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Unaltered intrinsic functional brain 
architecture in young women with 
primary dysmenorrhea
Lin-Chien Lee1,2,3, Yueh-Hua Chen1,2, Chia-Shu Lin4, Wei-Chi Li1, Intan Low5, Cheng-Hao Tu  1,2,6, 
Chih-Che Chou2, Chou-Ming Cheng2, Tzu-Chen Yeh1,2,7, Li-Fen Chen  1,2,5, Hsiang-Tai Chao8,9 & 
Jen-Chuen Hsieh  1,2

Primary dysmenorrhea (PDM), painful menstruation without organic causes, is the most prevalent 
gynecological problem in women of reproductive age. Dysmenorrhea later in life often co-occurs 
with many chronic functional pain disorders, and chronic functional pain disorders exhibit altered 
large-scale connectedness between distributed brain regions. It is unknown whether the young PDM 
females exhibit alterations in the global and local connectivity properties of brain functional networks. 
Fifty-seven otherwise healthy young PDM females and 62 age- and education-matched control 
females participated in the present resting-state functional magnetic resonance imaging study. We 
used graph theoretical network analysis to investigate the global and regional network metrics and 
modular structure of the resting-state brain functional networks in young PDM females. The functional 
network was constructed by the interregional functional connectivity among parcellated brain regions. 
The global and regional network metrics and modular structure of the resting-state brain functional 
networks were not altered in young PDM females at our detection threshold (medium to large effect 
size differences [Cohen’s d ≥ 0.52]). It is plausible that the absence of significant changes in the intrinsic 
functional brain architecture allows young PDM females to maintain normal psychosocial outcomes 
during the pain-free follicular phase.

Primary dysmenorrhea (PDM), painful menstruation without organic causes, affects more than one-half of men-
struating women worldwide1. PDM has been regarded as a genuine type of chronic pelvic pain1 (please also 
refer to the World Health Organization [WHO] website, The 11th Revision of the International Classification 
of Diseases [ICD-11]; http://www.who.int/classifications/icd/revision/en/). Dysmenorrhea is associated with 
decreased self-rated overall health2 in combination with depressive and anxious symptoms3. Otherwise healthy 
young females with PDM can exhibit a much higher prevalence of incidental brain findings, particularly normal 
variants (e.g., cavum septum pellucidum), than females without PDM4. Furthermore, we previously reported 
that long-term PDM is associated with alterations in regional metabolism of the brain5 and both state- and 
trait-related changes in brain structures6,7. State-related changes are menstrual pain-primed, whereas trait-related 
changes exist even without menstrual pain. We have also reported that the BDNF Val66Met polymorphism, may 
not only contribute to the susceptibility of females to PDM8, but also affect the functional connectivity dynamics 
of the brain in young PDM females9.

Recent neuroimaging studies of PDM have disclosed the functional connectivity of the resting-state brain 
networks undergoes maladaptive or adaptive reorganizations in response to long-term dysmenorrhea. PDM 
females can exhibit aberrant functional connectivity between regions within the default mode network (DMN)10. 
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Previous studies also showed long-term PDM is associated with hypo-connectivity of DMN-descending pain 
modulatory systems (DPMS)11 and -salience network12,13 and hyper-connectivity of DMN-executive control net-
work12. Collectively, these reorganizations of functional connectivity, both within and across the resting-state 
brain networks, may underpin the pathophysiological mechanisms of PDM as well as the neural bases of associ-
ated sensory and affective elements11–13.

The antecedent maladaptive hypo-connectivity of the DPMS with the DMN in PDM may predispose vulner-
able PDM females to subsequent development of chronic functional pain disorders11. Dysmenorrhea later in life 
often co-occurs with many chronic functional pain disorders, including fibromyalgia, irritable bowel syndrome, 
painful bladder syndrome, chronic headache, and chronic low back pain1. The highest prevalence rates of chronic 
functional pain disorders usually occur after age of 3014, and the prevalence of PDM peaks much younger in age15. 
In terms of the complex and multidimensional nature of chronic pain and its comorbidities (depression, sleep 
disorder, and cognitive dysfunction16), the maladaptive neuroplasticity of the brain in chronic pain disorders is 
not confined to the changes in certain brain regions and systems, but can also be manifested in the topological 
organization of whole-brain networking17. Chronic pain disorders, such as fibromyalgia18, irritable bowel syn-
drome19, chronic back pain20, and migraine21–23, exhibit altered large-scale connectedness between distributed 
brain regions. It has been shown that the topological metrics of whole-brain networking can be correlated with 
the clinical characteristics of chronic pain disorders (e.g., disease duration)21.

The human brain is considered one integrative complex network or system, comprising multiple 
sub-networks24. The global network organization of the brain can be viewed as a dynamic neural correlate of the 
overall pain experience consisted of nociceptive, cognitive, and affective dimensions25. Graph theoretical network 
analysis provides a mathematical framework to examine the topology of complex networks24. It has been used to 
explore and quantify the global and local organizations of brain networks and to evaluate the integrity of the brain 
in altered cognitive states (e.g., tasks of different levels of cognitive demand), altered conditions (e.g., aging and 
sleep), and pathological diseases (e.g., neuropsychiatric diseases)24,26,27. In graph theory, the brain networks are 
composed of nodes (brain regions) and edges (connections between brain regions)26. The human brain is organ-
ized in a small-world modular structure that confers efficient processing of parallel information28. Small-world 
organization features a high level of local connectedness and a short average travel distance between nodes, with 
network communities (sub-networks or modules) interlinked by hub regions. The hub is pivotal for interregional 
communication and integration, and the node degree, a measure of the number of links connected to that node29, 
is used to index the importance of a node as a functional hub in the network30. The modular structure reveals how 
the related brain regions coordinate activity among each other in network communities29. The integrity of the 
brain architecture is indicated by the degree of small-worldness and network efficiency24.

Although studies reported alterations in functional connectivity dynamics of the DPMS and DMN in young 
PDM females10–13, it is unknown whether such alterations would influence the intrinsic functional brain archi-
tecture. In this study, we used graph theory and resting-state functional magnetic resonance imaging (fMRI) to 
investigate the influences of long-term PDM on the global and regional network metrics and modular structure 
of brain functional networks in otherwise healthy young PDM females.

Results
Demographic data and psychological assessments. There were no significant between-group dif-
ferences regarding age (PDM: 23.1 ± 2.27 years of age, control: 23.7 ± 2.40 years of age, P = 0.147), age at 
menarche (PDM: 12.2 ± 1.19 years of age, control: 12.2 ± 1.11 years of age, P = 0.811), years of menstruating 
(PDM: 10.9 ± 2.53 years, control: 11.5 ± 2.69 years, P = 0.194), or average duration of one menstrual cycle (PDM: 
29.3 ± 1.41 days, control: 29.5 ± 1.19 days, P = 0.525). The PDM group had a long history of menstrual pain 
(8.8 ± 2.75 years), with the pain lasting approximately 1 to 3 days during one menstrual cycle (2.0 ± 0.84 days). 
The current menstrual pain experience, as assessed by the pain rating index (29.3 ± 12.70) and present pain 
intensity (2.6 ± 1.01) of McGill Pain Questionnaire, confirmed that the PDM group experienced moderate to 
severe menstrual pain. The PDM females reported significantly higher state anxiety, trait anxiety, Beck Anxiety 
Inventory, and Pain Catastrophizing Scale scores during both the menstrual phase (MENS phase) and periovula-
tory phase (POV phase) (Table 1).

Serum gonadal hormone measurements. No significant between-group differences were found in 
the concentrations of estradiol, progesterone, and testosterone during either the MENS phase or POV phase 
(Table 1).

Global network metrics of the resting-state functional network. Since the stringent statistical cor-
rection for multiple comparisons revealed negative findings, we therefore adopted a liberal uncorrected approach 
for the following analyses in order to unravel possible subtle effects. For the respective weighted and binary net-
works (covariates of gonadal hormones and psychological status adjusted), no main effect of group, menstrual 
cycle phase, or interaction between them was noted for any of the global network metrics (mean clustering coef-
ficient, characteristic path length, global efficiency, and local efficiency of the network) with cost values ranging 
from 0.03 to 0.40 (all P > 0.05, uncorrected for multiple comparisons of 38 cost levels) (Fig. 1: weighted network; 
Fig. 2: binary network). For the definitions of mean clustering coefficient, characteristic path length, global effi-
ciency, and local efficiency of the network, please refer to the Methods section (see Global network metrics of the 
resting-state functional network). Small-worldness of brain functional network was confirmed for each phase of 
both the PDM and control groups. The general efficiency and small-worldness property of the resting-state brain 
functional network were not altered by acute menstrual pain in young PDM females.
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Modular structure. For the full range of network costs (0.03–0.40) (covariates of gonadal hormones and 
psychological status adjusted), no main effect of group, menstrual cycle phase, or interaction between them was 
noted for the modularity and the number of partitioned modules in the respective weighted and binary networks 
(all P > 0.05, uncorrected for multiple comparisons of 38 cost levels) (Fig. 3: weighted network; Fig. 4: binary 
network). By assessing normalized mutual information (NMI) at a specific cost level, no significant differences 
were found in the similarity of modular partitions for the between-group comparisons during each of the MENS 
and POV phases (Fig. 5) (all P > 0.05, uncorrected for multiple comparisons of 38 cost levels). Moreover, no sig-
nificant differences were found in the similarity of modular partitions for the between-phase comparisons in the 
respective PDM and control groups (Fig. 6) (all P > 0.05, uncorrected for multiple comparisons of 38 cost levels). 
For the definitions of modularity and NMI, please refer to the Methods section (see Modular structure). The 
modular structures of the PDM and control groups were found to be similar within the same respective phase.

Modular assignment of specific nodes. For the full range of network costs (0.03–0.40) in the respec-
tive weighted and binary networks, no significant differences were found in the modular assignment of specific 
nodes for the between-group comparisons during each of the MENS and POV phases (all P > 0.05 for 90 nodes, 
adjusted for False Discovery Rate [FDR] correction of 90 nodes but uncorrected for multiple comparisons of 38 
cost levels). Within the same respective phase, the network communities of specific nodes (90 cerebral regions of 

PDM (n = 57) CON (n = 62) P value

Age, year 23.1 ± 2.27 23.7 ± 2.40 0.147

Age at menarche 12.2 ± 1.19 12.2 ± 1.11 0.811

Years of menstruating 10.9 ± 2.53 11.5 ± 2.69 0.194

Days of one menstrual cycle 29.3 ± 1.41 29.5 ± 1.19 0.525

Menstrual pain experience

  Years of dysmenorrhea history 8.8 ± 2.75

  Days of menstrual pain per cycle 2.0 ± 0.84

  Overall PRI (inception of study; range, 0–78) 34.9 ± 13.35

  Overall PPI (inception of study; range, 0–5) 3.1 ± 1.11

  Current PRI (MENS phase; range, 0–78)* 29.3 ± 12.70

  Current PPI (MENS phase; range, 0–5)* 2.6 ± 1.01

Beck Anxiety Inventory (range, 0–63)

  MENS phase 12.0 ± 7.87 2.4 ± 2.38 <0.001

  POV phase 6.4 ± 5.50 3.2 ± 3.37 <0.001

State-Trait Anxiety Inventory: State (range, 20–80)

  MENS phase 43.1 ± 9.03 34.1 ± 7.35 <0.001

  POV phase 36.5 ± 7.10 34.1 ± 7.68 0.036

State-Trait Anxiety Inventory: Trait (range, 20–80)

  MENS phase 44.9 ± 8.87 37.8 ± 7.23 <0.001

  POV phase 43.0 ± 8.40 37.8 ± 7.61 0.001

Beck Depression Inventory (range, 0–63)

  MENS phase 11.5 ± 7.92 4.5 ± 4.89 <0.001

  POV phase 6.1 ± 6.31 4.3 ± 5.53 0.070

Pain Catastrophizing Scale (range, 0–52)

  MENS phase 21.3 ± 11.60 5.4 ± 5.89 <0.001

  POV phase 18.6 ± 10.78 5.9 ± 7.23 <0.001

Estradiol (pg/mL)

  MENS phase 35.4 ± 18.52 43.3 ± 30.13 0.322

  POV phase 157.9 ± 111.21 144.7 ± 121.66 0.315

Progesterone (ng/mL)

  MENS phase 0.5 ± 0.39 1.0 ± 2.41 0.368

  POV phase 0.9 ± 1.19 1.3 ± 2.83 0.258

Testosterone (ng/mL)

  MENS phase 0.4 ± 0.23 0.4 ± 0.23 0.597

  POV phase 0.6 ± 0.31 0.5 ± 0.22 0.369

Table 1. Demographic data and baseline information of the PDM and CON groups. PDM, primary 
dysmenorrhea; CON, control; PPI, present pain intensity of the McGill Pain Questionnaire; PRI, pain rating 
index of the McGill Pain Questionnaire; MENS phase, menstrual phase; POV phase, periovulatory phase. The 
data are presented as the means ± SD. *Five PDM subjects did not complete the McGill Pain Questionnaire 
during the MENS phase and were excluded from the calculation.
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the Automated Anatomical Labeling [AAL] atlas31) were not substantially altered in the PDM group as compared 
with the control group.

Regional network metrics of the resting-state functional network. For the range of network costs 
(0.03–0.10) (covariates of gonadal hormones and psychological status adjusted), no main effect of group, men-
strual cycle phase, or interaction between them was noted for the local efficiency, clustering coefficient, and 
degree of each node in the respective weighted and binary networks (all P > 0.05 for 90 nodes, adjusted for FDR 
correction of 90 nodes but uncorrected for multiple comparisons of 8 cost levels) [Supplementary Table S1: 
weighted network; Supplementary Table S2: binary network]. For the definition of node degree, please refer to 
the Methods section (see Regional network metrics of the resting-state functional network). The local connec-
tivity property of brain functional networks in terms of node-level connectivity analyses was not altered by acute 
menstrual pain in young PDM females.

Figure 1. The global network metrics of the weighted network. The global network metrics of (a) small-
worldness (Cp and Lp), (b) global efficiency, and (c) local efficiency in the weighted network are plotted over the 
range of network costs (0.03–0.40). No significant differences were found in the global network metrics among 
the PDMMENS, CONMENS, PDMPOV, and CONPOV by conducting linear mixed models. Cp, clustering coefficient; 
Lp, characteristic path length; CONMENS, menstrual phase of the control group; CONPOV, periovulatory phase 
of the control group; PDMMENS, menstrual phase of the primary dysmenorrhea group; PDMPOV, periovulatory 
phase of the primary dysmenorrhea group.
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Robustness of methodological variation. The findings derived from the Harvard-Oxford cortical and 
subcortical probabilistic atlases (from FSLView v3.1; http://fsl.fmrib.ox.ac.uk/fsl/fslview) were consistent with 
those derived from the AAL atlas [Supplementary Figs S1–S6; Supplementary Tables S3 and S4].

Discussion
In this study, we examined the global and regional network metrics and modular structure of brain functional 
networks in young PDM females using networks constructed by parcellated cerebral regions according to the 
AAL and Harvard-Oxford cortical and subcortical probabilistic atlases. No significant between-group differences 
were found for the metrics of global and local network efficiency of information transfer between nodes. It indi-
cates that the young PDM females may retain the integrity of global and local connectivity properties of brain 
functional networks despite the presence of maladaptive neuroplasticity of DPMS11 and DMN10,12,13. Although 
the young PDM females in our study exhibited higher levels of depressive mood and anxiety compared to the 
controls (Table 1), these levels did not reach the degree of clinical severity, such as an anxiety disorder that is 
mandatory for psychiatric intervention. The average Beck Depression Inventory score during the MENS phase in 
the PDM group was conventionally interpreted as minimal depression32, and the average Beck Anxiety Inventory 
score as mild anxiety33.

Figure 2. The global network metrics of the binary network. For the full range of network costs (0.03–0.40) 
of the binary network, no significant differences were found in the global network metrics among the 
PDMMENS, CONMENS, PDMPOV, and CONPOV by conducting linear mixed models. Cp, clustering coefficient; Lp, 
characteristic path length; CONMENS, menstrual phase of the control group; CONPOV, periovulatory phase of the 
control group; PDMMENS, menstrual phase of the primary dysmenorrhea group; PDMPOV, periovulatory phase 
of the primary dysmenorrhea group.
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In terms of unaltered global and regional network metrics and modular structure of brain functional net-
works in young PDM females, the negative findings support that PDM is essentially dissimilar to major neu-
rological34 and psychiatric diseases35–38. This is particularly important because otherwise healthy PDM females 
usually do not exhibit overt cognitive, affective and psychosocial liability and disability, despite the fact that the 
PDM females may exhibit minimal or mild depressive and anxious symptoms during the MENS phase3,8. In 
this study, we deliberately excluded the females with severe premenstrual syndrome or suspected premenstrual 
dysphoric disorder, which features a combination of cyclical cognitive and affective debilitations and physical 
symptoms and is associated with significant functional impairments for daily living39,40. Premenstrual dysphoric 

Figure 3. The modular structure of the weighted network. For the full range of network costs (0.03–0.40) 
of the weighted network, no significant differences were found in (a) the modularity and (b) the number of 
partitioned modules among the PDMMENS, CONMENS, PDMPOV, and CONPOV by conducting linear mixed 
models. The bar denotes the standard deviation of means. CONMENS, menstrual phase of the control group; 
CONPOV, periovulatory phase of the control group; PDMMENS, menstrual phase of the primary dysmenorrhea 
group; PDMPOV, periovulatory phase of the primary dysmenorrhea group.

Figure 4. The modular structure of the binary network. For the full range of network costs (0.03–0.40) of the 
binary network, no significant differences were found in (a) the modularity and (b) the number of partitioned 
modules among the PDMMENS, CONMENS, PDMPOV, and CONPOV by conducting linear mixed models. The 
bar denotes the standard deviation of means. CONMENS, menstrual phase of the control group; CONPOV, 
periovulatory phase of the control group; PDMMENS, menstrual phase of the primary dysmenorrhea group; 
PDMPOV, periovulatory phase of the primary dysmenorrhea group.
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disorder has been regarded as a psychiatric disease40, and psychiatric diseases may exhibit disrupted topological 
organization of large-scale structural and functional brain networks36,41. The absence of overt psychological and 
psychiatric disturbance is succinctly reflected by the unaltered global and local connectivity properties of brain 
functional networks in young PDM females. It is documented that the small-world architecture and optimal 
topological organization of human brain networks are prominently altered in depression36,37, social anxiety dis-
order38, Alzheimer’s disease34,42–44, and schizophrenia35,41,45,46, and the graph metrics can be correlated with the 
symptom severity of diseases34,37,42. These neurological and psychiatric diseases not only target distributed brain 
regions but also disrupt the topological configuration of large-scale brain networks24,26.

Although previous studies reported alterations in local connectivity of the brain in young PDM females 
by means of regional homogeneity12,47 and seed-based functional connectivity analyses10–13, the current study 
showed unaltered local connectivity property in the context of regional network metrics by using graph theoret-
ical network analysis. The discrepancies may be inherent in the different methodologies used. Graph theoretical 
network analysis quantifies the functional connectivity profiles among node neighborhoods in the topological 
space and provides the information of connection pattern on a whole-brain scale24. Seed-based approach com-
pares the region-to-region functional connectivity in the network, and can only provide the information that 
is limited to the connection pattern of the selected seed region24. Regional homogeneity analysis measures the 
extent of functional synchronizations among the neighboring voxels and provides the information of connection 
pattern on a local spatial scale48.

The abnormal functional connectivity and networking of the brain in chronic pain disorders cast light on 
the neurophysiological mechanisms underlying pain chronification and the different facets of associated neuro-
cognitive conditions18,49–52. We speculate that the alterations in functional connectivity in young and otherwise 
healthy PDM females can be initially limited to certain systems of the brain (e.g., maladaptive functionality of 

Figure 5. The similarity of modular partitions during the same menstrual cycle phases in the respective 
weighted and binary networks. For the full range of network costs (0.03–0.40) of the respective (a) weighted 
and (b) binary networks, no significant differences were found in the similarity of modular structure for the 
between-group comparisons during each of the MENS and POV phases. MENS, menstrual phase; NMI, 
normalized mutual information; POV, periovulatory phase.
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the DPMS11 and the concomitant adaptive reorganization of cross-network connectivities12), without the disrup-
tion of topology of brain functional networks. Dysmenorrhea can be associated with high rates of comorbidity 
with chronic functional pain disorders later in life1, and chronic functional pain disorders prominently exhibit 
not only hypo-connectivity of the DPMS with the DMN18,51,53 but also alteration of topology in the whole-brain 
networking18–22. In addition, the extent of alterations of functional connectivity in migraine, a disease that is 
often comorbid with dysmenorrhea, proceeds from local systems to topological organization of whole-brain net-
working as the disease duration increased22. Chronification of pain involves large-scale, dynamic reorganization 
of brain connectivities since the transition from acute to chronic pain parallels the transition of brain activation 
from nociceptive to emotional and reward circuits54. We have also recently reported that genetic factors, such 
as the BDNF Val66Met9 and OPRM1 A118G55 polymorphisms, may affect, in the genotype-specific process, the 
functional connectivity dynamics of the DPMS in young PDM females. Such brain resilience that vary with the 
genotypes contributes to individual pain differences and susceptibility, which in turn may have an influence on 
the vulnerability for the subsequent development of chronic pain disorders. It is tempting to propose that the 
cumulative aberrancy of the dysfunctional DPMS11 and the repetitive overstimulation of menstrual pain may 
eventually lead to the alteration of topology of brain architecture in later life of vulnerable PDM females through 
the chronification processes and genetic attributions. Longitudinal follow-up is needed to investigate the possibly 
progressive alterations in functional brain architecture of PDM females, and therefore to improve the understand-
ing of the co-occurrence of chronic functional pain disorders.

The correlations between the regional structural changes in gray matter volume and topology of resting-state 
brain functional networks in PDM females are of interest for further investigation. One may speculate that the 
patterns of regional structural and functional alterations in the brain shown in previous PDM studies5–7,10–13,56 
represent a disordered configuration and will translate into abnormal interregional functional connectivity in 
terms of large-scale networking. The cingulate cortex, a brain region integrating pain, negative emotions and 

Figure 6. The similarity of modular partitions for the between-phase comparisons in the respective PDM 
and CON groups. For the full range of network costs (0.03–0.40) of the respective (a) weighted and (b) binary 
networks, no significant differences were found in the similarity of modular structure for the between-phase 
comparisons in the PDM and CON groups. CON, control; MENS, menstrual phase; NMI, normalized mutual 
information; PDM, primary dysmenorrhea; POV, periovulatory phase.



www.nature.com/scientificreports/

9SCIeNTIfIC REPORTs |  (2018) 8:12971  | DOI:10.1038/s41598-018-30827-6

cognition57, exhibits trait-related changes in glucose metabolism and state- and trait-related changes in gray mat-
ter volume in PDM females5–7. Medial brain motor areas, including the supplementary motor area, exhibit altered 
functional connectivity in chronic pain conditions that are often comorbid with dysmenorrhea, including painful 
bladder syndrome58 and localized provoked vulvodynia59. However, the modular assignments and regional net-
work metrics of anterior and posterior cingulate gyri and supplementary motor area parsed based on the AAL 
and Harvard-Oxford cortical and subcortical probabilistic atlases were not altered in this study. The interactions 
between functional networks (functional connectivity) and their structural neural substrates of PDM remain to 
be explored, although functional and structural brain networks are closely related and may share common topo-
logical characteristics24,60,61. Different brain imaging modalities assess distinct but complementary types of brain 
connectivity. Integrated models of structural and functional connectivity constructed from multimodal brain 
imaging data can further shed light on the effect of PDM on topological network architecture.

By using power analysis (G*Power software; http://www.gpower.hhu.de/), the sample size of our study 
(n = 119 in total and ~60 in each group) may achieve statistical power (80%) to detect the medium effect 
size larger than 0.52 for the between-group/within-phase comparison (independent t test) and 0.37 for the 
within-group/between-phase comparison (paired t test). However, statistical significance in our study cannot 
be achieved should the effect size is smaller (e.g., underpowered concern in our statistical construct). Possible 
existence of more subtle changes cannot be precluded. Future studies of larger sample sizes are needed to detect 
possible statistical differences under smaller effect size. We had investigated the global network metrics and mod-
ular structure across a wide range of cost levels, using liberal, uncorrected statistical threshold for 38 cost levels to 
better detect the differences. Thus, it can be reasonable to conclude that there would be no significant differences 
in the graph metrics between the PDM and control groups.

Several points for further consideration should be addressed in our study. Firstly, the different atlas parcella-
tion schemes may influence the results of topological network characteristics62–64, and the parcellation scheme of 
the cerebral cortex for graph theoretical network analysis requires further optimization and standardization27,65,66. 
The AAL and Harvard-Oxford cortical and subcortical probabilistic atlases are the parcellation schemes that are 
commonly used in graph theoretical network analysis of fMRI studies36,67. Secondly, it should be noted that the 
functional connectivity network in this study was based on the 90 cerebral regions of the AAL atlas, excluding the 
cerebellar regions. Although our previous PDM study showed trait-related changes of gray matter volume in the 
right cerebellar tonsil6, the specific role of the cerebellum in pain processing and modulation is not completely 
understood68. Notwithstanding, technical challenges for image preprocessing of the cerebellum (e.g., normaliza-
tion procedure to the atlas) arise due to the small size and functional heterogeneity of the cerebellum69. Finally, 
the young PDM females in our study group experienced moderate to severe menstrual pain with a wide spectrum 
of individual pain differences. Owing to the sample size, we did not perform subgroup analyses according to the 
pain severity (i.e., moderate and severe PDM). Future studies of larger sample sizes to address the relationship 
between the topological profiles and the clinical characteristics (e.g., pain severity) can be important to disclose 
the intricacy between imaging endophenotypes and clinical phenotypes of PDM.

Conclusions
Our current study indicates that, despite regional dysfunction and structural alterations, the overall integrity of 
intrinsic functional brain architecture in young PDM females, in terms of global and regional network metrics 
and modular structure, showed no differences compared to females without PDM at our detection thresholds 
(Cohen’s dbetween-group ≥ 0.52 and Cohen’s dwithin-group ≥ 0.37). Although we cannot completely preclude small to 
medium effect size differences of functional brain architecture owing to the underpowered concern, it is plausible 
that the absence of significant changes in the functional brain architecture allows young PDM females to maintain 
normal psychosocial outcomes during the pain-free follicular phase.

Methods
Subjects. The subjects of this study (59 PDM and 68 control females) were a subset of the participants 
(smaller in the sample size) from our previous genetic association and behavioral study of PDM8 who had com-
pleted the whole study protocols and were eligible for neuroimaging analyses in this study. Two PDM and 6 
control females were excluded for further analyses owing to the significant head motion (translation >2 mm 
or rotation >2°) during the MRI scan. Eventually, 57 otherwise healthy females with PDM (age, 23.1 ± 2.27 
years) and 62 education-matched, healthy control females (age, 23.7 ± 2.40 years) were recruited for the pres-
ent study (see Table 1 for demographic data). The inclusion criteria for subjects with PDM were as follows: 1) 
20–30-year-old Taiwanese (Asian) females; 2) a regular menstrual cycle of approximately 27–32 days; 3) a history 
of menstrual pain longer than 6 months; 4) average menstrual pain under regular treatment with a rating higher 
than 4 on a verbal numerical scale (VNS, 0 = not at all, 10 = the worst imaginable pain) in the last 6 months; and 
5) right-handedness, as confirmed by the Edinburgh Handedness Inventory70. All PDM females were clinically 
examined and diagnosed in the gynecology clinic by the same gynecologist (H.T.C.). All subjects in the PDM 
group received pelvic ultrasonography to exclude secondary dysmenorrhea caused by organic pelvic diseases, 
such as endometriosis or adenomyosis. The inclusion criteria for the healthy control females were similar to 
those for the PDM group, except that the subjects of the control group had no pain whatsoever during menses 
(VNS = 0). The exclusion criteria for all of the subjects were as follows: 1) using oral contraceptives, hormonal 
supplements, Chinese herbal medicine, or any centrally acting medication (e.g., opioid, anti-epileptics) within 
6 months prior to the study; 2) pathological pituitary gland disease; 3) organic pelvic disease; 4) any psychiatric 
or neurological disorders (e.g., premenstrual dysphoric disorder); 5) any head injury with loss of consciousness 
or brain surgery; 6) immediate plans for pregnancy or a positive pregnancy test; 7) a history of childbirth; and 8) 
having a metal/pacemaker implant, claustrophobia, or any contraindications in relation to MRI. No analgesics 
had been taken by the subjects within 24 hours before the study. Some of these subjects have been analyzed in 

http://www.gpower.hhu.de/
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the previously published neuroimaging studies9,11,12. The overall study was conducted in accordance with the 
Declaration of Helsinki and was approved by the Institutional Review Board of Taipei Veterans General Hospital. 
All subjects provided written informed consent.

Experimental design. MRI scanning was individually scheduled according to the first day of menstruation 
for each subject. All of the subjects received psychological assessments, blood sampling for gonadal hormone 
assays, and brain MRI scanning (T1 and resting-state fMRI images) during the MENS phase (days 1–3 of the 
menstrual cycle) and POV phase (days 12–16 of the menstrual cycle). Ovulation was confirmed using a urinary 
luteinizing hormone test (Han Chiun Proper LH Rapid Test).

Psychological assessments. To evaluate the psychological status throughout the menstrual cycle, all of 
the subjects in the two groups completed self-reported psychological measurements, including the Spielberger 
State-Trait Anxiety Inventory71, the Beck Anxiety Inventory72, the Beck Depression Inventory73, and the Pain 
Catastrophizing Scale74, during the respective MENS and POV phases. The McGill Pain Questionnaire was com-
pleted by the PDM females at the inception stage and the MENS phase during the experiment to assess their 
respective overall and current experiences of menstrual pain.

Serum gonadal hormone measurements. The sera extracted from the blood samples drawn during the 
respective MENS and POV phases were stored for batch analysis using commercialized assays (UniCel DxC 800 
Synchron Clinical Systems, Beckman Coulter, Inc., Brea, CA). The total serum concentrations were assayed using 
a chemiluminescence immunoassay technique for estradiol and progesterone and a radioimmunoassay technique 
for testosterone.

Our previous report revealed: 1) there were significant main effects of group and menstrual cycle phase as well 
as the interaction between them on the psychological measurements and 2) there was a significant main effect of 
menstrual cycle phase, but no main effect of group or interaction between group and menstrual cycle phase, on 
the serum gonadal hormone levels8. For the purpose of this neuroimaging subset study, we only conducted the 
two-sample t-test to examine the between-group differences of the psychological and gonadal hormone meas-
urements in each phase using SPSS Statistics 20.0 (SPSS Inc., Chicago, IL), without testing the overall interaction 
effects between group and menstrual cycle phase. This aim was to ascertain that the imaging data was not con-
founded by hormonal differences between the groups. The results were considered significant when P < 0.05. For 
more comprehensive statistical analyses and results of psychological and gonadal hormone measurements, please 
refer to our previous report8.

Image acquisition. Resting-state fMRI images were acquired on a 3.0 Tesla MRI scanner (Magnetom 
Trio Tim, Siemens, Erlangen, Germany), using echo-planar imaging (EPI), with the following scanning 
parameters: repetition time (TR) = 2500 ms, echo time (TE) = 30 ms, 40 axial slices/image volume with slice 
thickness = 3.4 mm, flip angle = 90°, field of view (FOV) = 220 × 220 mm2, matrix size = 64 × 64, and voxel 
size = 3.4 × 3.4 × 3.4 mm3. The duration of the EPI scan was 507 sec, and it consisted of 200 volumes. All sub-
jects were scanned with their eyes open in a supine and relaxed position. T1-weighted 3-dimensional structural 
images for each subject were acquired using a magnetization-prepared rapid-acquired gradient echo sequence 
(MPRAGE) with the following scanning parameters: TR = 2530 ms, TE = 3.03 ms, inversion time (TI) = 1100 ms, 
flip angle = 7°, FOV = 224 × 256 mm2, matrix size = 224 × 256, and slice thickness = 1 mm. To reduce interfer-
ence from head motion and to reduce ambient noise levels, head cushions and earplugs were used, respectively.

Image preprocessing. All EPI images were preprocessed using Statistical Parametric Mapping software 
(SPM8, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom, http://
www.fil.ion.ucl.ac.uk/spm) in MATLAB (The MathWorks, Inc., Natick, MA, USA) with the following procedures: 
the correction of slice timing, the realignment for head motion correction (6-parameter rigid body transforma-
tion), and the spatial normalization. The time course of head motion for each subject was obtained by estimat-
ing the translation and rotation in each axis for the 200 consecutive EPI volumes. Because head motion has a 
significant influence on intrinsic functional connectivity measurements75, we excluded subjects with significant 
head motion (translation >2 mm or rotation >2°) of any volume from further analysis. The EPI images were 
spatially normalized using the SPM’s standard EPI template in Montreal Neurological Institute (MNI) space and 
re-sampled to an isotropic 2 × 2 × 2 mm3 voxel size. For the time series of blood oxygen level-dependent (BOLD) 
signals in each voxel of the normalized image, the effects of head motion (the 6 motion parameters estimated 
from rigid-body realignment) and the signals of white matter regions and ventricular system were removed by 
linear regression, and the shift of BOLD signals was detrended. The band-pass filter was set at 0.01–0.08 Hz for 
the resulting time series to extract the low-frequency oscillating components that contributed to resting-state 
functional connectivity76. Global signal regression was not performed due to the concern of potential distortion 
on correlation patterns77,78.

Construction of connectivity network. Brain functional networks, composed of nodes (parcellated brain 
regions) and edges (inter-nodal functional connectivity), were constructed from resting-state fMRIs.

Definition of node. The node of the network was defined as the parcellated brain regions according to the AAL 
atlas (consisting of 90 cerebral and 26 cerebellar anatomical regions)31. For the nomenclature of the 90 parcellated 
cerebral regions (45 areas per hemisphere) used in network construction, please refer to our previous report79. 
The resulting templates of the 90 nodes were then respectively co-registered with the preprocessed fMRI images 
of each subject. The mean time series of each node was calculated by averaging the time series of each voxel in 
that node.

http://www.fil.ion.ucl.ac.uk/spm
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Definition of edge. The edge of the network was defined as the degree of correlation (Pearson correlation coef-
ficient, r) between the mean time series of each pair of nodes22,24,26,27,79. To obtain a better normality of the corre-
lation, the 90-by-90 ‘r-value matrix’ was converted to a ‘z-score matrix’ using Fisher’s r-to-z transformation. The 
weight of the edge was defined as the absolute value of the z-score matrix.

The z-score matrix was then thresholded at different levels of sparsity using the minimum spanning tree 
method, followed by global thresholding80. The minimum spanning tree method aims to force the connected-
ness of sparse or low-density graphs and to prevent the emergence of fragmented networks with isolated islands, 
which are neuroscientifically unexplainable and unjustified. For each node, the edge of the highest weight was 
retained to keep the node connected with at least one neighboring node (i.e., local thresholding). The step of local 
thresholding was iterated until all nodes were able to connect with one another, giving rise to a fully connected 
backbone network without the emergence of isolated islands. The edges of the strongest weight, ranked by all the 
edges, were sequentially added into the backbone network. This ‘growing’ method was iterated until the number 
of edges meets with the assigned network sparsity (i.e., global thresholding). To investigate the effect of different 
network sparsity on graph metrics, weighted and binary networks were constructed with cost values ranging from 
0.03 to 0.40, at increments of 0.01. For a weighted network, the edge weight exceeding the threshold was retained, 
otherwise it was discarded. For a binary network, the edge weight exceeding the threshold was set to ‘1’, otherwise 
it was set to ‘0’. Binary networks contain only the information whether an edge (connection) between two nodes 
is present or not according to the preset threshold. Weighted networks contain not only the information whether 
an edge is present or not, but also the connection strength between two nodes. Binary networks are succinct to 
characterize and compute the organizational characteristics29. Weighted networks can, compared to the binary 
networks, retain more biologically relevant information and provide different but complementary information of 
network organization29,81. We used both binary and weighted network constructions to cross-validate the results.

Network analysis software. The global and regional network metrics and modularity of brain func-
tional networks were computed using the Brain Connectivity Toolbox29 (https://sites.google.com/site/bctnet/) 
in MATLAB. Between-group differences of network community structures (i.e., similarity analysis), in terms 
of modular partitions and modular assignment of specific nodes, were examined according to the approach 
reported by Alexander-Bloch et al.82. We adopted the R codes provided by the authors and computed the NMI 
and Pearson’s phi for the similarity analyses of modular partitions and modular assignment of specific nodes, 
respectively. For the codes to perform the similarity analyses please refer to the Supplementary information. 
The similarity comparisons were carried out by means of permutation procedure for the planned contrast. We 
compared the average within-group similarity of the actual data to that of the permuted data where the group 
memberships are randomized. The P value is defined as the number of instances that the permuted within-group 
similarity exceeds the actual within-group similarity, divided by the number of permutations. Significant group 
differences are indicated should the within-group similarity of the actual data always exceed that of the permuted 
data82. For the details of computational processes, please refer to the respective sections (Modular structure & 
Modular assignment of specific nodes).

Global network metrics of the resting-state functional network. The mean clustering coefficient83,84,  
characteristic path length83, global efficiency85, and local efficiency85 of the network were assessed for each of 
the MENS and POV phases in the PDM and control groups. The mean clustering coefficient of the network 
represents the tendency of network nodes to form local clusters (i.e., local connectedness), and the characteristic 
path length indicates how well the network nodes are interconnected (global connectedness)34. Small-worldness 
reflects the combination of a high clustering coefficient and a short characteristic path length83. A high clustering 
coefficient characterizes an efficient local information processing (high local efficiency) and a short characteristic 
path length features a high level of global communication efficiency (high global efficiency)28,86.

Modular structure. The modularity87,88, the number of partitioned modules, as well as the similarity 
between two modular partitions were assessed. The modular structure is defined as a subset of nodes that are 
more densely interconnected among them than with other nodes within the network, indicating the forma-
tion of sub-networks24. Modularity is a measure of degree to which a network can be subdivided into smaller 
sub-networks26.

The global network metrics (mean clustering coefficient, characteristic path length, global efficiency, and local 
efficiency) and modular structure (modularity, number of partitioned modules, and similarity of modular parti-
tions) of brain functional networks were assessed on the respective weighted and binary networks across a range 
of network cost (0.03–0.40). The statistical analyses for the mean clustering coefficient, characteristic path length, 
global efficiency, local efficiency, modularity, and number of partitioned modules of the network at a specific 
cost level were conducted using SPSS Statistics 20.0. Linear mixed models were used to examine the fixed effects 
of group (PDM vs. control) and menstrual cycle phase (MENS phase vs. POV phase), as well as the interaction 
between them. Subject was entered as a random effect. As menstrual cycle phase (i.e., gonadal hormones) may 
have an influence on the resting-state functional connectivity between brain regions89 and PDM females exhibit 
minimal or mild depressive and anxious symptoms during the MENS phase (see Results), the hormonal fluctua-
tions (estradiol, progesterone, and testosterone levels) and psychological assessments (the Spielberger State-Trait 
Anxiety Inventory, the Beck Anxiety Inventory, and the Beck Depression Inventory scores) were entered as covar-
iates in the statistical model. The variance–covariance matrix was assumed to be unstructured since there were 
no presumptions on the correlation pattern of graph metrics between menstrual cycle phases. Significance was 
initially set at a threshold of corrected P < 0.05 (FDR correction for multiple comparisons of 38 cost levels), and 
no significant differences were found. Hence, we further lowered the significance level at a liberal threshold of 
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uncorrected P < 0.05 (uncorrected for multiple comparisons of 38 cost levels) to better the detection of possible 
differences.

Similarity between two modular partitions (quantified by the NMI82,90) was compared by a permutation pro-
cedure82. The NMI, a similarity index, can be used to evaluate different modular partition algorithms and to 
estimate the similarity of modular structures across subjects90. The NMI value ranges from 0 to 1, where 1 denotes 
that the two modular partitions are identical and 0 that they are totally independent82. For the equation of NMI, 
please refer to previous reports82,90. Between-group comparisons for each phase and between-phase comparisons 
for each group were computed to address the state and trait effects of dysmenorrhea on the similarity of modular 
structure of brain functional networks11,12. The alterations of modular partitions during the MENS phase in the 
between-group comparison (MENS phase of PDM vs. MENS phase of control) and in the between-phase com-
parison for the PDM group (MENS phase of PDM vs. POV phase of PDM) were regarded as state-related changes. 
The alterations during the POV phase in the between-group comparison (POV phase of PDM vs. POV phase of 
control) were regarded as trait-related changes. At a specific cost level, the average pairwise NMIs during the same 
menstrual cycle phase were separately calculated across subjects within the control and PDM groups. We tested 
the hypothesis that the average within-group pairwise similarity is higher than the average between-group pair-
wise similarity, which exhibits a genuine difference in similarity of modular partitions between the control and 
PDM groups during the same menstrual cycle phase82,91. The permutation procedure to compare the similarity 
of modular partitions was performed by varying the group membership, with 10000 permutations82. Significance 
was set at a stringent threshold of corrected P < 0.05 (FDR correction for multiple comparisons of 38 cost levels) 
initially, and no significant differences were found. Hence, we further lowered the significance level at a liberal 
threshold of uncorrected P < 0.05 (uncorrected for multiple comparisons of 38 cost levels) to unravel possible 
subtle differences.

Modular assignment of specific nodes. For the analyses of modular assignment of specific nodes, we 
analyzed the respective weighted and binary networks with cost values ranging from 0.03 to 0.40. To investigate 
the difference in modular assignment of a specific node of interest (NOI) at a specific cost level during the same 
menstrual cycle phase, the similarity of module labels of two subjects, in terms of the network community of the 
NOI, was calculated. For a given NOI, for each subject, all of the other nodes were labeled ‘1’ if they shared the 
same module with the NOI, and ‘0’ if not. The similarity of the module labels between each pair of subjects was 
calculated using Pearson’s phi, a method of Pearson correlation for dichotomous variables. For the given NOI, a 
higher phi value indicates a higher similarity of modular assignment between subjects. We tested the hypothesis 
that the average within-group pairwise similarity is higher than the average between-group pairwise similarity, 
which exhibits a genuine difference in similarity of modular assignment of specific nodes between the control 
and PDM groups during the same menstrual cycle phase82. The permutation procedure to compare the similarity 
was performed by varying the group membership, with 10000 permutations82. The permutation tests were per-
formed for every one of the 90 AAL nodes at each of the 38 cost levels. Under the premise of equivalent statistical 
stringency for the global network metrics and modular assignment of specific nodes, FDR correction was only 
applied to correct for multiple comparisons of 90 AAL nodes, but not for multiple comparisons of 38 cost levels.

Regional network metrics of the resting-state functional network. For each node, the regional 
network metrics (local efficiency, clustering coefficient, and degree) were assessed on the respective weighted and 
binary networks across a range of network cost (0.03–0.10, at increments of 0.01) for each of the MENS and POV 
phases in the PDM and control groups. Low cost levels were selected for network construction to avoid spurious 
or statistically non-significant connections between nodes28,29. Node degree is defined as the number of links 
connected to a node29. The node with a high degree is interacting with many other nodes in the brain functional 
network29.

Data were analyzed using SPSS Statistics 20.0. At a specific cost level, linear mixed models were used to exam-
ine the fixed effects of group (PDM vs. control) and menstrual cycle phase (MENS phase vs. POV phase), as well 
as the interaction between them on the regional network metrics of each node. The hormonal fluctuations (estra-
diol, progesterone, and testosterone levels) and psychological assessments (the Spielberger State-Trait Anxiety 
Inventory, the Beck Anxiety Inventory, and the Beck Depression Inventory scores) were entered as covariates 
in the statistical model. The variance–covariance matrix was assumed to be unstructured. FDR correction was 
applied to correct for multiple comparisons of 90 AAL nodes, but not for multiple comparisons of 8 cost levels.

Robustness of methodological variation. To validate our observations using results obtained from dif-
ferent methodological approaches, we analyzed the difference in the global and regional network metrics and 
modular structure using the networks constructed by parcellated brain regions according to the Harvard-Oxford 
cortical and subcortical probabilistic atlases. The atlases are composed of 48 cortical and 7 subcortical brain 
regions in each hemisphere, and a total of 110 nodes (55 areas per hemisphere) were used in the network 
construction.
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