic and
energy balance (60). Alterations in the levels of cytokines
including interleukin 6 (IL-6) and tumor necrosis factor alpha
(TNF-a), and adipokines such as adiponectin, leptin and resistin,
have been associated with metabolic abnormalities (61, 62).

In particular, the extensively studied pro-inflammatory cytokine
IL-6 is strongly correlated with all components of the metabolic
syndrome in patients with schizophrenia (63). Increased plasma
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IL-6 levels are linked to obesity and reduced insulin sensitivity, via
increased lipolysis, release of adiponectin and disruption of insulin
signaling cascades (61, 64). TNF-a is also interconnected with
obesity, T2DM and insulin resistance, where its expression is
upregulated in obese individuals (65). TNF-a induces lipolysis
through suppression of phosphodiesterase-3B and subsequently
interfering with insulin’s antilipolytic effects (66). Alternatively,
perilipin is subject to downregulation by TNF-a, resulting in
increased access of hormone-sensitive lipase to triglycerides and
increased lipolysis (67). Targeted mutations to abolish the function
TNF-a receptors and expression of TNF-a improved insulin
signaling in obese mice, suggesting TNF-a is critical for the
development of insulin resistance (68, 69). Finally, inhibition of
inositol receptor pathways by IL-6 and TNF-a leads to decreased
glucose transport, thus resulting in insulin resistance (66).

Adipokines such as adiponectin, leptin and resistin originate
from adipose tissue with important roles in metabolic
homeostasis. Adiponectin has been extensively studied for its
involvement in insulin sensitivity, obesity and T2DM (64).
Circulating adiponectin levels are inversely related to risk for
T2DM and metabolic syndrome and a promising therapeutic
target (70). Adiponectin influences insulin sensitivity by
activating 5’-AMP-activated protein kinase, leading to increased
glucose uptake and free fatty acid oxidation (71). In obesity, the
combined effects of reduced adiponectin and adiponectin receptor
expression exacerbates insulin resistance and hyperinsulinemia
(71, 72). Consequently, therapeutic strategies to manage metabolic
syndrome and insulin resistance include raising adiponectin levels
through increased release from adipocyte differentiation and gene
transcription with the antidiabetic agent thiazolidinedione (TZD)
(70, 73). Upregulation of adiponectin receptor expression is
achievable by activation of peroxisome proliferator-activated
receptor (PPAR)-a/g (74, 75). Of note, PPAR-g is also positively
correlated with adiponectin levels in circulation, believed to be the
result of directly affecting adiponectin production or its secretory
mechanism (76). It was previously shown that the metabolic
syndrome was more prevalent in patients treated with clozapine
and this is associated with lower adiponectin levels (77).

Resistin is recognized as a connecting factor between insulin
resistance, diabetes and obesity, albeit with debatable
connections to the individual components of the metabolic
syndrome (78, 79). Resistin is abundantly expressed in
mononuclear cells and promotes inflammation, and raises the
levels of cytokines such as TNF-a (78, 80). In contrast to its
established pro-inflammatory effects, the evidence for resistin’s
associations with obesity, insulin resistance and glucose
regulation remains weak (78). Interest for resistin as a link
between obesity and diabetes originated from the observations
of increased insulin sensitivity in response to reducing resistin
levels in obese mice (81). In humans, however, studies
investigating resistin’s association with insulin resistance and
T2DM are inconclusive and resistin has stronger implications in
atherosclerosis and cardiovascular disease (80, 82, 83). While a
causal role of resistin in metabolic anomalies remains to be
determined, there is evidence of positive correlations between
resistin and T2DM pathogenesis, which can largely be attributed
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to resistin’s pro-inflammatory properties (78, 84). Future studies
focusing on neutralizing resistin in humans are warranted,
especially when its native receptor remains to be identified in
humans (84).

In addition, waist circumference is positively correlated with
insulin resistance in nondiabetic patients with schizophrenia who
received clozapine treatment (49). Of interest, increased waist
circumference is the strongest predictor of insulin resistance
among commonly used anthropometric measurements (e.g. body
mass index, insulin sensitivity index, lipid levels) in clozapine-
treated patients, but the same association was absent in patients
treated with olanzapine (49).

Clozapine’s complex pharmacology and blockade of multiple
receptors may contribute to this weight gain, where the histamine
H1-receptor is believed to play a significant role (85). Weight gain
occurs in H1-receptor “knock out” mice, in which high fat diets
cause quicker body fat deposition compared to wild-type mice (86).
Leptin potentially mediates the increase in adiposity, acting to
disinhibit the negative feedback loop involving histamine neurons
that normally suppress food intake (86) and increasing feeding. In
support of this, animal experiments have shown clozapine reverses
leptin’s effects via selective augmentation of hypothalamic adenosine
monophosphate-activated protein kinase (AMPK) activity (87). As
AMPK stimulation in the hypothalamus is known to increase food
intake (88), clozapine potentially removes leptin’s anorexigenic
effects by activating AMPK. In addition to suppressing appetite,
decreased lipolysis resulting from inhibition of H1-receptors (89)
may also contribute to clozapine-induced weight gain.

Clozapine also affects other hormones associated with obesity
such as ghrelin and neuropeptide Y (NPY). Ghrelin serves to
increase food intake by stimulation of ghrelin receptors located in
brain centers involved in energy homeostasis, such as the
hypothalamus and hindbrain (90). Chronically, ghrelin’s effects
on adipogenesis, energy expenditure, lipolysis and dietary
preference leads to the imbalance of energy intake and
expenditure, eventually causing weight gain and potentially
metabolic syndrome (90). Ghrelin is known to decrease as insulin
levels rise in both rodents and humans, is correlated positively with
insulin sensitivity, and has shown promise as a therapeutic target
for diabetes (91, 92). Clozapine-treated patients have higher fasting
serum ghrelin levels than control subjects, attributed to aberrant
ghrelin secretion that is mediated through receptors such as the H1,
serotonin (5-HT2A/2C) and dopamine (D2) receptors (93).

NPY also stimulates food intake and exogenous administration
has demonstrated significant weight gain in rodents (94). NPY is
elevated in obesity and promotes energy storage, and decreases in
response to administration of leptin or insulin (94). Furthermore, it
has been demonstrated that knockdown of the Y2 receptor for NPY
can reduce abdominal fat and alleviate most symptoms of the
metabolic syndrome (95). In rats, clozapine treatment elevates NPY
levels in the arcuate nucleus of the hypothalamus involved in meal
initiation (96). It has been shown polymorphisms in theNPY gene is
associated with clozapine-induced weight gain and contributes to
the development of obesity (97).

Clozapine-induced weight gain is potentially mediated through
melanocortin receptor-4 (MC4R). MC4R is a downstream target
February 2021 | Volume 12 | Article 609240
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of leptin signaling and mice lacking MC4R developed obesity (98).
In humans, single nucleotide polymorphisms in the MC4R gene is
associated with increased risk for weight gain in patients treated
with clozapine and of European descent (99). Carriers of MC4R
mutations display metabolic anomalies including increased energy
intake, obesity and hyperinsulinemia, and the severity of these
symptoms are correlated with the amount of functional
MC4R (100).

Glucagon-like peptide-1 (GLP-1) is of worthy mention as a
therapeutic intervention for obesity and T2DM resulting from
clozapine treatment. GLP-1 acts to decrease food intake and
glucagon secretion and increase insulin secretion, rendering it an
attractive target for the management of metabolic disturbances
(101). Importantly, rodent experimental data revealed clozapine
decreased GLP-1 levels to raise glucose output and glucagon
release and administration of GLP-1 agonists neutralizes these
effects (101). A setback for the direct administration of GLP-1 is
its rapid degradation, hence GLP-1 receptor agonists (GLP-
1RAs) are preferred for prolonged glycemic and weight control
(102). Preclinical studies using GLP-1RAs such as exendin-4 and
Boc5 reversed glucose intolerance induced by clozapine
treatment (103, 104). Human studies detailing the beneficial
effects of GLP-1ARs in clozapine-treated patients are limited—a
recent systematic review identified three studies demonstrating
favorable outcomes on body weight, BMI, fasting glucose, waist
circumference and BMI (105). Exenatide and liraglutide were
used in these studies, with two studies showing weight loss
following GLP-1AR administration (57, 106), and the other
showing insignificant weight loss compared to controls (107).

While the above discussion is primarily centered around
white adipose tissue, there is evidence that brown adipose
tissue can mediate antipsychotic-induced weight gain, obesity
and insulin resistance (60). Clozapine inhibits the differentiation
of brown adipocytes and lipogenic genes (108), actions that are
known to be associated with insulin resistance and energy
balance (109). The downregulation of brown adipose marker
uncoupling protein-1 (UCP-1) is of interest, as UCP-1 promotes
leptin activity and possibly contributes to clozapine-induced
weight gain through interference of insulin signaling (108).
DYSLIPIDEMIA

Excessive plasma triglycerides ≥ 1.7 mmol/L and/or HDL-
cholesterol levels below 40 mg/dl in men (<50 mg/dl in women),
are part of the diagnostic criteria for the metabolic syndrome (36,
45). Dyslipidemia has detrimental effects on endothelial function
and significantly increases the risk of coronary artery disease,
particularly in individuals with diabetes (110). Endothelial injury
arises through the accumulation of excessive lipids which
eventually leads to atherosclerosis. Specifically, the infiltration of
monocytes and T helper type-1 cells between dysfunctional
endothelial cells results in the proliferation of smooth muscle
cells and lipid-filled macrophages to form fibrous plaques
characteristic of atherosclerosis (111).

Numerous studies have reported clozapine significantly raises
serum triglyceride levels in patients (34, 35, 41, 112, 113).
Frontiers in Endocrinology | www.frontiersin.org 4
Treatment with clozapine over a 1-year period was associated
with notable increases in serum triglycerides, and was
significantly correlated with weight gain (114). The increase in
serum triglycerides and total cholesterol occurred as early as the
first month of initiating clozapine treatment and persisted
throughout the study (114). However, other studies have noted
that dyslipidemia can also occur independent of weight gain
(113, 115). The causal association between clozapine treatment
and hyperlipidemia is further confirmed in discontinuation
studies, when increased triglyceride levels in clozapine-treated
patients resolve follow switching to another antipsychotic (116).
Of interest, elevated triglycerides in clozapine-treated patients
are associated with improved outcome in patients with
schizophrenia, as measured by decreased Positive and Negative
Syndrome Scale (PANSS) scores (113, 117) and this is
independent of weight gain (34). This raises the possibility of
serum lipids influencing the pharmacokinetics and efficacy of
clozapine (118), warranting further research, although it is
unlikely clozapine causes changes in brain lipid levels (119,
120) which have been associated with clinical improvement.

Treatment options for clozapine-induced dyslipidemia include
the use of statins that effectively lower cholesterol and triglyceride
levels (121, 122). Considered the standard treatment for lowering
cholesterol, statins lower LDL and total cholesterol levels, with a
lesser effect on triglycerides (123). While displaying promising
results for treating SGA-associated dyslipidemia, it should be
noted statins can have adverse side effects. Notably, statins can
elevate the risk of developing diabetes (124). Therefore, clinical
benefits of improving cardiovascular health should be weighed
against the increase in the incidence of T2DM from statin use,
especially in patients treated with clozapine. The underlying
mechanism for clozapine-induced dyslipidemia other than
increased food intake remains unknown, and no confirmed
receptor targets have been reliably identified. Given its
involvement in cardiovascular function and regulating
metabolism, the autonomic nervous system and its individual
branches are potential candidates for mediating the
cardiometabolic side effects of clozapine. In particular, heightened
activity of the sympathetic nervous system contributes to glucose
dysregulation and cardiovascular anomalies (125–127).

Alternatively, PPAR-a agonists are feasible candidates to
manage clozapine-induced dyslipidemias. PPAR-a activation
leads to improved HDL, LDL, triglyceride levels and has evident
modulatory roles in energy homeostasis, as demonstrated in
knockout mice that display hyperlipidemia and hypoglycemia
(128, 129). Hypolipidemic fibrates are synthetic ligands for
PPAR-a and are used to manage elevations in circulating
triglycerides and decreased HDL cholesterol (129). In a case
study, fenofibrate was administered to treat hyperlipidemia caused
by clozapine treatment (130).
HYPERTENSION

Elevated blood pressure is common in both diabetic and obese
individuals, present in 85% of patients diagnosed with metabolic
February 2021 | Volume 12 | Article 609240
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syndrome (131). It was suggested the hypertension observed in
these individuals is a result of compensatory mechanisms to the lack
of response to insulin at the cellular level (132). Furthermore, poor
response to insulin in insulin-resistant individuals is also a
contributing factor, where insulin normally induces production of
nitric oxide for vascular relaxation (133). Decreased insulin
sensitivity leads to hyperinsulinemia as a compensatory
mechanism, ultimately causing hypertension via activation of the
renin angiotensin aldosterone system (131). Finally, an overactive
sympathetic nervous system can lead to hypertension, often present
in individuals with obesity and insulin resistance (134). Elevated
plasma catecholamine levels induced by hyperinsulinemia may
possibly contribute to the rise in blood pressure (135).

In comparison to the incidence rates of T2DM, dyslipidemia
and obesity, there are fewer reported cases of hypertension in
patients treated with clozapine (136). A claims-based approach
study found no significant difference in the incidence of
hypertension in patients treated with clozapine as compared to
patients receiving FGAs (137). However, another chart review
comparing patients treated with FGAs, SGAs (other than
clozapine) or clozapine had contradictory results, where
hypertension was strongly associated with clozapine use (136).
At the end of the 5-year follow-up period, the clozapine group
had significantly elevated blood pressure, resulting in 22% of
these patients requiring medication for hypertension, as
compared to 4% of the FGA group and 9% of the SGA group
(136). Blood pressure increased as early as six months after
initiating clozapine treatment, signifying the need to routinely
monitor blood pressure as a prevention for CVD (136).
HYPERGLYCEMIA

Hyperglycemia is the defining characteristic of metabolic
dysfunction linked to T2DM (138). Individuals with fasting
blood glucose levels between 5.6–6.9 mmol/l or 2-hour plasma
glucose values of 7.8–11.0 mmol/l in the oral glucose tolerance
test (OGTT) are considered to have impaired fasting glucose and
impaired glucose tolerance, respectively (139). These individuals
are considered to have elevated risk for developing T2DM,
commonly known as the pre-diabetic stage. For diagnosis of
T2DM, the standard biomarker for glycemic control,
hemoglobin A1C, is commonly used. The A1C assay measures
the indirect effects of plasma glucose levels over a span of 2–3
months and a value of ≥ 6.5% is used to diagnose T2DM (140).
The A1C assay, coupled with a fasting plasma glucose of ≥ 7.0
mmol/l or a 2 h plasma glucose of ≥ 11.1 mmol/l in the OGTT,
form the diagnostic criteria for diabetes (140).

Hyperglycemia causes cardiovascular damage by activating
pathways that lead to excessive oxidative stress (141). Four
mechanisms have been proposed to underlie glycemia-related
vascular damage: decreased production of the antioxidant
glutathione via activation of the polyol pathway, excessive
generation of advanced glycation end products, activation of
protein kinase C and increased activation of the hexosamine
Frontiers in Endocrinology | www.frontiersin.org 5
pathway (142). The common link between these four mechanisms
is the inhibition of the glycolytic enzyme, glyceraldehyde-3
phosphate dehydrogenase (GADPH), by excessive superoxide
production. Inhibition of GADPH results in increased upstream
glycolytic intermediates and glucose, subsequently activating the
aforementioned damaging pathways (142, 143). Several regions are
susceptible to hyperglycemia-induced vascular damage, including
the peripheral nerve, renal glomerulus and retina, as well as arteries
in the brain, heart and lower limbs (141). Exposure to reactive
oxygen species can adversely affect vascular contractile function,
result in cardiomyopathy and atherosclerosis, and cause renal
dysfunction (144), and clozapine was shown to cause oxidative
stress in the liver in rats (145).

Clozapine has the highest propensity of all of the SGAs to
induce hyperglycemia, which can usually can be resolved upon
discontinuation (146–148). Glucose intolerance associated with
clozapine treatment contributes to the development of new onset
T2DM and exacerbates pre-existing cases (146, 149), both of
which can occur independently of weight gain (148, 150). Weight
gain is not present in all patients receiving clozapine treatment,
and is consequently considered a contributing factor rather than
the sole mechanism underlying insulin resistance (149, 151, 152).
As a causal relationship between clozapine use and the
development of diabetes mellitus cannot simply be attributed
to excessive adiposity (153), there has been increasing attention
given to weight-independent mechanisms to explain glucose
dysregulation. One area of focus is clozapine’s antagonistic
properties at receptors mediating glucose homeostasis, namely
muscarinic, serotonergic and dopaminergic receptors (154).
Acute antagonism of M3 and 5-HT2A receptors, known to
directly affect pancreatic b-cell function and insulin secretion
(155), was found to decrease insulin secretion during the
hyperglycemic clamp (which estimates peripheral insulin
sensitivity and secretory capacity of b-cells following a glucose
challenge) in animals whereas blockade of D2/D3 receptors had
the opposite effect (154). In a follow up study, a1 antagonism
with prazosin inhibited insulin secretion and glucose infusion
rates after a glucose challenge, indicative of impaired b-cell
function (156). As clozapine is known to rapidly reduce insulin
sensitivity and alter hepatic glucose production (157), the role of
antagonism of the above receptors as responsible for clozapine-
induced impairment of b-cell function remains to be determined.
CLOZAPINE AND ELEVATION OF PLASMA
CATECHOLAMINES

The adrenoceptors and their endogenous ligands norepinephrine
and epinephrine play a critical role in glucose homeostasis (127,
156, 158). Sympathetic activation rapidly raises blood glucose
levels by suppressing insulin release, promoting glucagon
secretion and hepatic gluconeogenesis and glycogenolysis via
binding to G protein-coupled receptors (158). It is now well-
established that clozapine treatment in both humans and animals
causes a large increase in plasma levels of the these
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catecholamines. We recently reported the effects of multiple
doses of the four different antipsychotic drugs haloperidol,
risperidone, olanzapine, and clozapine on peripheral levels of
the catecholamines dopamine, norepinephrine, and epinephrine
in adult rats (159). While all drugs increased catecholamine
levels, this effect was significantly larger in clozapine treated
animals, and occurred with doses of the drug that we had
previously shown to exert acute hyperglycemic effects (160–162).

Clinically, an earlier study noted that treatment with
clozapine at 175–600 mg/day for 30 days resulted in a
significant elevation of plasma norepinephrine levels, as well as
heart rate, in patients with psychosis compared to healthy
controls (163). Subsequent studies in patients with
schizophrenia produced similar results (164–167). It was
initially thought the increase in plasma norepinephrine was
due to inhibition of a-adrenoceptors and the norepinephrine
transporter, as the levels of the intraneuronal metabolite 3,4-
dihydroxyphenylglycol (DHPG) remained unchanged (165). A
follow up study refuted this hypothesis, because radiolabeled
DHPG concentrations remained unchanged in plasma, and thus
indicated normal reuptake and metabolism of norepinephrine
(166). The authors suggested that increased norepinephrine
vesicular fusion with the sympathetic nerve membrane
accounts for the unchanged plasma DHPG levels and
increased plasma norepinephrine. The mechanism through
which clozapine elevates plasma norepinephrine, and whether
this is associated with improved psychotic symptoms, remains
moot (167). A possible reason for the discrepancy is the small
sample numbers (n < 14) and short duration of available trials
measuring plasma norepinephrine, with the longest published
trial lasting 6 weeks (165, 167). However, the large increases in
norepinephrine observed in these studies have potentially
important implications not only for the metabolic side-effects
of the drug, but also for the cardiovascular side-effects too, which
we have described in detail previously (29).
PRECLINICAL STUDIES

In patients treated with antipsychotics, the causes of metabolic
dysregulation are multifactorial, and include poor diet, lack of
exercise, unhealthy habits (such as smoking/drinking) and direct
effects of the antipsychotic itself (168). Teasing apart these
individual contributions is challenging, and thus animal
models of antipsychotic-induced metabolic dysregulation have
provided key mechanistic insights (42), where the drug-specific
effects can be studied separately. Preclinical studies with rodents
have strong predictive validity, as the antipsychotics with the
greatest metabolic liability in humans show similar effects in
animals (162, 169–171). We would estimate that the most
commonly studied antipsychotic is olanzapine (172–182), due
to its potent metabolic effects and widespread use in patients.
However, a number of preclinical studies have focused
specifically on clozapine. These studies have demonstrated
conclusively that treatment with clozapine can cause glucose
Frontiers in Endocrinology | www.frontiersin.org 6
intolerance, measured using the glucose tolerance test, and these
effects are dose-dependent (104, 160–162, 183, 184).
Importantly, these studies demonstrate that hyperglycemia
occurs acutely, and is independent of weight gain (185). In a
similar manner, a number of reports have examined the acute
metabolic effects of clozapine using the hyperinsulinemic-
euglycemic clamp, which is the “gold-standard” technique for
measuring whole-body insulin resistance. Converging findings
from different groups reliably show that clozapine causes
profound insulin resistance (157, 186), and furthermore, the
primary metabolite of the drug—norclozapine—also induces
whole-body insulin resistance (160). The clamp studies
implicate a direct effect of clozapine on increased hepatic
glucose production and impaired beta cell function in the
pancreas. The physiological mechanisms underlying these
metabolic effects remain an ongoing area of study, but it has
been suggested that clozapine’s effects on the autonomic nervous
system may play a key role (187).
SUMMARY

It is now well established that treatment with clozapine is
commonly associated with pronounced metabolic side-effects
in many patients, typically greater than for all other
antipsychotic drugs. These metabolic changes span a range of
diverse metabolic substrates, leading to the development of
metabolic syndrome and ultimately T2DM and CVD in many
patients. These sequelae contribute to underutilization of the
drug, which represents a serious concern, as clozapine is
uniquely efficacious in managing treatment resistant psychosis.
Treatment of these metabolic changes is only partly effective in
most cases, and so a better understanding of the physiology may
be required to develop more effective interventions. Animal
models of clozapine’s metabolic side-effects have already
provided important insights into how the drug directly affects
metabolic physiology, and may be used to help identify novel
pharmacotherapies when working in paral le l wi th
clinical studies.
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